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Abstract: To address an autonomous guided vehicle problem, this article presents extended variants
of the established block over-relaxation method known as the Block Modified Two-Parameter Over-
relaxation (B-MTOR) method. The main challenge in handling autonomous-driven vehicles is to
offer an efficient and reliable path-planning algorithm equipped with collision-free feature. This
work intends to solve the path navigation with obstacle avoidance problem explicitly by using a
numerical approach, where the mobile robot must project a route to outperform the efficiency of
its travel from any initial position to the target location in the designated area. The solution builds
on the potential field technique that uses Laplace’s equation to restrict the formation of potential
functions across operating mobile robot regions. The existing block over-relaxation method and its
variants evaluate the computation by obtaining four Laplacian potentials per computation in groups.
These groups can also be viewed as groups of two points and single points if they’re close to the
boundary. The proposed B-MTOR technique employs red-black ordering with four different weighted
parameters. By carefully choosing the optimal parameter values, the suggested B-MTOR improved
the computational execution of the algorithm. In red-black ordering, the computational molecules of
red and black nodes are symmetrical. When the computation of red nodes is performed, the updated
values of their four neighbouring black nodes are applied, and conversely. The performance of the
newly proposed B-MTOR method is compared against the existing methods in terms of computational
complexity and execution time. The simulation findings reveal that the red-black variants are superior
to their corresponding regular variants, with the B-MTOR approach giving the best performance.
The experiment also shows that, by applying a finite difference method, the mobile robot is capable
of producing a collision-free path from any start to a given target point. In addition, the findings
also verified that numerical techniques could provide an accelerated solution and have generated a
smoother path than earlier work on the same issue.

Keywords: finite difference method; accelerated over-relaxation; Laplace’s equation; path navigation;
optimal path; collision-free; block iterative schemes

MSC: 65K05; 65K10; 35J05; 65M06; 65M22; 65N06; 65Y04

1. Introduction

The development of over-relaxation iterative methods families, in particular, Suc-
cessive Over-Relaxation (SOR), Accelerated Over-Relaxation (AOR), and Two-Parameter
Over-Relaxation (TOR), has sparked researchers’ interest in analyzing and solving numer-
ous problems. These methods have been studied broadly in the past to solve linear system
problems. The advent of the computer helps to solve elliptic partial differential numerically
and efficiently using the SOR method [1]. In response to the significant role of SOR and the
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widespread use of this iterative technique, Hadjidimos [2] introduces a simple yet powerful
scheme for a larger linear system called AOR. A decade later, ref. [3] established an ex-
tended scheme that fundamentally extends the AOR approach, known as the TOR method.
The principle of block over-relaxation is applied to a novel type of block iteration in [4],
and the resulting approach with a higher rate of convergence than that associated with
single-line over-relaxation techniques was introduced. The block iteration approach was
applied recently to solve the complex linear equations from the space fractional coupled
nonlinear Schrodinger equations [5]. Apart from this, the block over-relaxation variants
and their families have lately been utilized for quick computing [6–11].

In recent years, the study of path-planning exploitations, for instance, moving ma-
chines and autonomous agents, has gained a reputation in the research field. Formerly,
refs. [12,13] introduced a global method for designing a smooth collision-free path through
Laplace’s path planning equations. These two experiments demonstrate that harmonic
functions provide a fast manner of constructing trails in a robot configuration region and
prevent the emergence of local minima by chance. Following that, ref. [14] demonstrated
the use of a numerical approach to address the path navigation issue, which concluded that
by replicating complex problems with the maze, the new computational method of motion
planning worked extremely well. Aside from that, refs. [15,16] have integrated iterative
approaches with path-searching processes to tackle the path-finding problem in a global
manner. Later, ref. [17] executed the application of potential functions for robot naviga-
tion. In accordance with his analyses, the end effector is subject to a repulsive force while
every target exerts an appealing force. The harmonic potentials have also been expanded
for a few other applications outside of autonomous robot path-planning, including ship
navigation [18], space exploration [19], unmanned aerial vehicle planning [20], and marine
maneuvers [21].

Autonomous robot navigation often involves discovering a collision-free path in a
designated setting with obstacles to achieving a specific objective. The path-planning
of a mobile robot in this study is performed using a numerical potential function in a
predetermined environment, which is based on the heat transfer principle. The harmonic
functions are the solutions to Laplace’s equation, notably used to solve the heat transfer
problem. For the simulation of paths deriving from harmonic functions, temperature values
in the defined area are employed. Computational approaches were utilized to generate
harmonic functions owing to the availability of fast processing machines and the advanced
algorithm to address the problem. In previous work, we have proved the value of the
over-relaxation schemes and their variants in path-finding problems [11,22,23]. The positive
outcomes of over-relaxation families’ iterative methods drive us to improve and provide
an extension to the earlier work. Therefore, the core contribution of this article is the intro-
duction of the newly iterative scheme of Block Modified Two-Parameter Over-relaxation
(B-MTOR), which has been demonstrated to give faster convergence when optimal values
are chosen. We conducted a variety of experiments to examine the effectiveness of iterative
schemes for producing paths of mobile robots with varied obstacle figures in several sizes
of environments.

2. Materials and Methods

We replicate the concept of driving a robot vehicle by means of a point that runs in an
identified region rather than using the actual robot vehicle. The robot path planning can
be illustrated as a steady-state heat transfer problem. The Laplace equation is frequently
referred to as a steady-state heat equation [24] in the context of thermal conductivity,
and its solutions are consistently denoted by harmonic functions. By resembling thermal
conduction, the target point is to be regarded as a sink heat-pulling in, while the region
border lines and all obstacles are kept at a constant temperature as it is identified as the heat
source. The temperature distribution develops through the process of thermal conductivity,
resulting in a thermal flux, which reflects the values of Laplacian potential, flowing into
the sink that fills the configuration region. This can be interpreted as a way of interaction
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among the obstacles, goal location, and point robot. By observing the heat flux from high-
temperature sources (with the highest potential value) to the lowest temperature point
(with the lowest potential value) in the region, the field temperature distribution can then be
utilized as a guide for the point robot as it moves from one location to another. Through the
heat stream, it is simpler to view the path. This cycle, according to [12], guarantees a path
to the target without running into local minima and certainly evades any barriers. By using
the harmonic function to describe the environment setup, the temperature distribution of
the configuration region is determined.

Mathematically, the harmonic function on domain Ω bounded in region Rn satisfies
Laplace’s Equation (1), with the Cartesian coordinates of i-th denoted by xi, and n is the
dimension. For the construction of the robot path in this study, the domain Ω is composed
of the region boundaries, initial positions, obstacles, and goal points.

∇2φ =
n

∑
i=1

∂2φ

∂x2
i
= 0. (1)

The min-max rule holds true for harmonic functions; hence, it naturally follows that no
local minima can suddenly occur in the solution domain [16]. Additionally, an escape
path is always possible in every situation because the Gauss Integral Theorem [25] asserts
that there is a balance between inward and outward flow on the boundary of any volume
inside the solution domain (discounting the barriers and the target point). A harmonic
function follows the min-max principle and has a gradient vector field with zero curls.
Consequently, the only critical points that can arise are saddle points. A search in the area
surrounding such a critical point can lead to the escape. Moreover, any path interference
brought by such points yields a smooth path everywhere.

A robot in this model is characterized by a point in the configuration region. The
region is built in a grid pattern, and each node’s coordinates and its function values are
iteratively computed using the numerical approach. Various initial temperature values
are given for the boundaries and obstacles, with the potential value appointed for the
starting point set to high and the goal point being set as lowest. The Dirichlet constraint,
φ|∂Ω = c , where c is constant, has been applied to Laplace’s equation solution. Once the
harmonic function is founded within the boundary conditions, the suitable path can be
positively found by trailing the heat stream executed through the gradient descent scheme
(GDS) on calculated potential values. The descending search directs to the point with the
smallest potential value, indicating the goal point. This descending manner is a sequence of
points with lower potential values. The route’s streamline is determined by the coordinates
and nodal temperature gradients obtained from the analysis of finite difference. In brief,
the harmonic potentials are evaluated in the configuration region, including obstacles
throughout the region and occupying the solutions to detect path lines for a mobile robot
from an arbitrary initial point to a specific goal location. In general, the path-planning
construction process in this study includes the following actions:

Begin
Step 1: Create a map of the robot’s region;
Step 2: Initiate the formulation and modeling of the iterative schemes;
Step 3: Formulate and execute the proposed iterative schemes algorithms;
Step 4: Perform numerical simulations to obtain the solutions;
Step 5: Evaluate the performances and algorithms complexity analysis.

End

2.1. Block Iterative Techniques

The block iterative schemes, also known as an explicit group (EG) iterative approach,
were founded by [4]. All the algorithms in the block iterative methods family show that
the evaluation is accelerated by obtaining four Laplacian potentials per computation. The
calculation of groups of points that are close to the boundary is handled as groups of two
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points and a single point, as illustrated in Figure 1. This approach has been implemented
in [11,22,23] to solve partial differential equation problems.
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Figure 1. Computational nodes for an explicit group iterative approach.

Eventually, the approximate values of the remaining node points for all block iterative
methods are measured instantly through direct methods [26–28]. It is important to highlight
that all algorithms used in this study are performed until the solution satisfies a specified
convergence criterion, noted as ε. The stopping criterion utilized in this work is established
on ‖u(k+1) − u(k)‖ ≤ ε. Generally, implementations of all proposed iterative methods are
typically imposed onto solid node points in Figure 1 until the convergence test criterion
is fulfiled. With the exception of certain cases, especially the one near the boundary, all
formulations utilizing the block iterative technique calculate a group of four nodes at once
throughout the iteration process, refer to Figure 1. This block iterative approach, or the EG
technique, is essentially generated using the standard five-point finite difference (5p-FD)
approximation and is built on a group of a small number of points.

2.2. Red-Black Strategy

The red-black iterative approach, often referred to as red-black ordering, has been a
fundamental technique used in numerical methods for solving partial differential equa-
tions and sparse matrix solvers for decades. In 1946, William [29] provided insights into
the use of red-black ordering in solving linear systems of equations arising from Markov
chain problems. It has evolved as a common and widely accepted technique. Studies
on this approach can be found in the recent literature [30,31]. The formulations of the
red-black ordering strategy for each of the modified variants are shown in Figure 2. The
formulation concept of the red-black ordering strategy is as much the same as the corre-
sponding explanation for nodal points in Figure 1, which has been briefly covered in the
previous section.

The red–black approach uses two separate weighted parameters, ω and ω′, for the
respective red and black nodes to replace conventional parameter ω. Additionally, for the
over-relaxation schemes, the accelerated parameter r is shifted into two different accelerated
parameters r and r′. By giving a broader selection of values in the range between 1 and 2
and with appropriate parameter values, this approach will produce a suitable optimum
iteration number and expedite the computational time. The proportion of the computational
molecules for the red and black nodes, with the black node applying the updated values of
its four adjoining red nodes and conversely, is readily visible in Figure 3. The red–black
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ordering strategy alternately computes the red and black nodes. Only red nodes will be
computed in the first iteration, and only black nodes will be computed in the subsequent
iteration; this process continuously calculates all the nodes in the region.
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2.3. Finite Difference Schemes

Consider the two-dimensional Laplace’s equation as set out in Equation (1) as

∇2u =
∂2u
∂x2 +

∂2u
∂y2 = 0. (2)

The standard second-order 5p-FD method, which is frequently used to represent
the event of fluid dynamics and heat conduction processes, can be used to simplify the
approximation of Equation (2), commonly stated as

ui−1,j + ui+1,j + ui,j+1 + ui,j−1 − 4ui,j = 0. (3)
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This equation is then operated for the iterative methods executed on the grids. Ac-
cordingly, the iterative schemes for the standard 5p-FD formula can be written as

u(k+1)
i,j =

1
4

[
u(k+1)

i−1,j + u(k)
i+1,j + u(k)

i,j+1 + u(k+1)
i,j−1

]
. (4)

As mentioned previously, this study focuses on block over-relaxation iterative schemes
for the proposed solver, i.e., SOR, AOR, TOR, and its modified variants, using explicit
group technique. The standard iterative scheme for corresponding methods is necessary in
order to implement the block iterative scheme. Therefore, from Equation (4), the standard
SOR iterative schemes with relaxation parameter ω is expressed as

u(k+1)
i,j =

ω

4

[
u(k+1)

i−1,j + u(k)
i+1,j + u(k)

i,j+1 + u(k+1)
i,j−1

]
+ (1−ω)u(k)

i,j . (5)

The AOR iterative technique, however, contains two relaxation parameters: r and
ω. Both parameters can be utilized to produce iterative methods that can accelerate the
convergence rates, and AOR is more compliant and appropriate than any other method
in this family. As defined by [2], to find the AOR iterative scheme for the standard five-
point approximation, we switch u(k+1)

i−1,j and u(k+1)
i,j−1 with u(k)

i−1,j and u(k)
i,j−1 respectively, and

insert the
r
(

u(k+1)
i−1,j −u(k)

i−1,j

)
4 and

r
(

u(k+1)
i,j−1 −u(k)

i,j−1

)
4 terms. Hence, the AOR iterative scheme for the

standard five-point formula on the grid can be written as

u(k+1)
i,j =

r
4

[
u(k+1)

i−1,j − u(k)
i−1,j + u(k+1)

i,j−1 − u(k)
i,j−1

]
+

ω

4

[
u(k)

i−1,j + u(k)
i+1,j + u(k)

i,j−1 + u(k)
i,j+1

]
+ (1−ω)u(k)

i,j . (6)

At the same time, the TOR iterative method represents a simplification of the AOR
method, which involves three relaxation parameters: r, r′, and ω. Obviously, if r = r′,
the scheme of TOR is reduced to the AOR method. For both TOR and AOR methods, the
parameters are selected to be close to the value of the corresponding SOR, and all of the
parameters are expressed in the range of [1, 2). The TOR iterative scheme for the standard
five-point formula on the grid is written as

u(k+1)
i,j =

r
4

u(k+1)
i,j−1 +

r′

4
u(k+1)

i−1,j +
ω

4

(
u(k)

i,j+1 + u(k)
i+1,j

)
+

(
ω− r

4

)
u(k)

i,j−1 +

(
ω− r′

4

)
u(k)

i−1,j + (1−ω)u(k)
i,j . (7)

The implementation of these finite differences, Formulae (3) to (7), to approximate
problem (2) will produce a large and sparse linear system that can be expressed in matrix
form as

Au = b (8)

where A and b are known and u is unknown.

Standard Modified over Relaxation Schemes

The construction of formulation for the standard, modified SOR methods, namely
Modified Successive Over-Relaxation (MSOR), can generally be expressed as

u(k+1)
i,j =

ω

4

[
u(k)

i−1,j + u(k)
i+1,j + u(k)

i,j−1 + u(k)
i,j+1

]
+ (1−ω)u(k)

i,j , (9)

for red nodes. Whilst the black nodes are given as

u(k+1)
i,j =

ω′

4

[
u(k+1)

i−1,j + u(k+1)
i+1,j + u(k+1)

i,j−1 + u(k+1)
i,j+1

]
+
(
1−ω′

)
u(k)

i,j . (10)

Next, the formulation of standard, modified AOR methods, also known as Modified
Accelerated Over-Relaxation (MAOR), can be written in red nodes as

u(k+1)
i,j =

ω

4

[
u(k)

i−1,j + u(k)
i+1,j + u(k)

i,j−1 + u(k)
i,j+1

]
+ (1−ω)u(k)

i,j , (11)
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while the black nodes are written as

u(k+1)
i,j =

r
4

[
u(k+1)

i−1,j − u(k)
i−1,j + u(k+1)

i,j−1 − u(k)
i,j−1

]
+

r
4

[
u(k+1)

i+1,j − u(k)
i+1,j + u(k+1)

i,j+1 − u(k)
i,j+1

]
+

ω′

4

[
u(k)

i−1,j + u(k)
i+1,j + u(k)

i,j−1 + u(k)
i,j+1

]
+
(
1−ω′

)
u(k)

i,j . (12)

Meanwhile, the standard, modified TOR methods, referred to as Modified Two-Parameter
Over-Relaxation (MTOR), can be stated as

u(k+1)
i,j =

ω

4

[
u(k)

i−1,j + u(k)
i+1,j + u(k)

i,j−1 + u(k)
i,j+1

]
+ (1−ω)u(k)

i,j , (13)

for red nodes, although black nodes can be stated as

u(k+1)
i,j =

ω′ − r
4

[
u(k)

i,j + u(k)
i+1,j−1

]
+

r
4

[
u(k+1)

i,j + u(k+1)
i+1,j−1

]
+

ω′ − r′

4

[
u(k)

i+1,j + u(k)
i+1,j+1

]
+

r′

4

[
u(k+1)

i+1,j + u(k+1)
i+1,j+1

]
+
(
1−ω′

)
u(k)

i,j . (14)

3. Block over Relaxation Schemes

Let us take into consideration a set of four points (4 × 4), as illustrated in Figure 1, to
make the formulation of the block SOR approach simpler. By reflecting the approximation
in Equations (3) and (5), the block SOR method can be generally expressed as

4 −1 −1 0
−1 4 0 −1
−1 0 4 −1
0 −1 −1 4




ui,j
ui+1,j
ui,j+1

ui+1,j+1

 =


S1
S2
S3
S4

 (15)

where
S1 = ui−1,j + ui,j−1, S2 = ui+2,j + ui+1,j−1,
S3 = ui−1,j+1 + ui,j+2, S4 = ui+2,j+1 + ui+1,j+2.

By concluding the inverse of the coefficient matrix, Equation (15) can be amended as
ui,j

ui+1,j
ui,j+1

ui+1,j+1

 =
1
24


6S1 + Sa
6S2 + Sb
6S3 + Sb
6S4 + Sa

 (16)

where
Sa = 2(S2 + S3) + S1 + S4,
Sb = 2(S1 + S4) + S2 + S3.

Now, the block SOR iterative scheme for Equation (16) is revised to


ui,j

ui+1,j
ui,j+1

ui+1,j+1


(k+1)

=
ω

24


6S1 + Sa
6S2 + Sb
6S3 + Sb
6S4 + Sa

+ (1−ω)


ui,j

ui+1,j
ui,j+1

ui+1,j+1


(k)

. (17)

In reality, the block MSOR (B-MSOR) iterative technique formulation is akin to that of the
block SOR method but with an additional relaxation parameter. By employing the MSOR
method in Equations (15)–(17), we are now referring to a group of four points (4 × 4) from
Figure 2. The B-MSOR iterative scheme is typically stated as Equation (17) by taking into
account the approximation in Equation (3) as well as from Equations (9) and (10) for red
and black nodes, respectively.
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The block AOR method’s formulation, in the meantime, evaluates the approximation
equation from Equations (3) and (6) while also considering the node points in Figure 1. The
AOR block scheme is then described as follows

4 −1 0 0
−1 4 0 0
0 0 4 −1
0 0 −1 4




ui,j
ui+1,j+1

ui+1,j
ui,j+1

 =


S1
S2
S3
S4

 (18)

where
S1 = r

(
u(k+1)

i−1,j − u(k)
i−1,j + u(k+1)

i,j−1 − u(k)
i,j−1

)
+ ω

(
u(k)

i−1,j + u(k)
i,j−1

)
,

S2 = r
(

u(k+1)
i+1,j−1 − u(k)

i+1,j−1

)
+ ω

(
u(k)

i+1,j−1 + u(k)
i+2,j

)
,

S3 = r
(

u(k+1)
i−1,j+1 − u(k)

i−1,j+1

)
+ ω

(
u(k)

i−1,j+1 + u(k)
i,j+2

)
,

S4 = ω
(

u(k)
i+2,j+1 + u(k)

i+1,j+2

)
.

Once again, Equation (18) can be converted into a linear system as Equation (8) and
admitting the inverse of matrix A as in Equation (16). The block AOR iterative technique
may now be generally expressed as Equation (17), although with different matrix elements
S as revealed above in Equation (18).

Concurrently, considering computational nodes in Figure 1 with addressing Equations (3)
and (7), the formulation of the block TOR method is written as


ui,j

ui+1,j
ui,j+1

ui+1,j+1


(k+1)

=
1
24


6S1 + Sa
6S2 + Sb
6S3 + Sb
6S4 + Sa

+ (1−ω)


ui,j

ui+1,j
ui,j+1

ui+1,j+1


(k)

(19)

where

S1 = r
(

u(k+1)
i−1,j − u(k)

i−1,j

)
+ r′

(
u(k+1)

i,j−1 − u(k)
i,j−1

)
+ ω

(
u(k)

i−1,j + u(k)
i,j−1

)
,

S2 = r′
(

u(k+1)
i+1,j−1 − u(k)

i+1,j−1

)
+ ω

(
u(k)

i+1,j−1 + u(k)
i+2,j

)
,

S3 = r
(

u(k+1)
i−1,j+1 − u(k)

i−1,j+1

)
+ ω

(
u(k)

i−1,j+1 + u(k)
i,j+2

)
,

S4 = ω
(

u(k)
i+2,j+1 + u(k)

i+1,j+2

)
,

Sa = 2(S2 + S3) + S1 + S4, Sb = 2(S1 + S4) + S2 + S3.

Red-Black Block Modified over Relaxation Schemes

The modified variants of AOR and TOR methods are capable of reducing to Jacobi
extrapolation or modified SOR with certain sets of the acceleration and relaxation ma-
trices by unique parameters corresponding to the row blocks of matrix A. All modified
over-relaxation methods involve the execution of a red-black ordering strategy and using
different additional relaxation parameters from others.

The formulation of the block MAOR (B-MAOR) iterative technique is also analogous
to the block AOR method formulation with extra relaxation parameters. Consider the
four points (4 × 4) in Figure 2; via the approximation from Equation (3) along with
Equations (11) and (12), the B-MAOR iterative scheme can be generally described for red
nodes as 

ui,j
ui+1,j
ui,j+1

ui+1,j+1


(k+1)

=
ω

24


6S1 + Sa
6S2 + Sb
6S3 + Sb
6S4 + Sa

+ (1−ω)


ui,j

ui+1,j
ui,j+1

ui+1,j+1


(k)

(20)
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where
S1 = ui−1,j + ui,j−1, S2 = ui+2,j + ui+1,j−1,
S3 = ui−1,j+1 + ui,j+2, S4 = ui+2,j+1 + ui+1,j+2,

and black nodes are presented as


ui,j

ui+1,j
ui,j+1

ui+1,j+1


(k+1)

=
1
24


6S1 + Sa
6S2 + Sb
6S3 + Sb
6S4 + Sa

+
(
1−ω′

)
ui,j

ui+1,j
ui,j+1

ui+1,j+1


(k)

(21)

with

S1 = r
(

u(k+1)
i−1,j − u(k)

i−1,j + u(k+1)
i,j−1 − u(k)

i,j−1

)
+ ω′

(
u(k)

i−1,j + u(k)
i,j−1

)
,

S2 = r
(

u(k+1)
i+1,j−1 − u(k)

i+1,j−1 + u(k+1)
i,j+2 − u(k)

i,j+2

)
+ ω′

(
u(k)

i+1,j−1 + u(k)
i+2,j

)
,

S3 = r
(

u(k+1)
i−1,j+1 − u(k)

i−1,j+1 + u(k+1)
i,j+2 − u(k)

i,j+2

)
+ ω′

(
u(k)

i−1,j+1 + u(k)
i,j+2

)
,

S4 = r
(

u(k+1)
i+2,j+1 − u(k)

i+2,j+1 + u(k+1)
i+1,j+2 − u(k)

i+1,j+2

)
+ ω′

(
u(k)

i+2,j+1 + u(k)
i+1,j+2

)
,

Sa = 2(S2 + S3) + S1 + S4, Sb = 2(S1 + S4) + S2 + S3.

Again, using Figure 2 as reference, and seeing the approximation in Equation (3) and
from Equations (13) and (14). The inverse of the coefficient matrix for red nodes and black
nodes of block MTOR (B-MTOR) iterative scheme can be expressed in general as same as
Equations (20) and (21) except the S element in Equation (21) is written as

S1 = r
(

u(k+1)
i−1,j − u(k)

i−1,j + u(k+1)
i,j−1 − u(k)

i,j−1

)
+ ω′

(
u(k)

i−1,j + u(k)
i,j−1

)
,

S2 = r
(

u(k+1)
i+1,j−1 − u(k)

i+1,j−1 + u(k+1)
i+2,j − u(k)

i+2,j

)
+ ω′

(
u(k)

i+1,j−1 + u(k)
i+2,j

)
,

S3 = r′
(

u(k+1)
i−1,j+1 − u(k)

i−1,j+1 + u(k+1)
i,j+2 − u(k)

i,j+2

)
+ ω′

(
u(k)

i−1,j+1 + u(k)
i,j+2

)
,

S4 = r′
(

u(k+1)
i+2,j+1 − u(k)

i+2,j+1 + u(k+1)
i+1,j+2 − u(k)

i+1,j+2

)
+ ω′

(
u(k)

i+2,j+1 + u(k)
i+1,j+2

)
,

Sa = 2(S2 + S3) + S1 + S4, Sb = 2(S1 + S4) + S2 + S3.

The ω, ω′, r, and r′ are denoted as the optimal relaxation parameters for each formula-
tion of over-relaxation variants. The ambiguous optimal values of the relaxation parameters
did not constrain the minimum number of iterations. It is important to reiterate that the
value of ω′, r, and r′ are often chosen to be near to the value ω of the corresponding SOR,
where 1 ≤ ω < 2, as evidently stated in [2]. All of these relaxation parameters in this study
were determined using the sensitivity analysis practice, also known as parameter tuning.
Furthermore, since the values of each parameter are predetermined before the execution,
the influence of complexity on obtaining parameter value to overall computation remains
constant. However, if the parameter value ranges are set in the algorithm computation, it
will certainly change. Table A1 in the Appendix A gives a list of the optimal values used
throughout experiments in this article.

Thus, the implementation of the red-black block MTOR scheme built on Equations (20)
and (21) for solving two-dimensional Laplace’s problem as defined in Equation (2) can be
expressed in Algorithm 1.
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Algorithm 1: Red-Black Block MTOR scheme.

i. Set up the configuration region with specified start and target position.
ii. Initializing the starting point u, ε← 10−15, iteration← 0 .
iii. For all non-occupied red node points via Equation (20), compute

S1 ← u(k)
i−1,j + u(k)

i,j−1,

S2 ← u(k)
i+2,j + u(k)

i+1,j−1,

S3 ← u(k)
i−1,j+1 + u(k)

i,j+2,

S4 ← u(k)
i+2,j+1 + u(k)

i+1,j+2
Sa ← 2(S2 + S3) + S1 + S4,
Sb ← 2(S1 + S4) + S2 + S3.
ui,j

(k+1) ← ω
24 [6S1 + Sa] + (1−ω)ui,j

(k),
ui+1,j

(k+1) ← ω
24 [6S2 + Sb] + (1−ω)ui+1,j

(k),
ui,j+1

(k+1) ← ω
24 [6S3 + Sb] + (1−ω)ui,j+1

(k),
ui+1,j+1

(k+1) ← ω
24 [6S4 + Sa] + (1−ω)ui+1,j+1

(k).
iv. For all non-occupied black node points via Equation (21), compute

S1 ← r
(

u(k+1)
i−1,j − u(k)

i−1,j + u(k+1)
i,j−1 − u(k)

i,j−1

)
+ ω′

(
u(k)

i−1,j + u(k)
i,j−1

)
,

S2 ← r
(

u(k+1)
i+1,j−1 − u(k)

i+1,j−1 + u(k+1)
i+2,j − u(k)

i+2,j

)
+ ω′

(
u(k)

i+1,j−1 + u(k)
i+2,j

)
,

S3 ← r′
(

u(k+1)
i−1,j+1 − u(k)

i−1,j+1 + u(k+1)
i,j+2 − u(k)

i,j+2

)
+ ω′

(
u(k)

i−1,j+1 + u(k)
i,j+2

)
,

S4 ← r′
(

u(k+1)
i+2,j+1 − u(k)

i+2,j+1 + u(k+1)
i+1,j+2 − u(k)

i+1,j+2

)
+ ω′

(
u(k)

i+2,j+1 + u(k)
i+1,j+2

)
.

Sa ← 2(S2 + S3) + S1 + S4
Sb ← 2(S1 + S4) + S2 + S3

ui,j
(k+1) ← 1

24 [6S1 + Sa] + (1−ω′)ui,j
(k),

ui+1,j
(k+1) ← 1

24 [6S2 + Sb] + (1−ω′)ui+1,j
(k),

ui,j+1
(k+1) ← 1

24 [6S3 + Sb] + (1−ω′)ui,j+1
(k),

ui+1,j+1
(k+1) ← 1

24 [6S4 + Sa] + (1−ω′)ui+1,j+1
(k).

v. Compute the remaining group of points (with one or two points) close to the boundary

using direct method via Equation (4), u(k+1)
i,j ← 1

4

[
u(k+1)

i−1,j + u(k)
i+1,j + u(k)

i,j+1 + u(k+1)
i,j−1

]
.

vi. Verify the convergence test for ε← 10−15 . If so, move to next step. Else, back to (iii).
vii. Perform GDS for path construction.

4. Numerical Results

In line with the study’s objectives, several experiments have been carried out with
a robot 2D simulator [32] constructed by the authors to evaluate the efficiency of the
suggested algorithm as a tool for resolving the path-planning issue. Additionally, the
Java version of the simulator is available for download from [32]. The experiments were
performed on an AMD A10 machine with 8 GB memory operating at 2.50 GHz. Up until
the stopping criterion is reached, the iteration process to evaluate the temperature values
numerically at all points continues. Additionally, the loop would be ended if there were
no longer indicating changes in the temperature values, in which the difference in the
measurement values was extremely small, i.e., 10−15. This level of accuracy was required
in the solution to avoid saddle points, or flat areas, from interfering with the production
of pathways.

Table 1 shows the iteration number and the execution time in seconds needed to
compute every method used in the experiments. Clearly, the B-MTOR iterative method
provided high performance compared with other proposed methods. At the same time, the
iteration numbers for the modified families were slightly higher in the larger environment
size than those for standard approaches.
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Table 1. Iterations number (k) and execution time (t) in seconds for the proposed iterative schemes.
N × N is the size of the grid mesh, e.g., N = 300.

N × N

Methods 300 600 900 1200 1500 1800

k t k t k t k t k t k t

R
eg

io
n

1

B-SOR 1258 6.88 5899 163.72 12,844 871.66 22,227 2694.80 34,055 6286.69 48,446 12,675.73
B-AOR 1042 6.05 4994 137.87 10,928 751.78 19,107 2442.66 29,306 5551.02 41,775 10,459.68
B-TOR 997 5.05 4812 133.00 10,581 720.29 18,549 2394.62 28,445 5404.33 40,524 10,316.42

B-MSOR 1037 0.99 5550 18.08 12,141 118.11 21,038 665.15 32,287 1869.90 45,729 3722.23
B-MAOR 872 1.02 4816 19.93 10,534 173.02 18,483 488.31 35,220 1625.68 40,872 2920.89
B-MTOR 840 0.77 4685 16.68 10,350 125.78 19,167 509.43 29,386 1364.33 42,020 2995.83

R
eg

io
n

2

B-SOR 1729 7.67 6782 199.59 14,874 1009.48 26,007 2827.46 39,968 6925.80 56,858 14,336.95
B-AOR 1610 8.25 6368 185.36 13,953 926.49 24,429 3003.98 32,926 5909.85 46,923 12,802.89
B-TOR 1489 7.64 5957 169.39 13,062 867.20 22,905 2787.69 31,552 5700.19 45,197 12,312.08

B-MSOR 1967 1.62 7650 24.43 16,711 171.84 29,205 693.10 44,722 1892.76 53,313 3475.98
B-MAOR 1685 1.51 6633 29.43 14,533 206.74 25,426 683.65 38,994 1772.61 43,259 3023.93
B-MTOR 1754 1.54 6881 24.90 15,053 207.22 25,984 693.02 39,212 1776.36 38,174 2684.38

R
eg

io
n

3

B-SOR 2666 13.24 11,076 315.87 24,519 1602.81 42,897 5591.93 65,977 12,331.17 100,842 26,171.60
B-AOR 2480 13.83 10,389 301.27 22,995 1633.35 40,322 5261.60 62,423 11,975.63 89,182 23,616.21
B-TOR 2371 11.66 9977 296.46 22,111 1883.36 38,917 5094.93 59,912 10,921.11 85,272 22,338.11

B-MSOR 3737 3.82 14,440 48.48 31,601 466.80 55,234 1383.52 84,980 3759.92 121,103 8249.25
B-MAOR 3226 3.09 12,573 61.93 27,503 364.05 48,128 1316.80 74,066 3511.33 105,481 7665.39
B-MTOR 3285 3.16 10,609 39.78 28,440 336.12 49,864 1618.95 76,583 3625.43 109,151 7964.20

R
eg

io
n

4

B-SOR 1629 7.80 6487 187.33 14,194 990.20 24,913 2979.14 38,195 6919.25 54,508 13,843.15
B-AOR 1392 7.56 5648 167.65 12,367 891.51 21,724 2609.11 33,518 6139.29 48,120 12,833.82
B-TOR 1328 7.10 5428 163.21 11,907 850.26 20,963 2573.12 34,842 6494.66 49,772 13,381.51

B-MSOR 2001 1.74 7853 26.61 17,093 189.53 29,978 1043.96 45,935 1977.74 65,583 4342.88
B-MAOR 1709 1.57 6804 30.18 14,831 192.16 26,085 708.48 39,986 1848.86 57,191 4053.74
B-MTOR 1783 1.68 7062 27.11 15,384 205.16 27,031 745.00 41,447 1945.97 59,223 4201.08

The output of the proposed approaches based on Table 1 is shown in the graphs in
Figure 4 (the iteration number) and Figure 5 (the execution time). Both figures suggest
that the length of each execution increases with the number of iterations. The graphs for
the iteration number and execution time showed the same pattern, as can be seen in the
results table. Although the iteration count for modified families varied slightly from that
for conventional methods, depending on the region area, it appears that the red-black block
MTOR iterative scheme provides significant efficiency in terms of time taken compared to
other proposed approaches.

Computational Complexity

The computational complexity analysis of each iterative technique taken into consider-
ation in this work is covered in this part. It is anticipated that each arithmetic operation
(addition and multiplication) will separately take one unit of computational time. The GDS
algorithm’s path-tracing process and the arithmetic operations are both disregarded by
the convergence test. The total number of arithmetic operations involved by each of the
examined approaches is listed in Table A2 in Appendix A.

The number of iterations should theoretically decrease as the algorithm’s computa-
tional complexity declines, saving CPU time. Families of the AOR method converge more
quickly than families of the SOR method despite having more arithmetic operations owing
to extra weighted parameters [3]. In the meantime, as the computation of the remaining
points is only calculated in one iteration, it will be ignored from the total computation of
computational complexity; hence, they will not significantly affect the overall computation.
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5. Discussion

The stationary configuration regions, which included varying impediments in four
separate regions with six distinct sizes, i.e., 300 × 300, 600 × 600, 900 × 900, 1200 × 1200,
1500 × 1500, 1800 × 1800, were tested in this study. High-temperature values are initially
assigned to the obstacles and external boundaries. The target point was designated as
having the lowest temperature, whereas the starting point had no initial value. The
temperature value for the unoccupied space inside the regions was fixed to zero. The
measurement of the temperature values proceeded numerically at each point before the
stoppage circumstances were encountered. The loop terminates when the temperature
values no longer show any changes, with iterations k and k + 1 having a very insignificant
distinction between harmonic potentials, i.e., 10−15. This high level of accuracy was
necessary to prevent route generation failures and steer clear of saddle points or flat areas
in the configuration region.

The proper trail was yielded once the temperature values were obtained by using
the steepest descent search from the starting point to the destination point. Figure A1
shows the successful pathways produced by numerical computation based on the acquired
Laplacian potential in a predetermined stationary environment. All starting points (green
square) were efficiently finished at the specified destination point (red circle), overcoming
all types of obstacles in various regions. Some pathways appear jagged in some cases
because no interpolation is performed. The idea is that gradient interpolation is supposed
to provide smoother pathways. Figure A2 in the appendices displays the flow diagram for
the path-planning technique used in this study.

The ideology of path-planning flow within this experiment starts with establishing the
initial start point and the goal location. The next step is determining the ideal parameter
corresponding to the proposed iterative schemes. Once the harmonic potential is generated
from the selected algorithm, a completely smooth path is developed through the GDS
technique. This impression could be used to represent an iterative scheme that follows
a descending gradient from its starting point to subsequent consecutive points that have
lower potentials than the preceding points all the way to the destination point (with the
lowest potential value). Figure 5 provides observational evidence of these productive
pathways, which shows every start point from every region successfully completed the
path by reaching the destination point along with avoiding any walls and obstacles in
between (if any). The paths’ trajectory can be extremely quick since it only involves the
gradient evaluation of the precomputed Laplacian potential [12]. All four configuration
regions in this experiment are relatively simple, referring to [33].

The enhanced version of potential field approaches has been explicitly implemented
in Algorithm 1. In essence, the goal point and impediments function as charged surfaces,
and the overall potential generates imaginary forces on the robot. This imaginary force
attracts the robot toward the goal and keeps it away from obstacles [17]. Later, as the robot
approaches its intended point, it will travel along the negative gradient to avoid every im-
pediment. This study makes use of the harmonic function to avoid a local minima issue [16].
Furthermore, Algorithm 1 performs significantly better computing when the red-black
block accelerated relaxation technique is implemented to solve the path-planning problem
as it executes much faster in obtaining the solution of Laplace’s equation. Unmanned
surface vehicles (USVs) are among the potential use cases for the provided approach in this
study. In the past, ref. [34] has implemented a USV platform that uses a global positioning
system compass for autonomous navigation in monitoring paddy growth. In addition,
ref. [35] recently developed a USV navigation autopilot for disaster risk management,
which has been used for environmental monitoring.

6. Conclusions

The red-black block modified scheme is used in conjunction with the iterative ap-
proaches from over-relaxation families to improve execution performance and reduce
execution time. The newly proposed block MTOR iterative schemes perform more effec-
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tively due to the addition of accelerated weighted parameters to respective nodes, and the
results are encouraging. The studies clearly prove that owing to cutting-edge algorithms
and the present-day availability of fast machines, the robot path-planning problem is fea-
sibly solved using numerical techniques. The block MTOR scheme is shown to greatly
surpass its predecessor’s techniques in the table of results in the context of both iteration
number and the time taken. Increasing the number of obstacles has no impact on the
computational performance; in fact, the calculation will complete faster since it ignores the
regions affected by the obstacles. The larger the space that impediments occupy, the less the
calculations and storage are required; in other words, the obstacle eliminates the computing
domain. It is not wrong to emphasise, once again, the block MTOR findings perform better
than the block MSOR in terms of the iteration count (by 9-15%), while the block MTOR
saves about 15-25% over block MSOR in terms of processing time. Simultaneously, the
block TOR surpasses the block SOR by approximately 13-20% relating to iteration count and
11-18% concerning the execution time. It can also be inferred that block MTOR is equally
competitive compared to block MAOR; however, block MTOR provides a wider range of
parameters for fine-tuning optimization. Another uniqueness or novelty component of
this study is the implementation of the red-black block overrelaxation scheme families in
robot path planning and in Algorithm 1. To further the proposed approaches for future
work, investigation into the half- [9,11,26,27] and quarter-sweep strategy [28,36–38] will be
considered. It is anticipated that these approaches will improve the overall computation.
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Appendix A

Table A1. Grid search of relaxation parameter values.

Methods ω ω’ r r’

B-SOR 1.81 - - -
B-MSOR 1.83 1.81 - -
B-AOR 1.81 - 1.84 -

B-MAOR 1.82 1.81 1.84 -
B-TOR 1.81 - 1.84 1.85

B-MTOR 1.80 1.81 1.84 1.85

Table A2. Number of arithmetic operations per iteration for block over relaxation techniques and its
modified variants methods.

Methods ADD/SUB MUL/DIV

B-SOR/B-MSOR 18
( N

2 − 1
)2

+ 4(2N − 4) + 4 10
( N

2 − 1
)2

+ 2(2N − 4) + 2
B-AOR/B-MAOR 26

( N
2 − 1

)2
+ 4(2N − 4) + 4 17

( N
2 − 1

)2
+ 2(2N − 4) + 2

B-TOR/B-MTOR 26
( N

2 − 1
)2

+ 4(2N − 4) + 4 18
( N

2 − 1
)2

+ 2(2N − 4) + 2
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