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Abstract: In this paper, we propose a novel network, self-attention generative adversarial network
with blur and memory (BaMSGAN), for generating anime faces with improved clarity and faster
convergence while retaining the capacity for continuous learning. Traditional self-attention generative
adversarial networks (SAGANs) produce anime faces of higher quality compared to deep convolu-
tional generative adversarial networks (DCGANs); however, some edges remain blurry and distorted,
and the generation speed is sluggish. Additionally, common issues hinder the model’s ability to learn
continuously. To address these challenges, we introduce a blurring preprocessing step on a portion
of the training dataset, which is then fed to the discriminator as fake data to encourage the model
to avoid blurry edges. Furthermore, we incorporate regulation into the optimizer to mitigate mode
collapse. Additionally, memory data stored in the memory repository is presented to the model every
epoch to alleviate catastrophic forgetting, thereby enhancing performance throughout the training
process. Experimental results demonstrate that BaMSGAN outperforms prior work in anime face
generation, significantly reducing distortion rates and accelerating shape convergence.

Keywords: anime face generation; self-attention generative adversarial network; blur dataset;
memory replay; generative adversarial network; self-attention

MSC: 68T07

1. Introduction

In the ever-evolving landscape of modern computer vision, image generation has
emerged as a prominent and extensively explored research domain. Drawing upon the
capabilities of artificial intelligence and machine learning, the field of image generation
is dedicated to crafting images that exhibit realistic appearances and a rich diversity of
features. Particularly noteworthy is the pervasive influence of Japanese anime across
various domains, igniting profound interest in anime face generation. Within the expansive
realm of image generation, anime face generation has carved out a distinctive niche,
capturing substantial attention from the realms of academia and industry alike. The allure
of breathing life into anime-inspired visages has ignited a fervent pursuit of innovation
and excellence in this specialized subfield.

The realm of machine learning and neural networks has witnessed unprecedented
growth, with numerous applications such as asset allocation [1] and non-negative matrix
factorization [2]. These cutting-edge technologies have found utility in diverse domains,
from natural language processing to medical diagnostics. The profound impact of AI and
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machine learning has been especially pronounced in image generation, where they play a
pivotal role in creating images with lifelike qualities and intricate features. The fusion of AI
and machine learning has unleashed a wave of innovation, propelling the field of image
generation into new horizons.

With the ongoing advancements in deep learning, particularly with the emergence
of generative adversarial networks (GANs) [3], significant progress has been achieved
in image generation. Among the various GAN architectures, deep convolutional GANs
(DCGANs) [4], based on deep convolutional networks [5], have demonstrated exceptional
image-processing capabilities and have succeeded in generating high-quality images. How-
ever, despite their achievements, DCGANs still face certain limitations, particularly when
handling long-range dependencies that necessitate passing through several convolutional
layers due to their local receptive fields.

To address these concerns and further enhance the quality of image generation, self-
attention GANs (SAGANs) [6] were developed. SAGANs incorporate the self-attention
mechanism [7], enabling it to effectively capture long-range dependencies while retaining
the advantages of DCGANs. This fusion of self-attention architecture with DCGANs has
demonstrated promising potential for various image generation tasks. Nevertheless, when
applied specifically to the generation of anime faces, SAGANs encounter certain challenges.

Notably, the generated anime images still exhibit certain shortcomings, such as blurry
edges and distorted facial features. This indicates the need for further improvements
to achieve even higher image quality in anime face generation. Additionally, although
SAGANs propose some techniques to mitigate issues like mode collapse, a well-known
problem in GAN training, where the model collapses to generating a limited variety of
samples, there is still room for improvement to ensure stable and diverse image generation
results. Furthermore, during the training process, the performance of the SAGAN tends to
deteriorate. One possible explanation is the phenomenon of catastrophic forgetting, which
describes a sharp decline in the model’s performance on previously learned tasks as soon
as a new task is introduced.

To address the challenge of generating more detailed anime images, researchers have
developed CartoonGAN [8]. This model constructs its own blurry dataset using methods
from digital image processing (DIP), which includes the canny edge-detection algorithm
and Gaussian blur. Additionally, it combines the traditional loss function with the edge-
promoting adversarial loss function to encourage the model to avoid generating images
with blurry edges. Moreover, AnimeGAN [9] employs additional techniques to create fake
datasets containing a broader range of negative samples. However, all these anime-related
works primarily focus on Image style transfer [10], and there is a lack of powerful methods
for generating anime faces from random noise. To tackle the issues of mode collapse and
catastrophic forgetting, the closed-loop memory GAN [11] introduces a memory structure
that assists the model in learning from past data, thereby improving the variety of generated
pictures. This approach shows promise in addressing these challenges effectively.

In this work, we take a two-fold approach to address the challenges in anime face
generation. First, we introduce a regularization parameter into the optimizer of SAGANs to
mitigate mode collapse. Secondly, we present SAGANs with blur and memory, abbreviated
as BaMSGAN. This innovative model incorporates both a blur dataset and a memory
structure into the self-attention GAN framework. The self-attention structure plays a
crucial role in enabling the model to capture features from all positions and learn long-
range dependencies. Additionally, we introduce a blurry dataset, randomly sampled from
the original dataset and processed using digital image processing (DIP) techniques. This
dataset is used as negative data in the discriminator to encourage the model to avoid
generating images with blurry edges. The memory structure is designed to store previously
generated images, which are then utilized to assist the discriminator in learning from
the model’s historical output. Extensive experiments were conducted on an anime face
dataset [12] comprising 63,566 images at a resolution of 64 × 64 pixels. The results confirm
the effectiveness of the proposed model, BaMSGAN, which significantly outperforms
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previous methods in anime face generation. It generates more detailed images at a faster
pace, with a noticeable reduction in distortion rates after each epoch.

2. Related Work
2.1. CartoonGAN

In recent years, there has been a growing interest in creating cartoon and anime-
style images using style transfer techniques [13,14]. One notable approach is the use
of “CartoonGAN”, as proposed by researchers [8]. They have presented a solution for
transforming real-world scenes into cartoon-style images by training on unpaired photos
and cartoon images. However, there are a few limitations to consider when using this
technique. Firstly, achieving high-quality results requires a significant amount of time for
training and substantial computing resources. Secondly, while CartoonGAN primarily
focuses on converting landscapes into anime-style representations, it often lacks emphasis
on transforming human faces into cartoon-like versions. The work in the area of style
transfer for cartoon and anime-style images has demonstrated promising results, yet there
remains ample room for improvement and further exploration.

2.2. StyleGAN and ProGAN

StyleGAN, introduced by Karras et al. [15] and Progressive GAN (ProGAN), proposed
by Karras et al. [16], have made significant strides in synthesizing high-quality images,
including anime faces. StyleGAN’s adaptive synthesis of styles and ProGAN’s progressive
refinement of image resolution have paved the way for more realistic and diverse anime-
style images. These models emphasize the preservation of anime-specific features, such as
distinct eye shapes, colorful hair, and various facial expressions. The success of StyleGAN
and ProGAN highlights the importance of fine-grained control and the ability to capture
nuanced details in anime characters.

2.3. CycleGAN and Pix2Pix

CycleGAN, developed by Zhu et al. [17], and Pix2Pix, designed by Isola et al. [18],
have earned acclaim for their versatility in image-to-image translation tasks, including
anime face style transfer. These models offer artists and designers the ability to apply the
style of one image to another while preserving the structural integrity of the content. This
innovation allows for the conversion of real-world photographs into anime-style images,
vastly broadening the creative possibilities for anime-inspired content. The capacity to
seamlessly transform photographs into anime-style renderings has become a valuable
tool for content creators and enthusiasts, opening new avenues for artistic expression and
generating unique visual experiences.

2.4. DCGAN

Deep convolutional GANs, or DCGANs, are foundational models in the field of image
generation. Proposed by Radford et al. [4], DCGANs are celebrated for their effectiveness
in generating high-quality images. The architecture employs a deep convolutional neural
network for both the generator and discriminator. DCGANs revolutionized the field by
addressing key challenges in GAN training, such as mode collapse and slow convergence.
They excel in capturing local and global image features, making them an ideal choice for a
wide range of image synthesis tasks, including anime face generation. DCGANs serve as
a benchmark and point of reference for evaluating the capabilities and advancements of
subsequent GAN architectures.

2.5. WGAN

The Wasserstein GAN, or WGAN, introduced by Arjovsky et al. [19], tackles issues
related to training stability and mode collapse, which are common challenges in GANs.
WGAN introduces a novel loss function based on the Wasserstein distance, also known as
the Earth mover’s distance. This distance metric provides a more reliable and interpretable
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measure of the quality of generated images. The WGAN is known for its ability to produce
high-quality images with better training dynamics, making it an important advancement
in the GAN landscape. In the context of anime face generation, the WGAN’s contributions
include enhanced training stability, enabling the generation of more coherent and diverse
anime-style faces.

2.6. SAGAN

The emergence of generative adversarial networks (GANs) [20] has resulted in remark-
able progress in this field, notwithstanding the existence of several unresolved issues [21].
GANs that leverage deep convolutional networks [4,22] have particularly achieved signifi-
cant success. The DCGAN represents the first successful utilization of convolutional neural
networks within GANs [4]. Subsequently, several other GAN variants have been created,
such as the Wasserstein GAN [19] and SNGAN [23]. Self-attention generative adversarial
networks (SAGANs) [6] distinguish themselves from traditional convolutional GANs by
incorporating a self-attention mechanism within the GAN framework, effectively capturing
long-range dependencies. By integrating self-attention into both the generator and dis-
criminator modules, the SAGAN enables the generation of detailed images by leveraging
information from all feature locations. This comprehensive analysis of highly detailed fea-
tures across distant parts of the image ensures their consistency with each other. However, in
our experiments involving the generation of anime faces using the original SAGAN model,
we encountered specific challenges. Notably, we observed a high degree of distortion and
blurred edges in the generated anime faces. In response, we developed our own model to
address these issues and enhance the overall quality of the generated anime faces.

2.7. Memory

Catastrophic forgetting [24,25] is a common problem in neural networks. When a
trained network is retrained on a new task, its performance on the original task typically de-
teriorates. For the generative adversarial network (GAN), each training phase is equivalent
to training on a new dataset, making GANs susceptible to catastrophic forgetting.

Several methods have been proposed to address the problem of forgetting in GAN
learning. The MeRGAN [26] employs two anti-forgetting mechanisms, joint training and
replay alignment, to mitigate the forgetting issue in GANs. While it provides some relief
from forgetting in sequential learning, it introduces additional memory recall mechanisms,
increasing computational complexity and storage requirements.

CloGAN [11] uses a dynamic memory unit to store generated samples and filters them
with an embedded classifier. This dynamic memory reduces memory costs and enhances
sample diversity but necessitates additional training of new models, thereby elevating
computational complexity.

GAN memory for lifelong learning [27] tackles memory issues in lifelong learning
through sequential style adjustment. However, this method can be time-consuming when
dealing with large-scale datasets.

CAM-GAN [28] addresses the forgetting problem through feature map transformation and
residual bias in feature space, requiring fewer parameters. However, the success of this method
depends on selecting suitable base tasks; otherwise, it may affect the model’s performance.

3. BaMSGAN

A typical generative adversarial network comprises two convolutional neural net-
works: the discriminator D and the generator G. The generator generates fake images
from random noise, while the discriminator classifies whether the input image comes from
the real dataset or is generated by the generator (i.e., real or fake). As training progresses,
the discriminator D becomes more proficient at distinguishing between real and fake im-
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ages, while the generator G improves its ability to deceive the discriminator by producing
high-quality images. Obviously, our final goal is to solve this problem:

(G∗, D∗) = arg min
G

max
D
L(G,D)

Several earlier modules, such as Cartoon GAN and Anime GAN, have achieved great
success in style transfer tasks. However, tasks like generating anime images from noise
and anime face generation have been largely overlooked. Building upon the foundation of
self-attention generative adversarial networks, we have adapted our module to suit these
tasks. We formulate a generating function that takes the original anime manifold A, the
edge-blurred anime manifold B, and eventually generates a set of fake anime manifold
F in the same style. The generating function is trained using the original anime dataset
Sdata(a) = {ai|i = 1 . . . N} and the edge-blurred anime dataset Sblur(b) = {bi|i = 1 . . . M}.
In Section 4, we will present in detail the four key components and the overall structure of
our architecture.

3.1. SAGAN with Regularization

SAGAN, or self-attention generative adversarial network, is an advanced architecture
within the realm of generative adversarial networks. It introduces self-attention mech-
anisms to enhance the consistency and quality of fine details in generated images. By
employing self-attention, SAGAN gains the ability to grasp global structures and depen-
dencies within images during the generation process, resulting in the production of more
lifelike and nuanced images. Given these capabilities, we opted to apply SAGAN to the
task of anime face generation.

However, our initial application of the standard SAGAN architecture to anime face
generation revealed a pressing issue: mode collapse. In this situation, the generator begins
to produce images with patterns that are strikingly similar, causing a significant reduction
in diversity among the generated samples. In response to this challenge, we embarked on a
journey to regularize our optimization process, ultimately aiming to prevent overfitting
and reinvigorate the generation of anime face images with a rich variety of patterns.

Through numerous iterations and experiments, we arrived at a regularization parame-
ter of 0.0001 as an effective solution. This regularization procedure is a critical component
in the enhancement of image generation in our model. Below, we provide visual represen-
tations of the anime face samples before and after the application of regularization.

Mode collapse, a recurrent issue in GANs, occurs when the generator becomes fixated
on generating a restricted set of patterns or samples, thereby limiting the diversity in the
generated images. Regulation optimization techniques [29], such as adding regularization
terms to the loss function [30], offer a means to counteract mode collapse. Methods
like weight decay (L2 regularization) or gradient penalties serve to encourage smoother
behaviors in both the generator and discriminator networks. As a result, this regularization
fosters a more stable training process, better convergence, and a marked reduction in mode
collapse occurrences. The samples of original SAGAN (mode collapse) and samples after
regularization are shown in Figure 1.

(a)

Figure 1. Cont.
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(b)

Figure 1. A comparison between generated images before and after regularization. (a) A sample
generated before adding regularization with serious mode collapse. (b) A sample generated after we
add regularization containing varieties of faces.

3.2. Edge Blur

To enhance image clarity, we drew inspiration from the Cartoon GAN’s architecture.
We incorporated a GAN module that would transform real images into a cartoon style.
Our strategy involved blurring the edges of the input images and integrating them into
our loss function. The intention was for the discriminator, during training, to classify these
edge-blurred images as ‘fake’, thus encouraging the generator to produce sharper images.
This approach was a resounding success.

In the preprocessing phase, we selected Gaussian blur in conjunction with Canny
edge detection to address the challenge of generating more distinct anime pictures and
improving overall image clarity. A subset of the training dataset underwent a blurring
preprocessing step. This step enabled the discriminator to better recognize edge-blurred
images as “fake”, ultimately instructing the generator to create clearer images.

To create a database of edge-blurred images for training, we employed Canny edge
detection to outline image edges and applied Gaussian blur to them. This database was
then utilized to train the discriminator. The primary goal of this approach was to compel
the model to avoid generating images with blurry edges, resulting in anime faces with
significantly improved clarity. The algorithm of Edge Blur is shown in Algorithm 1 as
pseudo code. An example of Edge Blur is shown in Figure 2a,b.

Algorithm 1 Algorithm of Edge Blur

Input: Image, t1, t2, k
Output: Imageblur

1: Imageblur←−Image
2: Imagecanny←−Canny(Image,t1,t2){Use canny to get the outline of the edges}
3: for each i ∈ height do
4: for each j ∈ width do
5: if Imagecanny=0 then
6: Image[i, j]←−[0,0,0]
7: end if
8: end for
9: end for

10: dst=GaussianBlur(Image,k){Apply GaussianBlur to the edges outlines previously,k is
the kernal size}

11: for each i ∈ height do
12: for each j ∈ width do
13: if Imagecanny!=0 then
14: Imageblur[i, j]←− dst[i, j]{Replace the original edge with the GaussianBlur ver-

sion}
15: end if
16: end for
17: end for
18: return Imageblur
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(a) (b)

Figure 2. By applying Gaussian blur transformation to the edges outlined by Canny, we could get
edge-blurred images from the original database. (a) Original image; (b) edge-blurred image.

3.3. Memory

We have established a memory repository with a predefined capacity to optimize
storage efficiency. In the GAN training process, we follow a deliberate approach. Initially,
we allow the GAN to train until it reaches a state of convergence. This strategy is employed
because the quality of images generated by the GAN at the outset of training tends to
be subpar. These initial images lack the quality necessary to significantly challenge the
discriminator, and memory allocation consumes valuable time and resources. Thus, we
have a stipulation that, once the GAN has reached a stage where it can generate high-
quality images, our memory repository commences the storage of a selection of these
generator-produced images.

When the memory repository reaches its maximum capacity, we adopt a policy of
random sampling and deletion to manage its contents. This periodic removal of images
ensures that the memory repository remains a dynamic and adaptive source of historical
data. The images stored in this memory repository are subsequently utilized as fake data
in the training process, provided to the discriminator. In doing so, we integrate historical
data into the training of the GAN, effectively improving its overall performance.

This memory repository approach helps address issues related to mode collapse and
catastrophic forgetting while also contributing to the training of the GAN using a more
diverse and comprehensive dataset. Additionally, it allows for the generation of anime
faces with improved clarity and fidelity.

3.4. Loss Function

Our loss function comprises three key components. The first component is the ad-
versarial loss, a standard feature in adversarial generative networks. Here, the generator
G is tasked with producing anime avatars G(z) from random noise z, which is drawn
from a Gaussian distribution Pz(z). The goal is for these generated avatars to deceive the
discriminator D, which, in turn, must accurately distinguish between anime avatars in the
real anime face dataset Sdata = {xi|i = 1 . . . N} and those created by the generator.

The second component involves the edge loss. We prepare an edge-blurred dataset
Sblur = {bi|i = 1 . . . M} in advance, where M represents the total number of blurred
images. These blurred images are used as fake inputs, allowing our GAN to place a stronger
emphasis on capturing the edge features, which are particularly relevant to anime avatars.

The third component is the memory loss. We augment the training process by using
anime avatars generated by a segment of the generator as fake inputs and store them in a
memory dataset Smemory = {mi|i = 1 . . . P}. This dataset captures the historical data, allowing
our GAN to learn from previous tasks and avoid deteriorating with extended training periods.

Our loss function is formulated as follows:

LossD = Exi∼Sdata log(D(xi)) +EZ∼pz(z)log(1− D(G(z))) +Ebi∼Sblur(x)log(1− D(bi))+

Emi∼Smemory(x)log(1− D(mi)).
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3.5. Our Model

In our model, we harness the power of self-attention mechanisms, a cornerstone
of the BaMSGAN, to significantly enhance the generation of anime faces. Self-attention
introduces a critical element to our architecture, enabling the model to capture long-range
dependencies and intricate spatial relationships within the input images. By implementing
self-attention, our BaMSGAN can simultaneously focus on different regions of the image,
effectively capturing the global contextual information. This capability empowers both the
generator and discriminator to discern complex structures and connections within anime
faces, a task often challenging for traditional convolutional architectures.

The integration of self-attention is pivotal for improving the quality of our generated
anime faces. It ensures that the model comprehends and synthesizes anime features more
cohesively, resulting in sharper and more realistic images. Furthermore, it enhances the
discriminator’s ability to distinguish between real and generated images, thereby facilitating
a more robust and stable training process. The inclusion of self-attention in BaMSGAN
underscores our commitment to overcoming the limitations of earlier GAN architectures. It
plays a central role in elevating the capabilities of our model, ultimately leading to superior
anime face generation and the establishment of new benchmarks in the field.

As for our training approach, we first extract a portion of the samples from the original
dataset for edge-blur processing to create a blur dataset. Subsequently, the images from the
original dataset serve as positive examples, while the generated images and images from
the blur dataset are used as negative examples during training. Once the training converges,
the images generated from the sampled portion are preserved as a memory dataset.

During the training process, we continually sample and randomly remove some
memory data, which then serves as negative examples to further enhance the training of
the BaMSGAN. The whole training process and model architecture are shown in Figure 3.

(a)

Figure 3. Cont.
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(b)

Figure 3. An overall schematic of our BaMSGAN. (a) The overall architecture of our BaMSGAN.
(b) Our BaMSGAN generator and discriminator hierarchy.

4. Experiments

We trained and implemented our module in Torch and Python. All our experiments
were conducted using an NVIDIA RTX 4090 GPU. The BaMSGAN is capable of generating
high-quality animated images and does not demand extensive computing resources or time.
With less than an hour of training on the RTX 4060, it can produce relatively high-quality
animated images. The results generated by the BaMSGAN are displayed in Figure 4.

Our baselines include Wasserstein GANs with gradient penalty (WGAN-GP) and
DCGANs. Initially, we will compare the BaMSGAN with the WGAN-GP and DCGAN to
showcase the BaMSGAN’s performance. Subsequently, we conduct ablation experiments
involving a SAGAN with regularization, a SAGAN with regularization and edge-blurred
images, and the BaMSGAN to assess the effectiveness of each component within our
loss function.

Figure 4. The result of BaMSGAN from epoch 50 to epoch 300.



Mathematics 2023, 11, 4401 10 of 13

During the training of these modules, we extracted samples at both 30 epochs and
300 epochs. The results at 30 epochs represent the short-term performance of these modules,
while the results at 300 epochs reflect their long-term performance.

4.1. Data

The dataset we use contains approximately 63,565 anime face images obtained from
GitHub [12]. All images have been resized to 64 × 64 pixels. The blurred database is
one-tenth the size of the dataset, comprising roughly 6000 anime faces with blurred edges.

4.2. Comparison with Prior Work in Anime Face Generation

To confirm the BaMSGAN’s superiority in anime face generation, we compare the
generated results of the BaMSGAN, DCGAN, and WGAN-GP following training. The
results are showcased in Figure 5. In contrast to the DCGAN, our model significantly
enhances the diversity of generated anime faces. The results reveal that the DCGAN,
both in the short run and the long run, is plagued by a severe problem of mode collapse,
producing nearly identical and low-quality faces. Conversely, our model produces clear
faces with diverse facial features such as hair color and facial expressions, creating more
vivid characters.

Compared to the WGAN-GP, which generates severely distorted and blurred faces,
our model produces anime faces with well-defined edges (evident in the hair curves) and
natural eyes, noses, and mouths. The inclusion of edge-blurred images in the loss function
sharpens the edges, enhancing the clarity of anime faces. Additionally, the memory loss in
the loss function contributes to normalizing facial features, as the discriminator learns to
recognize the twisted faces generated during earlier epochs as fake images.

(a) DCGAN (b) WGAN (c) BaMSGAN

(d) DCGAN (e) WGAN (f) BaMSGAN

Figure 5. Comparisons between our model and two baselines ((a–c) at their 30 and (d–f) at their
300 epochs).

Moreover, we also compare the DR (distortion rate: the number of distorted faces/the
number of all the faces in every epoch) between our model and the SAGAN at epoch 290 to
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epoch 298. Compared to the SAGAN, our model can also effectively improves the quality
of images in the later stages of training and possesses the ability for continuous learning.

These results underscore the effectiveness of BaMSGAN in overcoming the limitations
observed in other GAN architectures, producing anime faces with greater clarity and
fidelity. Table 1 presents a comparison of the distortion rate (DR) between our BaMSGAN
model and the SAGAN baseline at epochs 290 to 298 during the experiment

Table 1. Comparisons of DR (distortion rate: the number of distorted faces/the number of all the
faces in every epoch) between our model and SAGAN at epoch 290 to epoch 298.

Epoch SAGAN(DR) BaMSGAN(DR)

290 0.1090 0.0390
291 0.1211 0.0390
292 0.0977 0.0467
293 0.1250 0.0625
294 0.1289 0.0313
295 0.1289 0.0469
296 0.1875 0.0391
297 0.0977 0.0703
298 0.0820 0.0703

Average 0.1163 0.0495

4.3. Ablation Experiment about the Loss Function

To understand the individual functions and roles of each component within the loss
function, we conducted a series of ablation experiments. We systematically introduced the
edge-blurred image loss and the memory loss into the original GAN loss function (already
incorporating regularization), one at a time, and compared the results with the BaMSGAN.
The outcomes of these experiments are visualized in Figure 6.

(a) Edge-only (b) Memory-only (c) BaMSGAN

(d) Edge-only (e) Memory-only (f) BaMSGAN

Figure 6. Ablation experiment result compared to our final model. We add edge-blurred images
and memory to the loss function respectively and compare them with our final model ((a–c) at their
30 and (d–f) at 300 epochs).
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The experimental results clearly demonstrate that the BaMSGAN consistently achieves
superior performance, both in the short-term and long-term training, producing anime
avatars that closely resemble real characters. In the edge-only group experiment, it’s
evident that the image quality in the short-term is significantly lower than the BaMSGAN,
and there’s a noticeable deterioration in image quality over prolonged training. In the
memory-only group experiment, it becomes apparent that without the additional training
facilitated by the edge-blur loss, the BaMSGAN struggles to generate higher-quality images,
with some images appearing missing or blurred.

These ablation experiments highlight the indispensable role played by each compo-
nent in our loss function, emphasizing their collective contribution to the BaMSGAN’s
remarkable performance in anime face generation.

5. Conclusions and Future Work

In this paper, we employ a SAGAN enhanced by historical information and edge
blurring for anime face generation. Our model introduces regularization operations to
the original SAGAN to enhance the stability of SAGAN training. We selected a subset of
images from the source dataset, applied edge detection using the Canny algorithm, and
used Gaussian blurring to create a blurred dataset. Additionally, we saved a portion of
the images generated during the training process to construct a historical dataset. These
two datasets are then employed as fake data to bolster training, resulting in improved
performance in anime face generation. Experimental results demonstrate that our model
outperforms DCGAN, WGAN, and SAGAN, generating clearer, higher-quality images and
converging more rapidly.

In our future work, we aim to explore additional methods to enhance GAN perfor-
mance in specific tasks through modifications to the loss function. We will also test our
model on a wider range of datasets to enhance its generalization capabilities. Furthermore,
we intend to investigate the potential impact of the blurred dataset on the overall image
generation style.
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