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Abstract: The rising cost in drug development has led to continuous calls for more efficient and
powerful design optimization and analysis tools for pkpd studies. More sophisticated models are
increasingly used to reflect reality, and current models invariably include non-linear mixed effects
models that frequently require specialized computational tools for the design and analysis of the
study. Population PK analysis employs non-linear mixed effects models and evaluates designs
and optimizes them via a specialized yet versatile software package called PopED (version 0.6.0) in
programming language R (version 4.2.2) for pharmacometrics analyses. We demonstrate the utilities
of the package when different models and statistical criteria are used in real settings to determine
the optimal sampling times and optimal dose levels for the subjects. We provide two applications;
the first is illustrative and the second is a new application on developing an optimal dosing scheme
for a two-compartment PK model with perturbation. Our target audiences are mathematicians and
statisticians who are not aware of this useful and powerful analytic tool.
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1. Introduction

Finding the best dose regimen and sampling times to ascertain the pharmacokinetics
and pharmacodynamics of a drug are important aspects of drug development [1]. The
cost of drug development continues to skyrocket, and design issues have been increasingly
emphasized, not only for reining in cost but also for statistical efficiency and ethical issues
for patients [2]. Finding the best design for the most accurate statistical inference at minimal
cost is therefore a particularly pertinent issue in drug development.

Pharmacokinetics (PK) models delineate how the drug, once it is consumed, interacts
with our physiological system, from the administration to the complete elimination of the
drug from the body [3]. PK investigates how the substances in the drug change through
the course of its being absorbed, distributed, metabolized, and excreted (often referred to
as the ADME process from the first letters of the four verbs). PK often focuses on, but is not
limited to, dose–concentration relationships, where we assume that there is a mathematical
expression that describes how different dose levels affect drug concentration in the body.

The traditional individual approach to understanding PK typically focuses on a rela-
tively homogeneous group of subjects with only a single factor most likely to affect the PK
and pharmacodynamics (PD) of the drug. Broadly speaking, PD is the science on how the
body reacts to drugs. Naturally, the PK relationships of a drug depend on the individual
traits, such as the demographic, physiologic, and genetic characteristics, of each person.
Weight, renal function, and genetic predispositions are some examples of covariates that
affect the PK relationship. One drawback of traditional PK is that it cannot properly account
for the variability of such factors, nor the variability arising among individuals.

One way to account for the variability among the individuals is to use the population
approach, which has several merits over the traditional approach. The former typically
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requires denser and balanced data points from each individual to estimate the model
parameters well, but the population PK approach does not have such requirements and
have been shown to be generally more robust when we have unbalanced data. Second,
the population PK approach accounts for one or more of the covariate effects, and third,
the population PK approach has random effects, which can account for the unknown
variability stemming from inherent individual differences that are not explained by having
fixed covariates. The upshot is that the population approach is more flexible and pro-
vides a holistic analysis of the PK relationship. As such, it has been widely used in the
pharmaceutical industry for drug development via clinical trials since the 1990s [4]. They
provide critical clinical information of the drug regarding the optimal dosage regimen
and population-specific covariate effects. This suggests that in practice, we should adopt
the population approach and find efficient, if not optimal, designs for the PK models that
provide maximal information for designing optimal dose regimens, sampling times, and
estimating population specific covariate parameters at minimum cost [5].

In the clinical trials Phase I, Phase II, and Phase III, each phase requires more pa-
tients than the previous phase. Across these trial phases, we seek efficient, if not optimal,
designs for the PK models, which is equivalent to finding a design that provides maxi-
mal information for designing optimal dose regimens, sampling times, and estimating
population-specific covariate parameters at minimum cost [5]. Without the optimized
doses and sampling plans that maximize the informativeness of the experiments, recruiting
participants for dense sampling is both costly and unnecessary. Therefore, organizing and
evaluating designs for PK analysis based on good evaluation and optimization methods
are crucial components in drug development.

For this reason, it is necessary to have an efficient and user-friendly computational
tool for design evaluation and optimization. Some nascent recognition of importance of
such a step is apparent in the Food and Drug Administration’s suggestion, through its 1999
Guidance for Industry Population Pharmacokinetics, that the design evaluation simulations
be performed for possible clinical trial designs [6]. Historically, it is common to assume
that a statistical model is given and an optimal design is found for a particular objective
under the model assumptions. In recent years, oncologists and medical researchers have
also embraced model-based designs [7].

Following convention, the worth of a design is measured by its Fisher information
matrix (FIM), which is the expectation of the second derivatives of the total log-likelihood
function with respect to the model parameters, apart from a multiplicative constant. This
matrix depends on the model, the design that generated the data and the unknown param-
eters of the nonlinear model. A common design criterion is to find a design that maximizes
the determinant of the information matrix among all designs in the given compact interval,
which may be the sampling time range or the dose range. Because of the presence of the
unknown parameters in the matrix which we wish to estimate, we cannot optimize the
determinant directly. Nominal values for the unknown parameters are best-guess values for
the unknown parameters, and they may come from experts’ opinions or previous similar
trails. After substituting the nominal values into the information matrix, the objective func-
tion (i.e., the determinant) depends only the design, and we can then optimize it by finding
the optimal number of design points where they are and the proportion of observations
to take at each of the points. The resulting optimal design is local because it depends on
the nominal values for the unknown parameters. The optimization itself can be difficult
when there are many interacting factors in the model or there are random components in
the model, along with constraints on the longitudinal study. For example, requiring the
number and locations of the sampling time points can become very complicated quickly,
and the information matrix is computed numerically before it is optimized according to
some design criteria. Kiefer (1980) formulated all objectives as convex functions of the
information matrix so that the optimization problem becomes convex, and tools from the
convex analysis can be applied.
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Software for performing such a task started in Splus, and MATLAB including self-
created software like those from [8–10]. Other software tools, such as PFIM, PopDes, or
PopED [11,12], are also actively used in population PK design evaluation and
optimization [6], with the more recent one being the dose-optimizing package OptiDose
from the nonlinear mixed effects modeling software NONMEM [13,14]. This is in alignment
with growing interest in utilizing statistical optimization methodologies in earlier stages
of drug development [15]. In the realm of population PK design, FIM-based evaluation
and optimization is well studied [16–19], including traditional methodologies using other
optimization criteria for population PK [20,21]. With growing interest in the programming
language R, there is also a need for having a R-based tool for the design evaluation and
optimization in population PK.

The purpose of this paper is to present a useful computing package called PopED
for statisticians analyzing NLMEM population PK models. PopED uses the programming
language R for the design optimization of non-linear mixed effects PK models, which
has the potential to be widely used in the statistical community. This article demon-
strates how the PopED package is used in PK design evaluation and optimization via
two applications: (i) a one-compartment first-order PK model with single oral dosing
and multiple bolus administration, and (ii) a single dosing two-compartment PK model
with perturbation. The optimization simulation will follow the mathematical exposition
of the PK models for each example to provide the readers with a more comprehensive
understanding of the models. To this end, we first give a brief introduction of non-linear
mixed effects models with some technical details for the models in the two applications.
We then use PopED to design and evaluate various designs via the simulation tool in the
software. The paper concludes with a discussion. The simulation code can be found in
https://github.com/HowonRyu/PK_PopED.

2. Statistical Models

This section first reviews non-linear mixed effects models (NLMEMs) and their struc-
ture with two applications for PK modeling. The first application uses a one-compartment
first-order absorption PK model, and the second application uses a single dosing two-
compartment pharmacokinetics model with perturbation. The first is illustrative, and the
second is a new application. We then describe how to find optimal designs and how to
evaluate whether a design is optimal or not by ascertaining the design efficiency measures.

2.1. Non-Linear Mixed Effects Models for Population Pharmacokinetics

NLMEMs are commonly used in PK studies because (i) PK models are invariably
nonlinear, and (ii) population PK studies have repeated measures data, where each individ-
ual is treated with a dose of a drug and observed multiple times over the specified study
period [22]. Further, the random effects in the model add an extra layer of variability into
the population PK models.

NLMEMs, as the name suggests, have both fixed and random effects in the models.
Fixed effects are usually a subject-specific characteristic that does not change over the study
period where repeated measures are observed. Random effects are variables assigned to
different unit groups of the repeated measures to account for the differences in between
the groups [22]. Random effects usually account for unspecified variability stemming from
differences that are not explained by the differences in fixed-effect covariates.

The setup for NLMEMs assumes that there are N individuals for the study, where
N is predetermined, and the i-th subject has ni repeated measures Yij at time point
tij, j = 1, . . . , ni and i = 1, . . . , N. Individual factors, such as age, weight, or blood pres-
sure, are integrated into the modeling equation as covariates, although NLMEM PK analysis
is possible without these covariates. The model structure varies depending on the applica-
tion, and we assume that data from different subjects are independent. A general form of
such a model is as follows:

• The observed data for the i-th individual: (Yi, Ui, Ai)
′ for i = 1, . . . , N.

https://github.com/HowonRyu/PK_PopED
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• Yi = (Yi1, . . . , Yini )
′, Ui = (Ui1, . . . , Uini )

′, and Ai = (Ai, . . . , AN)
′.

• Yij = m(tij, Ui, θi) + εij, where εij ∼ N(0, σ2) and j = 1, . . . , ni.
• θi = d(Ai, β, ηi) where η∼MVN(0, G) and the ηi’s are uncorrelated.

Here and throughout, each outcome Yij is modeled with three factors: the time compo-
nent tij, the within-individual (intra-individual) covariate Ui, and the between-individual
(inter-individual) component θi. An example of Ui as a covariate is the drug dose, which can
have multiple values for an individual. Examples of θi as covariates are the absorption rate
constant (Ka), clearance (CL), or volume of distribution (V), which will be further explained
in this section. The vector Ai usually contains subject-character covariates, such as weight,
blood pressure, or age. The functions m and d have different forms depending on the PK
model. The parameter θi typically comprises three factors: Ai, the fixed effects; β, the fixed-
effect coefficients; and ηi, the random effects. The residual error εij accounts for the residual
variability for Yij, and it is assumed to be normally distributed with mean 0 and variance
σ2. The random-effect η follows a multivariate normal distribution with mean 0 and covari-
ance matrix G, and they are often assumed to be uncorrelated with one another, implying
that their covariance matrix is simply a diagonal matrix diag(var(η1), . . . , var(ηm)) when
assuming m different parameters. The variables Yij, Ai, Ui, and tij are assumed to be known
or observable. The unknown parameters to be estimated are β, ηi, εij, σ2, and G.

We next use two PK models to demonstrate how NLMEMs are formulated and used
to analyze data from a longitudinal study using PopED.

2.2. Application 1: One-Compartment First-Order Absorption Single and Multiple Dosing
PK Model

The first application is taken from the instructional webpage of PopED created by
Andrew C. Hooker (https://andrewhooker.github.io/PopED/). This application is a
one-compartment first-order absorption PK model with single oral dosing and multiple
IV bolus administration (intravenous injection). A compartment is a conceptual unit
within the human body, where the organs and tissues belonging to that compartment
are thought to have similar drug distribution. Therefore, the one-compartment model
assumes instant distribution of the drug upon administration, that the drug distribution
is similar throughout the body, and that there is no secondary distribution of the drug in
peripheral parts of the main compartment [23]. In a similar way, the two-compartment
model has two such systems, with a likely slower distribution of the drug. The first-order
absorption model is also called a linear absorption model because the model assumes a
constant absorption rate. It supposes that the relationship between the dose level and the
subsequent change of drug concentration is linear. The mathematical model is

Y =
D · F

V
Ka

Ka− CL
V
· { exp(

−CL
V

(t− (Nd − 1)τ))
1− exp(−Nd

CL
V τ)

1− exp(−CL
V τ)

− exp(−Kat− (Nd − 1)τ)
1− exp(−NdKaτ)

1− exp(−Kaτ)
}.

(1)

In (1), the outcome variable Y (mmol/L) is the drug plasma concentration, and the
variable t (h) denotes the time. D (mmol) denotes dose, and there is parameter τ (h) which
denotes dose interval since Application 1 is a multiple dosing model. The variable F stands
for bioavailability, which is the fraction of the drug absorbed by the systemic circulation,
and V (L) is the volume of distribution of the drug. The variable Ka represents an absorption
rate constant, and CL (L/h) is clearance, which is the volume of the plasma that is cleared
of the drug. Finally, we let N∗ be the largest integer that is not greater than the value
calculated by diving t (time) by τ (dose interval), and let Nd = N∗ + 1.

This PK model can be formulated using a general form of a PK model given by
the following:

• Yij = m(tij, Ui, θi) + εij, where εij ∼ N(0, σ2), j = 1, . . . , ni, and m is presented as (1).
• θi = (Vi, Kai, CLi, Fi) = d(Ai, β, ηi) for i = 1, . . . , N, where

https://andrewhooker.github.io/PopED/
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Vi = β0V · eηi1 = V̄ · eηi1 , Kai = β0Ka · eηi2 = K̄a · eηi2 , CLi = β0CL · eηi3 = CL · eηi3 , and
Fi = β0 = F̄.

• Uij = (Dij, τij)
′, i = 1, . . . ; N, j = 1, . . . , ni.

The covariates θi are the volume of distribution, absorption rate constant, clearance,
and bioavailability. This model does not have any subject characteristic covariate (Ai), and
its fixed effects are linearly modeled. Therefore, θi = (Vi, Kai , CLi, Fi) is a combination of
mean fixed effects and the random effects (ηi1, ηi2, ηi3). This is a special case of the more
general expression Vi = (β0V + β1V · Ai) · eηi1 , where Ai = 0, and the intercept β0V is
replaced with V̄, which stands for the averaged volume across all patients. The same holds
for Kai and CLi. We note that Fi is considered fixed and has no random-effect component.
All the random effects follow an exponential model with a lognormal distribution.

2.3. Application 2: Single Dosing Two-Compartment PK Model with Perturbation

This application concerns single dosing two-compartment PK models with design
optimization for perturbation PK models [24]. Unlike the first application, such a model
involves a hemodialysis as perturbation during the dosing cycle as the intermittent exoge-
nous elimination factor of the drug from blood. The model takes into account the loss of
drug concentration due to perturbation, and we denote the endogenous elimination rate
and the perturbation rate of the drug by k10 and kD, respectively. This application supposes
a two-compartment model, where there is a distribution of the drug between central and
peripheral compartment, which is another factor that influences the PK dynamics.

Specifically, the model assumes single administration of a drug by intravenous infu-
sion to the central compartment (kR). The dialytic clearance (kD) happens mid-cycle, and
the regular endogenous elimination of the drug (k10) is assumed for the remaining cycle. In
the above equations, c1 and c2 are the drug concentrations in the central and peripheral
compartments, respectively, and v1 is the central compartment volume. The parameters k12
and k21 are the rates at which the drug is distributed between the central and peripheral
compartments (L/h). The distribution rate from the central to the peripheral compartments
is k12, and the distribution rate from the peripheral to the central compartment is k21. Math-
ematically, the model is defined by the two differential equations, which were proposed
and solved analytically by Shotwell (2016) [24]:

dc1

dt
= −k12c1 + k22c2 − k10c1 +

kR
v1
− kD

v1
c1, (2)

dc2

dt
= k12c1 − k21c2. (3)

Shotwell (2016) presents a piecewise analytic solution, where the drug concentration
Yij is represented by a function of t, k10, k12, k21, and v1, which are the main between-
individual parameters of the model. The parameters kD, c1 and c2 are not explicit in the
analytic solution equation of Shotwell (2016) [24], because kD is a function of time t and c1,
while c2 is of the rest of the parameters. The parameter kR is the dose of the drug infusion,
which is usually predetermined, and so it is considered a constant. The model used by
Shotwell may be restructured as follows:

• Yij = m(tij, Ui, θi) + εij, where εij ∼ N(0, σ2), j = 1, . . . , ni, and m is the model
suggested by the analytical solution obtained from (2) and (3).

• θi = d(Ai, β, ηi) = (k10i, k12i, k21i, v1i) for i = 1, . . . , N, where k10i = β0k10 · e
ηi1 =

k̃10 · eηi1 , k12i = β0k12 · e
ηi2 = k̃12 · eηi2 , k21i = β0k21 · e

ηi3 = k̃21 · eηi3 , and v1i = β0v1 ·
eηi4 = ṽ1 · eηi4 .

• Uij = kR, for i = 1, . . . , N, andj = 1, . . . , ni.

The between-individual covariates θi comprise (k10i, k12i, k21i, v1i) and they represent,
respectively, the endogenous clearance, distribution rate from the central to the peripheral
compartment, distribution rate from the peripheral to the central compartment, and the
central compartment volume. As is the case in Application 1, this model does not have
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any subject covariate (Ai). Because the covariates are linearly modeled, each component
is defined as a combination of population median fixed effects (k̃10i, k̃12i, k̃21i, ṽ1i), and
the random effects (ηi1, ηi2, ηi3, ηi4). The above expression is obtained from the general
expression k10i = (β0k10 + β1k10 · Ai) · eηi1 when Ai = 0 after the intercept β0k10 is replaced
by k̃10, the median endogenous clearance rate of the population. The same holds for the
rest of θi. All random effects follow an exponential model with a lognormal distribution.

3. Design Optimization Method

This section discusses the fundamentals of constructing optimal designs, how to find
them and confirm that they are indeed optimal. To fix ideas, we work with a relatively
simple model to illustrate the concepts and difficulty involved.

3.1. Design Optimization

To appreciate the utility and capabilities of the software PopED, it is instructive to
review the basics of finding an optimal design and how to confirm a design is optimal
in an idealized case when we have a large sample and there are no random effects in the
model. For simplicity, assume we have a linear regression model defined over a compact
design space S and errors are independent, normally and identically distributed with
mean 0 and constant variance. The design space for PK/PD studies is usually the range of
sampling times or the range of dose concentrations allowed in the study. A usual goal is to
find a design that estimates the vector of coefficients in the mean function as accurately
as possible.

Designs have two forms: approximate and exact. Approximate designs are probability
measures defined on S, and they are characterized by the number of design points (which
are sampling time points, or dose levels), their locations in S and the proportion (pi) of
observations to take at each of these points. If the study is allowed to have a total of N
observations, then we first round up each N ∗ pi to an integer and take that number of
observations at the i-th location. Exact designs assume that the total number of observations
is pre-specified, and the design problem is similar, except the number of replicates at the
locations are directly optimized.

Following convention, we measure the worth of a design ξ by its information matrix
M(ξ, θ), which is proportional to the expectation of the second derivatives of the total
log-likelihood function with respect to the parameters. Here, θ is the unknown parameter
in the function, which enters into the information matrix when the model is nonlinear. The
design criterion or objective function is φ(ξ, θ) = −log|M(ξ, θ)|, and we want to find a
design ξ (exact or approximate) to optimize the objective function over all designs on S. It
can be shown that if the focus is on approximate designs, for fixed θ, φ is a convex function
on the set of all ξ’s on S and consequently, the design problem is a convex optimization
problem. Results from the convex analysis can then be usefully employed to find the
optimal approximate designs and assess a design from the optimum, without knowing
the latter, using the directional derivative of the convex function φ. The latter ability is
especially useful when an algorithm stalls during the search for an optimum, and we can
assess the proximity of the latest design from the algorithm to the optimum. However,
while there are algorithms mathematically guaranteed to find the optimum, they tend to
work for relatively simple models, and certainly do not work well for PK/PD models with
a large number of covariates or when the objective function is non-differentiable, such as
when we search for a minimax or standardized maximin design [25,26]. Details, examples
and some technical justifications for the elegant theory are available in optimal design
monographs, such as [27–29], among many others.

In contrast, no unified theory exists for finding exact optimal designs. In the rare
instances where it is possible to derive an optimal exact design, the proof always depends
sensitively on every aspect of the model assumptions, and the proof of optimality of a
design for one model does not extend to another model, even if the model is only slightly
changed. As far as we know, there are no algorithms that can guarantee they will find
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the optimal exact design. This is especially true for complicated nonlinear models for
PK studies, where invariably, there are random effects in the model, so they have to be
integrated out from the information matrix, implying that there are no closed forms for
the matrix. The information matrix has to be approximated accurately using various ways,
and computation issues become complex; these are well discussed in [10,16–18]. Further,
the PK/PD studies are longitudinal with corrected errors, and there are usually multiple
restrictions imposed on the study design. For example, there may be a maximum number of
sampling points allowed per subject, the subjects have to be grouped according to different
sampling schedules for evaluation, and sometimes doses or sampling times cannot be
too close to one another. The problem is no longer a convex optimization problem, and
new effective tools need to be developed to find efficient designs and analyze data for
such studies. As far as we know, there are no free statistical software packages that fulfill
such tasks.

PopED is a most timely and free package with many capabilities, specially designed
for solving design and analysis issues in PK/PD studies. It is a continually developing
package with state-of-the-art techniques and widely used by pharmacometricians but not in
the statistical and mathematical research communities. It uses the optimization algorithm
that evaluates the design based on the Fisher information matrix of the PK model structure
and the range of the parameters of the model. For the rest of this section, we describe
the functionality of the optimization tool of the R library PopED to build and evaluate PK
models. To this end, we provide a general guide on some feature commands in the PopED
library that were used in the analyses.

Building a population PK model in PopED starts with model definition. Model defi-
nition involves four functions: the model-defining function, parameter-defining function,
residual-defining function, and the PopED database-building function. The model-defining
function takes the values of tij as variables from the PopED database, and returns Yij as
the outcome. The parameter function specifies the PK between-individual parameter (θi)
and the within-individual parameter (Ui) to be used for the simulations. This function
defines θi as a mathematical function composed of the covariate Ai and the random effects
component ηi. The residual function adds residual variability εij to the model, and both
additive and proportional residual variabilities are allowed.

The last and important component is the PopED database function. This function
is an all-encompassing function, where the PopED database is created by specifying the
values to be used for the simulation. The PopED database function specifies design-related
settings that include the initial values for the mean parameters. The values for the mean
between-individual parameter (θ̄), random effects variances (G), and the residual variability
(σ2) are set for the simulation, along with the initial number of arms (groups), group size,
doses, dose intervals, and sample times as part of the design specifications. If the design
optimization is to be performed as part of the simulation, the range of doses and the dose
interval, and potential sampling window per sampling points are also set at this stage.

3.2. Evaluation and Optimization Metric

Based on the pre-designated mean or median PK parameters and other dose- and
time-related specifications defined in the PopED database, the simulation function generates
a concentration–time plot with 95% prediction confidence bands for the model. With this
initial simulation performed, PopED provides a design evaluation feature for comparing
various designs. The evaluation function returns three evaluation criteria for each design:
its objective function value (OFV), its Fisher information matrix (FIM), and the relative
standard error (RSE) for model parameters. In our case, OFV is the log value of the
determinant of the FIM, and RSE is the standard error of the estimated parameters as a
percentage of the parameter estimate, i.e., RSE%(x) = (SE(x)/x) · 100.

The RSE(%) values are reported for the estimated fixed-effect and random-effect
parameters. Larger OFV values are associated with better designs, and smaller RSEs for
parameters imply that estimates are more accurate, so the design is more efficient than
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designs with a larger value. When p is the number of PK parameters in the model, PopED
has a function to compare the efficiency of an alternative design relative to the initial design
using the measure

e f f iciency = { exp(OFValt)

exp(OFVinit)
}

1
p . (4)

In practice, efficiency denotes the relative size of the sample needed for the alternative
design against the initial design, indicating the number of times the alternative design has
to be replicated to achieve the same performance level as the initial design.

PopED offers a determinant-based method for continuous and discrete optimization,
i.e., it assumes that the design criterion is of D-optimality and the sought design maximizes
the determinant of the information matrix among all designs. The design optimization
function provides the sampling times that maximize the OFV of the initial design. This
means that the time points provided by the optimization function are those that maximize
the information content of the trial. Selecting those points as sampling times will maximize
the precision of the estimates for the model parameters, as the OFV value is proportional to
the determinant of FIM. Depending on the options, the optimization can be over the choice
of dose levels or dose intervals. Similarly, these options provide the best dose regimen for
the maximized information content and hence the most precise statistical inference for the
model parameters.

4. Results

We use the two applications from the previous section to illustrate how we use PopED
to compute the optimal designs and evaluate the relative efficiencies of other designs.

4.1. Application 1: One-Compartment First-Order Absorption Single and Multiple Dosing
PK Model

Consider a one-compartment model with first-order absorption and no covariate. The
nominal values we used in the simulation for the fixed-effect parameter means, the random
effects variances, and the residual variability variance are borrowed from the introductory
website of PopED and shown below:

Fixed effects parameter mean: (V̄, K̄A, C̄L, F̄) (72.8, 0.25, 3.75, 0.9)

Random effects variance (G) diag(0.09, 0.09, 0.0625)

Residual variability variance (σ2) 0.04

Suppose we have 40 patients, and we follow them five times for 250 h after the initial
dose of 20 mmol on the dose interval of 24 h. The design problem is to select five optimal
sampling time points from the time range [0, 250] in hours after drug administration. We
consider two designs: one with well-dispersed sampling points over the observation period,
and the other with a skewed distribution of the sampling time points. A well-dispersed
design has spread out sampling time points after the initial dose. An example of such a
design is one with five equally allocated points at 50, 100, 150, 200, and 250 h after drug
administration. An example of a design with a skewed distribution of sampling time points
is the design that takes observations at 6, 12, 24, 216, and 240 h after the initial dose. We
evaluate the relative efficiencies of the two designs and examine the optimized sampling
times with and without the time condition per each sample. Figure 1 displays the simulated
plot of the dose–concentration of the initial design, where the shaded area denotes the 95%
confidence band.

Table 1 summarizes the simulation results of the four experimental designs for the
model. Design 1 and Design 2 are respectively well dispersed and skewed as explained
previously. For Design 1 and Design 2, no other condition was imposed on the sampling
window for each point. All five sampling points were free to be selected from the range



Mathematics 2023, 11, 4407 9 of 15

of the initial design space [0, 250]. The OFV value for the dispersed design (Design 1) is
24.02, whereas for the more skewed design (Design 2), it is 37.49. This suggests that the
skewed design provides more information for the same number of sampling points and
participants. The efficiency is 0.15, which suggests that for the alternative skewed design to
provide the same informativeness as the initial (dispersed) design, the alternative design
would only have to have 15% of the participants in the initial design for the trial. The result
highly suggests that for this experiment, the design with sampling points concentrated
toward the beginning and the end of the experiment performs better.

Figure 1. The plot shows the predicted drug concentrations of the dispersed design at time points 50,
100, 150, 200 and 250 h for Application 1.

Table 1. Sampling time optimization result (Application 1).

Design Sampling Times OFV Efficiency

Design 1 (dispersed) (50, 100, 150, 200, 250) 24.02 1
Design 2 (skewed) (6, 12, 24, 216, 240) 37.49 0.15
Design 3 (optimized) (0.57, 14.15, 14.15, 14.15, 240) 40.79 0.09
Design 4 (optimized with condition) (15.31, 51.02, 146.9, 168, 242.9) 38.11 0.13

We can similarly calculate the optimized sampling points for this design. Design 3
shows the optimized sampling points for this model, which are 0.57, 14.15, 14.15, 14.15, and
240 h. These sampling points yield the OFV of 40.79 with an efficiency of 0.09, meaning
that theoretically, the experiment would only need 9% of the initial study participants if the
experiment uses the optimized sampling points. However, having duplicate sampling time
points—in the case of Design 3, the three duplicates of 14.15—is problematic. To resolve
this matter, we can think of a design optimization with some restrictions on the sampling
windows for each point. For Design 4, the condition was added that the five sampling
points should come from an equally divided and minimally overlapping subspace of the
initial design space. The first to fifth sampling points were bound to be selected from [0, 50],
[50, 100], [100, 150], [150, 200], and [200, 250], respectively. The optimized sampling points
with such a condition were 15.31, 51.02, 146.9, 168, and 242.9 h with OFV of 38.11 and
efficiency of 0.13 (Design 4). Although the OFV was lower in the case of optimization with
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the condition than the unconditioned optimization, Design 4 provides more intuitive and
feasible sampling points with a relatively small difference in efficiency.

Once the optimal sampling time points are identified, further analysis of the optimal
dose regimen can be performed. Table 2 shows the design evaluation results for different
dose regimens. Designs 4–1 to Design 4–4 have the same sampling points as Design 4 and
differ only in the doses and dose intervals. Different variations of dose and dose interval
combinations reveal that in our model, when smaller doses of the drug are administered
more frequently, the design performs increasingly worse, and as the dose administration
becomes less frequent with a larger dose, its performance improves. Design 4–1 is the best
dose regimen out of the four variations in terms of efficiency, as it requires only 47% of the
sample size as Design 4 to provide the same information.

Table 2. Optimized dose regimen for (Application 1).

Design Sampling Time Dose/Dose Interval OFV Efficiency

Design 4

(15.31, 51.02, 146.9, 168, 242.9)

20 mmog/24 h 38.11 1
Design 4–1 40 mmog/48 h 43.45 0.47
Design 4–2 30 mmog/36 h 42.50 0.53
Design 4–3 10 mmog/12 h 36.12 1.33
Design 4–4 5 mmog/6 h 33.35 1.97

4.2. Application 2: Single Dosing Two-Compartment PK Model with Perturbation

Shotwell (2016) used a two-compartment PK model with perturbation and a single
dosing scheme to study the effect of piperacillin on hemodialysis by injecting the antibiotic
into patients with reduced kidney function [24]. For this simulation, we assume an eight-
hour dosing cycle with 100 participants. The cycle starts with an initial administration of
the drug by intravenous infusion that lasts for 60 min at a dose of 3000 mg/h to the central
compartment. A 120 min dialytic clearance (perturbation) takes place from 180 to 300 min
(3 to 5 h) from the initial administration at 15 L/h rate (kD). The nominal values used in the
simulation assume that the target population is patients receiving hemodialysis, and are
from Shotwell (2016) shown below [24]:

Fixed effects parameter median: (ṽ1, k̃10 k̃12, k̃21) (10, 0.35, 3.5, 1.5)

Random effects variance (G) diag(0.06, 0.06, 0.06, 0.06)

Residual variability variance (σ2) 0.04

Shotwell (2016) suggested that the vector of the fixed-effect parameter median for
patients with renal insufficiency be 10, 0.35, 3.5, and 1.5. In their research, the coefficient
of variation for the fixed-effect parameter was set to 25%. The relationship between the
coefficient of variation (CV(%)) and the variance of random effects for inter-individual
variability (var(ηi)) is CV(%) =

√
exp (var(ηi))− 1 · 100(%) [30]. Using this relationship,

the random effects variances were all set to 0.06, and the residual variability variance was
again set to 0.04.

The simulation picks 2, 4, 6, and 8 h after the initial dose as the sampling times (initial
design). The sampling times for the alternative design are at 0.5, 1, 6, and 8 h, implying more
samples near the start of the dosing cycle and around hemodialysis. Figures 2 and 3 display
the concentration plot of the central and peripheral compartment for the initial design,
respectively, and the shaded area in each of the plots corresponds to a 95% confidence band.

Table 3 lists the optimized sampling times, along with the OFV, and efficiency values
for the various designs. For both compartments, the initial design has a set of well-dispersed
sampling times at 2, 4, 6, and 8 h. In contrast, the alternative design has more concentrated
sampling time points. The alternative design for the central compartment has an efficiency
of 1.22, implying that the initial design outperforms the alternative design by 22%. For the
peripheral compartment, the opposite result is true; for it to have the same performance as
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the initial design, the alternative design requires only 53% of the number of participants in
the initial design.

Figure 2. The plot shows the predicted central compartment drug concentrations (mg/L) with
sampling time points at 2, 4, 6, and 8 for Application 2.

Figure 3. The plot of the predicted peripheral compartment drug concentrations (mg/L) with
sampling time points at 2, 4, 6 and 8 for Application 2.

The continuous optimized sampling points for the central compartment are at 0.0008,
1.13, 3.46, and 8 h, and the corresponding sampling time points using discrete optimization
are at 1, 2, 4, and 8 h. For both optimization schemes, the resulting efficiencies are 29% and
60%, respectively, showing improvement. For the peripheral compartment, the optimized
sampling times are at 0.01, 3.04, 5.13, and 8 h for the continuous optimization, and are at 1,
3, 5, and 8 h using discrete optimization. This shows that optimization for the peripheral
compartment has resulted in a 39% and a 55% efficiency improvement relative to the
initial design.
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Table 3. Sampling time optimized results (Application 2).

Compartment Design Sampling Time OFV Efficiency

central

initial (2, 4, 6, 8) 49.12 1
alternative (0.5, 1, 6, 8) 47.31 1.22
optimized (continuous) (0.0008, 1.13, 3.46, 8) 60.38 0.29
optimized (discrete) (1, 2, 4, 8) 53.70 0.60

peripheral

initial (2, 4, 6, 8) 46.93 1
alternative (0.5, 1, 6, 8) 52.72 0.53
optimized (continuous) (0.01, 3.04, 5.13, 8) 58.30 0.39
optimized (discrete) (1, 3, 5, 8) 54.09 0.55

For the central compartment, the continuous and discrete optimized sampling points
clearly show enhanced performance compared to both the initial and alternative designs.
However, we observe that in the simulation for the peripheral compartment, the differences
in performance between the alternative design and the optimized designs are more nuanced,
making it a viable option to choose the alternative design if the sampling times suggested by
the two optimizations, while being optimized in terms of performance, is simply infeasible
or impractical.

Table 4 displays the RSE(%) per fixed- and random-effect parameter. It shows the
proportion of the standard error of each parameter compared to its estimate in percentage.
Generally, the RSE for continuous optimized design outperforms discrete designs. This
is to be expected, as the continuous design space allows for the more flexible selection of
the sampling and dosing regimen. Discrete optimization is performed in limited design
space, which leads to it being less precise than when the continuous design space is used.
Overall, RSE is dropped significantly after optimization for both compartments, except for
peripheral discrete optimization. Again, the drop in RSE is more significant in the central
compartment than it is in the peripheral compartment. This suggests that if the purpose of
the study is to investigate the PK relationship in the peripheral compartment, choosing the
alternative design could serve this purpose if the sampling windows do not allow for the
optimized sampling times.

Table 4. Relative standard error (RSE%) of the estimated parameters (Application 2).

Compartment Design k10 k12 k21 v1 var(η1) var(η2) var(η3) var(η4)

central

initial 164 257 38 161 37 133 77 31
alternative 68 227 136 94 55 127 248 29
optimized (continuous) 4 7 7 3 35 57 56 20
optimized (discrete) 55 97 21 54 37 74 53 26

peripheral

initial 24 46 37 5 311 240 169 25
alternative 23 16 14 7 277 54 71 24
optimized (continuous) 4 23 19 3 32 209 139 20
optimized (discrete) 84 149 32 82 35 77 66 26

5. Discussion and Conclusions

This article demonstrated the utility of non-linear mixed effects models for study-
ing population pharmacokinetics with two applications. The first is illustrative using a
one-compartment first-order PK model with a single oral dosing and multiple bolus admin-
istration. The second is a new application for a single dosing two-compartment PK model
with perturbation. The simulation identified the best design with the optimal sampling
points or dose regimen based on the objective function value, along with efficiencies of
the initial and optimized designs. The use of the design evaluation and optimization tool
PopED is presented in the R setting, the statistical programming language that is now
widely used even in clinical trials and experimental designs. An efficient computing tool
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such as PopED is integral in drug development in finding which design is the most efficient
given the available resources in the trial.

Overall, the evaluation and optimization for various population PK models are fa-
cilitated by the PopED library in R in that it provides a platform for the users to specify
flexible models for a PK study, and has tools to design and analyze the data. The library
operates in an open-source environment R, and this further adds flexibility to work with
other statistical libraries in R for a more in-depth analysis. However, this also means that
the familiarity of the programming language R is a requirement to fully use PopED, and this
may limit its user base to R users. In contrast, the NLMEM Population PK/PD modeling
software provides its own user interface, which eliminates the need to have proficiency in a
certain programming language.

We note that the library does not provide estimates of the parameters for the popula-
tion PK/PD model from a dataset. If parameter estimates from previous studies are not
available, then an additional tool for model fitting and parameter estimation is needed.
However, with the recent surge in demand for a good study optimization tool for cost-
efficient study designs, software that specializes in optimization such as PopED is becoming
more widely used in that it provides various optimization and simulation sub-analysis fea-
tures, such as the analysis for irregular dosing, below the limit of quantification (BLQ) data
analysis, power calculation, optimization of subjects per group, shrinkage, and Bayesian
FIM estimates. In this sense, the population PK design evaluation and optimization using
PopED is both a helpful and useful tool for performing population PK design analysis.

Future work includes extending the current features in PopED to perform additional
tasks, such as power calculation or finding Bayesian or minimax types of optimal designs.
Further enhancements can include a package that performs a comprehensive sensitivity
analysis to ascertain the design sensitivities to all aspects of the model assumptions.

We close by noting that while the optimal sampling design is a valuable tool to assess
the study design based on FIM, the current gold standard approach is to use stochastic sim-
ulation and estimation (SSE) to assess the PK/PD study design. The SSE allows researchers
to assess both the bias and precision of parameters respective to the study design, where
the optimal sampling design only allows precision assessment. Future work should also
provide insights into the two approaches and how to integrate them more effectively.

For now, we believe that both approaches are valid and useful, and they should be
used jointly for research. First, the optimal sampling design is derived mathematically or
using an algorithm based on a criterion that may not fully incorporate the goals of the study
in practice. They are invariably model based, and so optimal designs that are theoretically
derived based on mathematics alone may not be realistic to implement. For example, they
may have too few sampling time points than the number that clinicians like. Optimal
designs therefore should be used only as a guide or as a rough benchmark to assess other
designs. In practice, the implemented design should meet practical needs and stray not
too far from the optimal design; otherwise, the implemented design can lose substantial
statistical efficiency. When there are several implementable designs proposed by clinicians,
or otherwise, one may select the design with the highest efficiency relative to the optimum
so that the precision of the estimates is the highest to the extent possible.
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