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Abstract

:

In this paper, a Banyan network with high parallelism and nonlinearity is used for the first time in image encryption to ensure high complexity and randomness in a cipher image. To begin, we propose a new 1-D chaotic system (1-DSCM) which improves the chaotic behavior and control parameters’ structure of the sin map. Then, based on 1-DSCM, a Banyan network, and SHA-256 hash function, a novel image encryption algorithm is conducted. Firstly, a parameter is calculated using SHA-256 hash function and then employed to preprocess the plaintext image to guarantee high plaintext sensitivity. Secondly, a row–column permutation operation is performed to gain the scrambled image. Finally, based on the characteristic of DNA encoding, a novel DNA mapping is constructed using an   N = 4   Banyan network and is used to diffuse the scrambled image. Simulation results show that the 1-DSCM has excellent performance in chaotic behavior and that our encryption algorithm exhibits strong robustness against various attacks and is suitable for use in modern cryptosystems.
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1. Introduction


A chaotic system, characterized by its nonlinear dynamical nature with a positive Lyapunov exponent and global boundedness, produces pseudo-random numbers with randomness, complexity, and sensitivity to initial conditions. These qualities render chaotic systems highly suitable for application in image encryption [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18]. For example, some novel hyperchaotic systems were introduced based on the Hopfield chaotic neural network [1] or cellular neural network (CNN) [2] and employed for image encryption because of their large key spaces. Compared to high-dimensional chaotic systems, 1-D chaotic maps possess simpler architectures and faster iteration speeds, rendering them highly suitable for fast image encryption. Thus, Wang et al. developed a one-dimensional discrete chaotic system (1-DFCS) which is used to design a fast image encryption system with high sensitivity of key and a strong ability to withstand differential attacks [3]. In other work [4], a novel one-dimensional cosine polynomial (1-DCP) chaotic map was proposed and employed to develop a fast encryption system based on parallel permutation substitution. Leveraging chaotic systems, researchers have proposed various image encryption algorithms in conjunction with diverse techniques, including bit-level operations [6,7,8,9,10], semitensor product approaches [11,12], quantum walks [13], and multiple image encryption methods [14,15].



In the past few years, encryption algorithms based on DNA coding and nonlinear mapping have been widely studied. DNA encoding concepts from genetic engineering were used in their development. By leveraging the advantages of biological computers, such as high parallelism and extensive storage capacity, scientists have devised many image encryption methods based on DNA encoding [19,20,21,22,23]. For example, in [20], K.N. Singh et al. introduced an innovative image encryption framework, which utilizes deoxyribonucleic acid (DNA) encoding in conjunction with recursive cellular automata (RCA) to change the pixel values to obtain a lower correlation coefficient. In [22], two scrambling sequences were generated through Feistel Network and employed in a permutation stage to achieve a highly complex scrambled image. In recent years, many nonlinear mappings have been used in diffusion operation [24,25,26,27,28,29]. In [24], random numbers were generated using elliptic curves (ECs) which are isomorphic to a fixed public EC and perform the pixel scrambling and diffusion to achieve high security of the encrypted image. Based on the features of natural image, a dynamic S-box was conducted to affect the pixel values in the diffusion stage. In [28], by using the discrete wavelet transform and dynamic S-box, the natural images were selectively encrypted, which can reduce the computational complexity of the algorithm. Moreover, the Banyan network holds significant application in designing various switching circuits [30,31], facilitating the eventual hardware implementation of our algorithm. Furthermore, the Banyan network possesses the characteristics of nonlinearity and parallelism. Therefore, in this paper, combined with DNA encoding and a Banyan network, we propose a novel image encryption scheme with high security and efficiency.



The contributions of the proposed encryption algorithm can be summarized as follows:




	1.

	
We developed a novel discrete chaotic system (1-DSCM) that enhances the parameters’ structure and nonlinearity of the sin map.




	2.

	
Taking advantage of its high parallelism and nonlinearity, the Banyan network is the first to be used in an encryption algorithm.




	3.

	
Comprehensive testing was conducted for both the cryptosystem and chaotic system.









The remainder of this paper is structured as follows. Section 2 discusses the shuffle-exchange network and DNA encoding. Section 3 displays the 1-DSCM and comprehensive tests of the proposed chaotic system. Section 4 proposes a novel Banyan network DNA mapping which can be used in diffusion. Section 5 details the encryption framework based on 1-DSCM, shuffle-exchange network, and DNA encoding. The comparison analysis of similar algorithms is carried out in Section 6, and the conclusion of the paper is given in Section 7.




2. Related Work


2.1. Shuffle-Exchange Network


The shuffle-exchange network, like the Banyan network, Omega network, and indirect binary n-cube network, is a network that uses full shuffling functions and switching functions to realize interconnection between nodes. A topology diagram of the Banyan network with   N = 8   is shown in Figure 1a.



2.1.1. Exchange Unit


The exchange unit has two inputs and two outputs, serving as the fundamental component in various shuffle-exchange networks. Different multilevel interconnection networks employ distinct types of exchange units, topologies, and control methods. In general, there are four distinct switching states or connection modes, as illustrated in Figure 2: straight, exchange, upper-broadcast, and lower-broadcast. In our algorithm, we utilize straight and exchange switching units.




2.1.2. Banyan Network


The Banyan network is a type of interconnection network, and its composite routing function   Y n   is shown in Equation (1):


   Y n  =  E 1   β 2   E 1   β 3  …  β n   E 1   



(1)




where   E 1   represents the exchange unit and   β i   represents the ith replacement stage. For each control switch, we configure the exchange units in the straight state when    E 1  = 0   and the exchange state when    E 1  = 1  . As an example depicted in Figure 1b, when the input is 1 and the control signal   E 1   is 010, the output is 6.





2.2. DNA Encoding


To use biocomputers in the future, the information processing techniques based on DNA coding have been studied. First of all, the information being processed will be encoded to four distinct nucleic acids, namely, A (adenine), T (thymine), C (cytosine), and G (guanine). According to the base pairing principle, A pairs with T and C pairs with G. Coincidentally, 0 and 1 are complementary in the binary system; therefore, 00 and 01 are regarded as complementary with 11 and 10. For example, when using encoding rules   A = 00  ,   T = 11  ,   C = 10  , and   G = 01  ,   36 =   ( 00111001 )  2    can be encoded as   A C G A   and   C G T C   can be decoded as     ( 10011110 )  2  = 158  .





3. Proposed Chaotic System


The mathematical representation of the sin map is given by Equation (2):


      x  n + 1   =  γ 4  s i n  ( π  x n  )      



(2)




where  γ  is the control parameter. As shown in Figure 3b, the sin map has some nonchaotic ranges when   γ ∈ [ 0 , 10 ]  . Among the characteristics of chaotic systems, the positive Lyap exponent and orbital global bounding are widely used as evidence for judging chaos. According to the theory of the Chen-Lai algorithm [32], a high-gain feedback controller is constructed to obtain the positive Lyap exponent of the dynamic system. Furthermore, a modular operation to make the system globally bounded is designed. Drawing inspiration from the sin map and Chen-Lai algorithm, we construct a 1-DSCM, which is depicted in Equation (3).


      x  n + 1   = sin  ( π  x n  )  + 2  x n  + r x  e  x n    m o d  1     



(3)







Here, r is the control parameter of the 1-DSCM. To evaluate the performance of the 1-DSCM, various tests, including Lyapunov exponent test, bifurcation analysis, sample entropy, 0-1 test, and NIST test, are performed in the following subsections.



3.1. Lyapunov Exponent Test


The Lyapunov exponent (LE), which signifies the rate of separation between neighboring trajectories, serves as a pivotal criterion in assessing the chaotic nature of a dynamic system    x  n + 1   = f  (  x n  )   . The definition of the Lyapunov exponent is presented in Equation (4).


     λ =  lim  k → ∞    1 k   ln |     f k   (  x 0  + Δ x )  −  f k   (  x 0  )    Δ x    | =   lim  k → ∞    1 k    ∑  i = 0   k − 1    ln   |   ∂ f ( x )   ∂ x   |   x =  x i        



(4)




where n represents the dimension of the generated time series   f (  x n  )  . A positive Lyapunov exponent (LE) means the high sensitivity to the initial value. Moreover, the larger the LE value is, the better the chaotic behavior of the system is. The LE values of the sin map 1-DFCS [3], 1-DCP [4], and 1-DSCM are provided in Figure 4. As illustrated in Figure 4, compared to other recently proposed chaotic systems, 1-DSCM exhibits higher Lyapunov exponent (LE) value across a broader parameter range.



For a visual assessment of the proposed system’s sensitivity to initial values and control parameters, the generated chaotic sequences with a slight variation in initial values or control parameters are plotted in Figure 5, providing evidence of 1-DSCM’s high sensitivity to initial values and control parameters.




3.2. Bifurcation Analysis


The dynamics of a system can be effectively depicted through the diagram of bifurcation. In Figure 3, we present the bifurcation diagrams for the 1-DSCM, 1-DFCS, and 1-DCP. In comparison to other chaotic systems, 1-DSCM displays a more extensive chaotic region and without the emergence of periodic phases.




3.3. Sample Entropy


The time series’ self-similarity of chaotic systems can be quantified through sample entropy (SE) [33]. A larger SE value indicates higher complexity in the dynamic behavior and lower regularity in the time series. The SE value for the time series X can be modeled by Equations (5)–(7):


      D m   ( i )  =  [ X  ( i )  , X  ( i + 1 )  , … , X  ( i + m − 1 )  ]      



(5)






     A =  1  N − m     ∑  i = 1   N − m     1  N − m − 1    A i        B =  1  N − m     ∑  i = 1   N − m     1  N − m − 1    B i      



(6)






     S E  ( m , r , N )  = − ln  A B      



(7)




where   d [  X m   ( i )  ,  X m   ( j )  ]   is the Chebyshev distance between   X ( i )   to   X ( i + m − 1 )  , r is the specified distance,    D m   ( i )    represents the template vector, and   A i   and   B i   are the counts of vectors that satisfy the conditions   d [  X  m + 1    ( i )  ,  X  m + 1    ( j )  ] < r   and   d [  X m   ( i )  ,  X m   ( j )  ] < r  , respectively. We set   m = 2 , r = 0.2 × s t d   in our simulation, and the comparative analysis results of 1-DSCM with other chaotic systems are provided in Figure 6. This analysis proves that 1-DSCM exhibits superior performance in SE analysis to other chaotic systems.




3.4. 0-1 Test


In this subsection, we utilize 0-1 test to judge the chaotic status of 1-DSCM, 1-DFCS, and 1-DCP. The K value can be calculated using Equations (8)–(11):


     s  ( n )  =   ∑  i = 1  n   X  ( i )  sin  ( i r )      



(8)






     p  ( n )  =   ∑  i = 1  n   X  ( i )  cos  ( i r )      



(9)






     M  ( n )  =  lim  N → ∞    1 N    ∑  i = 1  n     [ p  ( i + n )  − p  ( i )  ]  2  +   [ s  ( i + n )  − s  ( i )  ]  2      



(10)






     K =   log M ( n )   log n       



(11)




where X represents the sequence of size N generated by the 1-DSCM. Here, we set   r = 2  , and the value of K close to 1 indicates that the dynamic system is in a chaotic state. Figure 7 depicts the outcomes of the 0-1 test for 1-DSCM, 1-DFCS, and 1-DCP. The results demonstrate that the K scores of 1-DSCM are close to 1.




3.5. NIST SP 800-22 Test


We utilize the National Institute of Standards and Technology (NIST) SP 800-22 test suite to further validate the randomness of the sequences generated by the 1-DSCM. Firstly, a time series with 12,500,000 values, which is denoted as   s e q  , is generated by the 1-DSCM. Then, the values of   s e q   are mapped into the interval 0 to 255 using Equation (12):


     s e  q  a m p l i f i e d   = m o d  ( s e q ×  10 10  , 256 )      



(12)







Finally, the integer part of each value in   s e  q  a m p l i f i e d     is transformed to 8 bits. The test results are presented in Table 1, where all p-values fall within the range   ( 0.001 , 1 )  . This affirms that the sequence produced by the 1-DSCM processes high randomness and it is suitable for image encryption.





4. Banyan Network-DNA Mapping


In this section, based on the characteristic of DNA encoding, we constructed a novel DNA mapping using an   N = 4   Banyan network. The topological graph of the   N = 4   Banyan network is demonstrated on the left of Figure 8. Here, we set input ports 0–3 that correspond to ATCG, respectively, and output ports 0–3 that correspond to GTCA, respectively, which is illustrated on the right of Figure 8. The Banyan network-DNA mapping rule is given in Table 2.




5. Encryption Framework


In this paper, we present a novel image encryption framework using the technology of the Banyan network to obtain a better diffusion effect. The flow chart of our algorithm is shown in Figure 9.



Step 1: A natural image P(  M × N  ) is first input into the SHA-256 hash function to yield a 256-bit hash value h.



Step 2: Subsequently, the h is further divided into eight discrete segments to obtain  α  using Equation (13).


      t m p = h ( 1 : 32 ) ⊕ h ( 33 : 64 ) ⊕ … ⊕ h ( 225 : 256 )       α = m o d ( f i x  (   t m p   2 20   )  , 256 )      



(13)




where   t m p   is a temporary variable.



Step 3: Four sequences,    x n  ,  y n  ,  z n  ,  w n   , shown in Equation (14) with the size of   M , N , M × N , 4 × M × N  , respectively, are generated by 1-DSCM using the key   {  x 0  ,  y 0  ,  z 0  ,  w 0  }  , and the first   N 0   iteration values are discarded.


       x n  =  {  x 1  ,  x 2  ,  x 3  , …  x M  }         y n  =  {  y 1  ,  y 2  ,  y 3  , …  y N  }         z n  =  {  z 1  ,  z 2  ,  z 3  , …  z  M × N   }         w n  =  {  w 1  ,  w 2  ,  w 3  , …  w  4 × M × N   }       



(14)







According to Equation (15), these sequences are processed to obtain   { X , Y , Z , W }   to be used in the continued stages.


      X = m o d ( f i x  (  x n  ×  10 15  )  , M )       Y = m o d ( f i x  (  y n  ×  10 15  )  , N )       Z = m o d ( f i x  (  z n  ×  10 15  )  , 256 )       W = m o d ( f i x  (  w n  ×  10 15  )  , 4 )      



(15)







Step 4: We use Equation (16) to perform the first diffusion operation on P to obtain   i m  g 1   .


     i m  g 1  = m o d  ( P + Z + α × 10 , 256 )      



(16)







Step 5: We insert the parameter  α  into   i m  g 1   . Firstly, we generate a null vector   v →   and add it to the last row of the image   i m  g 1   . Secondly, the value of the   p o s  -th element in   v →   is changed to  α . The position   p o s   can be calculated by Equation (17). It is worth noting that the size of   i m  g 1    now becomes   ( M + 1 ) × N  .


     p o s = f i x ( m o d  (  x 1  ×  y 1  ×  z 1  ×  w 1  ×  10 15  , N )  ) + 1     



(17)







Step 6: We perform a row permutation operation using X and a column permutation operation using Y. The details of the scrambling procedure are displayed in Algorithm 1.



Step 7: We perform the Banyan network diffusion operation. Each pixel of   i m  g 2    is encoded into four nucleic acids which are input into the Banyan network-DNA mapping shown in Figure 8. Using the W as the control signal, the output of the Banyan network-DNA mapping is obtained and then decoded to obtain the corresponding cipher pixel. The final encrypted image is denoted as   i m g  . For example, as per the example detailed in Section 2.2, 36 can be encoded as   A C G A  . When the control signal of the   N = 4   Banyan network is 10, the output is   C G T C  , which can be decoded into a cipher pixel value of 158. A visualization of the example is shown in Figure 10.






	Algorithm 1 Encryption algorithm.



	
Input: The original image P, parameter  α  and four chaotic sequences X, Y, Z, W.



Output: Encrypted image   i m g  .



	1:

	
for    i = 1 : M × N    do




	2:

	
      i m  g 1   ( i )  = m o d  ( P  ( i )  + Z  ( i )  + α × 10 , 256 )   




	3:

	
end for




	4:

	
  i m  g 1  ←   Insert  α .




	5:

	
for    i = 1 : M + 1    do




	6:

	
      t e m p = i m  g 1   ( i , : )   




	7:

	
      i m  g 1   ( i , : )  = i m  g 1   ( m o d  ( X  ( i )  , M + 1 )  + 1 , : )   




	8:

	
      i m  g 1   ( m o d  ( X  ( i )  , M + 1 )  + 1 , : )  = t e m p  




	9:

	
end for




	10:

	
for    j = 1 :   N    do




	11:

	
      t e m p = i m  g 1   ( : , j )   




	12:

	
      i m  g 1   ( : , j )  = i m  g 1   ( : , m o d  ( Y  ( j )  , N )  + 1 )   




	13:

	
      i m  g 1   ( : , m o d  ( Y  ( j )  , N )  + 1 )  = t e m p  




	14:

	
end for




	15:

	
  i m  g 2  ← i m  g 1    DNA encode




	16:

	
  i m  g 3  ← i m  g 2    Banyan Network diffusion using W.




	17:

	
  i m g ← i m  g 3    DNA decode














Decryption is the converse methodology to encryption, elucidated in Algorithm 2.






	Algorithm 2 Decryption algorithm.



	
Input: The encrypted image   i m g   and four sequences X, Y, Z and W.



Output: The original image P.



	1:

	
  i m  g 3  ← i m g   DNA encode




	2:

	
  i m  g 2  ← i m  g 3    Banyan Network inverse diffusion using W.




	3:

	
  i m  g 1  ← i m  g 2    DNA decode




	4:

	
for    j =   N : − 1 : 1    do




	5:

	
      t e m p = i m  g 1   ( : , j )   




	6:

	
      i m  g 1   ( : , j )  = i m  g 1   ( : , m o d  ( Y  ( j )  , N )  + 1 )   




	7:

	
      i m  g 1   ( : , m o d  ( Y  ( j )  , N )  + 1 )  = t e m p  




	8:

	
end for




	9:

	
for    i = M + 1 : − 1 : 1    do




	10:

	
      t e m p = i m  g 1   ( i , : )   




	11:

	
      i m  g 1   ( i , : )  = i m  g 1   ( m o d  ( X  ( i )  , M + 1 )  + 1 , : )   




	12:

	
      i m  g 1   ( m o d  ( X  ( i )  , M + 1 )  + 1 , : )  = t e m p  




	13:

	
end for




	14:

	
Extract  α  from   i m  g 1   .




	15:

	
for    i = 1 : M × N    do




	16:

	
      P  ( i )  = m o d ( i m  g 1   ( i )  − Z  ( i )  − α × 10 , 256 )  




	17:

	
end for















6. Simulation Results


In this section, the evaluation of the proposed cryptosystem through distinct experimental analyses is given. Experiments were performed on a personal computer with Matlab R2021a software in Windows 11 operating system. The natural and encrypted images are visually presented in Figure 11.



6.1. Plaintext Sensitivity


A cryptosystem with high security should be sensitive to a small change in plaintext to resist differential power attacks (DPAs). The number of pixels changing rate (NPCR) and the unified averaged changed intensity (UACI) can be used to assess the ability of encryption algorithms against DPA [34]. NPCR and UACI are calculated as follows:


      N P C R =   ∑  i = 0  M     ∑  j = 0  N   D ( i , j ) × 100 %         U A C I =  1  M × N     ∑  i = 0  M      ∑  j = 0  N        c 1   ( i , j )  −  c 2   ( i , j )    255  × 100 %        



(18)




where   c 1   and   c 2   are two cipher images corresponding to two natural images differing by a single pixel and   D  ( i , j )  =      0 ,  i f   c 1   ( i , j )  =  c 2   ( i , j )        1 ,  i f   c 1   ( i , j )  ≠  c 2   ( i , j )        . The vertical and horizontal dimensions of the images are denoted as M and N, respectively. As shown in Table 3, our system exhibits strong robustness against differential attacks.




6.2. Exhaustive Attack Analysis


6.2.1. Security Key Space


According to [35], the key space of an encryption algorithm should not be less than   2 100   to protect against brute-force attacks. Our encryption framework incorporates an ensemble of secret keys, denoted as    x 0  ∈  ( − 10 , 10 )  ,  y 0  ∈  ( − 10 , 10 )  ,  z 0  ∈  ( − 10 , 10 )  ,  w 0  ∈  ( − 10 , 10 )   ,   r = 100  , and    N 0  ∈  ( 200 , 2000 )   . It is assumed that the computational precision of the system is   10 15   and the key space can be described as   k e y s p a c e =   ( 20 ×  10 15  )  4  × 1800 ≈  2 227  ≫  2 100   . This provides evidence for the inherent strength of our encryption algorithm to withstand brute-force attacks.




6.2.2. Secret Key Sensitivity


A strong cryptosystem should have high sensitivity to the key. From Figure 12, a slight change in the key will make the decrypted image distort completely. Furthermore, the NPCR and UACI test results are displayed in Table 4. This demonstrates that the proposed algorithm is highly dependent on the key.





6.3. Statistical Attack Analysis


6.3.1. Correlation Coefficient Test


In natural images, neighboring pixels consistently display a notable correlation. To counteract statistical attacks, the correlation among neighboring pixels is expected to be disrupted after encryption. The correlation coefficient of a gray image is described by Equation (19):


      E  ( x )  =  1 N    ∑  i = 0  N    x i  , E  ( y )  =  1 N    ∑  i = 0  N    y i        D  ( x )  =  1 N    ∑  i = 0  N     (  x i  − E  ( x )  )  2  , D  ( y )  =  1 N    ∑  i = 0  N     (  y i  − E  ( y )  )  2        c o v  ( x , y )  =  1 N    ∑  i = 0  N    (  x i  − E  ( x )  )   (  y i  − E  ( y )  )         r  x y   =   cov ( x , y )     D ( x )   ×   D ( y )          



(19)




where two variables, x and y, denote adjacent pixel values derived from four orientations.



We chose 5000 pixel pairs from both the original and encrypted Lena images in four directions to calculate the correlation coefficient, and the results are outlined in Table 5. In addition, the corresponding correlation distributions of these images are graphically presented in Figure 13. It can be observed that our encryption algorithm possesses excellent performance in eliminating the inherent correlations of neighbor pixels in natural images.




6.3.2. Histogram Analysis


To resist statistical attacks, histogram of the encrypted image should be flat. Figure 14 displays the histograms of both the original and encrypted images, illustrating that all pixel values appear almost equally frequently. Therefore, it is impossible for attackers to acquire relevant statistics that could enable the inference of original image information.



Furthermore, the flatness of the histogram can be tested through the   χ 2   test, which can be calculated by Equation (20):


      χ 2  =   ∑  i = 0  255      (  f i  − f )  2  f      



(20)




where i denotes the gray level and   f i   represents the frequency of the gray level i within the image. When the significance level   α = 0.05   and the outcome of the   χ 2   test falls below   293.24783  , the test passes. Table 6 implies that all cipher images achieve a satisfactory level of histogram flatness.




6.3.3. Information Entropy Analysis


Information entropy   H ( m )   is often used to quantify the uncertainty of information. The theoretical value of the 256-level information source is 8. The formula of information entropy   H ( m )   is given by Equation (21):


  H  ( m )  = −   ∑  i = 1  n    p (   x i   )   log 2  p  (  x i  )   



(21)




where   x i   represents the value of each level. It can be observed from Table 7 that the   H ( m )   of the cipher image is close to 8, proving that the images encrypted by our algorithm exhibit a high level of randomness.





6.4. Encrypted Time Analysis


When a cryptosystem is utilized on a resource-limited platform or scenario that requires real-time encryption, low time complexity is crucial. Assuming that the size of the original image is   M × N  , the time complexity of the first diffusion operation and row–column permutation stage are both   O ( M N )  . The time complexity of the Banyan network diffusion stage is   O ( 9 M N )  . Therefore, the time complexity of the whole algorithm is   O ( 11 M N )  . Furthermore, encrypted time analysis is given in this subsection. The overall encryption time comprises several components: iteration of the chaotic sequence, the first diffusion, row–column permutation, and Banyan network diffusion. Table 8 displays the results of the comparable encryption time analysis with other similar algorithms [10,12,23,27,28], indicating that our cryptosystem is highly efficient in encryption and has the potential for real-time encryption.




6.5. Chosen-Plaintext Attack Analysis


Attackers often employ the chosen/known-plaintext attacks to deduce the secret keys or reveal the underlying correlation between plaintexts and ciphertexts. For instance, attackers may deliberately select or generate a specific plaintext, such as an all-black or an all-white image, to obtain the corresponding ciphertext. As illustrated in Figure 15, the encrypted image exhibits noise-like characteristics, preventing attackers from deriving any meaningful information from it.




6.6. PSNR Analysis


The peak signal-to-noise ratio is a metric used to assess image quality and can be used to judge the dissimilarities between the ciphertext image and the plaintext image. Its formulation is delineated in Equation (22).


      M S E =  1  H × W     ∑  i = 1  H     ∑  j = 1  W     (  c 1   ( i , j )  −  c 2   ( i , j )  )  2        P S N R = 10 lg (   255 × 255   M S E   )      



(22)




where H and W are the dimensions of images   c 1   and   c 2  . A lower PSNR value between the original image and the encrypted image means a higher level of randomness of the cipher image. As shown in Table 9, our algorithm has a high quality of encryption.




6.7. Noise Attack and Cropping Attack Analysis


When transmitting encrypted data over public channels, they may suffer from noise effect or data loss. From Figure 16 and Figure 17 and Table 10, our algorithm has a strong robustness against the noise attack and the cropping attack, which means that the main information of the original image can be recovered when the cipher image suffers from the noise effect or data loss.





7. Conclusions


This paper introduces a novel 1-D chaotic system 1-DSCM, and several tests, such as 0-1 test and NIST test, were performed to prove its better performance in chaotic behavior and parameters’ structure than the sin map. In addition, a new image encryption algorithm was conducted using 1-DSCM, SHA-256 hash function, and Banyan network. Taking advantage of the 1-DSCM, which can generate pseudorandom sequences quickly, and the Banyan network, which can offer parallel operation and nonlinearity, the proposed encryption algorithm processes high security and efficiency. Complete experiments show that our system has excellent performance in security and encryption speed, and it is more suitable for the scenarios requiring real-time encryption or with limited resources. In the future, we will implement the proposed encryption algorithm on an FPGA to verify the effectiveness of the network’s parallel operation in image encryption and the feasibility of the encryption system in video encryption.
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Figure 1. The Banyan network. (a) The   N = 8   Banyan network. (b) The diffusion example in   N = 8   Banyan network. 
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Figure 2. The exchange unit. 
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Figure 3. The bifurcation diagram of 1-DSCM, 1-DFCS, and 1-DCP. (a) The bifurcation diagram of 1-DSCM with   r ∈ ( 0 , 10 )  . (b) The bifurcation diagram of sin map with   r ∈ ( 0 , 10 )  . (c) The bifurcation diagram of 1-DFCS with   r ∈ ( 0 , 10 )  . (d) The bifurcation diagram of 1-DCP with   r ∈ ( 0 , 10 )  . 
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Figure 4. The Lyapunov exponent of 1-DSCM, 1-DFCS, 1-DCP, and sin map with   r ∈ ( 0 , 10 )  . 
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Figure 5. (a) The sensitivity of the initial value. (b) The sensitivity of the control parameter. 
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Figure 6. The sample entropy of 1-DSCM, 1-DFCS, and 1-DCP with   r ∈ ( 0 , 10 )  . 
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Figure 7. The 0-1 test of 1-DSCM, 1-DFCS, and 1-DCP. (a) The 0-1 test of 1-DSCM with   r ∈ ( 0 , 10 )  . (b) The 0-1 test of 1-DSCM, 1-DCP, and 1-DFCS with   r ∈ ( 0 , 50 )  . 
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Figure 8. The Banyan network-DNA mapping. 
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Figure 9. The flow chart of our algorithm. 
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Figure 10. Example of Banyan network diffusion operation. 
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Figure 11. The original and cipher images. (a) Lena gray image. (b) Encrypted image of gray Lena. (c) Lena color image. (d) Encrypted image of color Lena. (e) Baboon gray image. (f) Encrypted image of gray baboon. (g) Baboon color image. (h) Encrypted image of color baboon. (i) Sailboat gray image. (j) Encrypted image of gray sailboat. (k) Sailboat color image. (l) Encrypted image of color sailboat. 
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Figure 12. The original, encrypted, and decrypted images. (a) The plain image. (b) The encrypted image. (c) The decrypted image with correct key. (d) The decrypted image with    x 0  +  10  − 15    . 
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Figure 13. The correlation coefficient of Lena. (a) Vertical correlation. (b) Horizontal correlation. (c) Diagonal correlation. (d) Antidiagonal correlation. (e) Vertical correlation of encrypted image. (f) Horizontal correlation of encrypted image. (g) Diagonal correlation of encrypted image. (h) Antidiagonal correlation of encrypted image. 
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Figure 14. The histogram analysis. (a) The natural image. (b) Histogram of the natural image. (c) The cipher image. (d) Histogram of the cipher image. 
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Figure 15. Chosen-plaintext attack analysis. (a) All-black image. (b) Histogram of all-black image. (c) The cipher image. (d) Histogram of cipher image. 
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Figure 16. The Salt and pepper noise attack of Lena. (a) 0.1 Salt and pepper. (b) 0.2 Salt and pepper. (c) 0.3 Salt and pepper. (d) Decryption image of (a). (e) Decryption image of (b). (f) Decryption image of (c). (g) 0.4 Salt and pepper. (h) 0.5 Salt and pepper. (i) 0.6 Salt and pepper. (j) Decryption image of (g). (k) Decryption image of (h). (l) Decryption image of (i). 
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Figure 17. The cropping attack of Lena. (a) Cropping attack (  10 %  ). (b) Cropping attack (  20 %  ). (c) Cropping attack (  30 %  ). (d) Decryption image of (a). (e) Decryption image of (b). (f) Decryption image of (c). (g) Cropping attack (  25 %  ). (h) Cropping attack (≈  20 %  ). (i) Cropping attack (≈  50 %  ). (j) Decryption image of (g). (k) Decryption image of (h). (l) Decryption image of (i). 






Figure 17. The cropping attack of Lena. (a) Cropping attack (  10 %  ). (b) Cropping attack (  20 %  ). (c) Cropping attack (  30 %  ). (d) Decryption image of (a). (e) Decryption image of (b). (f) Decryption image of (c). (g) Cropping attack (  25 %  ). (h) Cropping attack (≈  20 %  ). (i) Cropping attack (≈  50 %  ). (j) Decryption image of (g). (k) Decryption image of (h). (l) Decryption image of (i).



[image: Mathematics 11 04411 g017]







 





Table 1. NIST test results of 1-DSCM.
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	Test Index
	p-Value
	Result





	Frequency
	0.574903
	PASS



	BlockFrequency
	0.114550
	PASS



	CumulativeSums
	0.455937
	PASS



	Runs
	0.275709
	PASS



	LongestRun
	0.494392
	PASS



	Rank
	0.739918
	PASS



	FFT
	0.390936
	PASS



	NonOverlappingTemplate
	0.719747
	PASS



	OverlappingTemplate
	0.494392
	PASS



	Universal
	0.867692
	PASS



	ApproximateEntropy
	0.657933
	PASS



	RandomExcursions
	0.634308
	PASS



	RandomExcursionsVariant
	0.514124
	PASS



	Serial
	0.262249
	PASS



	LinearComplexity
	0.595549
	PASS










 





Table 2. Banyan network-DNA mapping rules.
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	E1
	A
	T
	C
	G





	A
	11
	01
	10
	00



	T
	01
	11
	00
	10



	C
	10
	00
	11
	01



	G
	00
	10
	01
	11










 





Table 3. NPCR and UACI analysis for plaintext sensitivity of different algorithms.
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	Algorithm
	Image
	NPCR
	UACI
	Result





	
	Size   256 × 256  
	    N  0.05  *  ≥ 99.5693   
	    U  0.05   * −   ≥ 33.2824   
	



	Ours
	Lena256
	100
	34.5079
	PASS



	
	Baboon256
	100
	33.4653
	PASS



	
	Airfield256
	100
	34.2185
	PASS



	Ref. [10]
	Cameraman256
	99.6414
	33.5156
	PASS



	
	Pepper256
	99.5926
	33.4412
	PASS



	
	fabio256
	99.6158
	33.3941
	PASS



	Ref. [12]
	Lena256
	99.6170
	33.4828
	PASS



	Ref. [23]
	Lena256
	99.6063
	33.2830
	PASS



	
	Baboon256
	99.5865
	33.3835
	PASS



	
	Camera256
	99.5987
	33.4316
	PASS



	Ref. [27]
	Lena256
	99.6166
	33.4476
	PASS



	Ref. [28]
	Lena256
	99.0017
	32.1443
	FAIL



	
	Size   512 × 512  
	    N  0.05  *  ≥ 99.5893   
	    U  0.05   * −   ≥ 33.3730   
	



	Ours
	Lena
	100
	33.6941
	PASS



	
	Baboon
	100
	33.8055
	PASS



	
	Airfield
	100
	34.7584
	PASS



	
	Black
	100
	33.9145
	PASS



	Ref. [10]
	Lena
	99.5922
	33.4408
	FAIL



	
	Boat
	99.6117
	33.5061
	PASS



	
	Baboon
	99.6002
	33.4628
	PASS



	Ref. [12]
	Lena
	99.6170
	33.4828
	PASS



	Ref. [23]
	Lena
	99.6178
	33.4412
	PASS



	
	Baboon
	99.6004
	33.4522
	PASS



	
	Peppers
	99.6197
	33.4957
	PASS



	Ref. [27]
	Lena
	99.6099
	33.4511
	PASS



	Ref. [28]
	Lena
	99.0631
	33.4859
	FAIL










 





Table 4. Key sensitivity analysis.
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	Key
	    x 0    
	    y 0    
	    z 0    
	    w 0    
	    N 0    





	NPCR
	99.6085
	99.6047
	99.6151
	99.6170
	99.6155



	UACI
	33.4735
	33.4683
	33.5749
	33.4580
	33.4684










 





Table 5. Correlation analysis of original images and encrypted images.
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Algorithm

	
Image

	
Horizontal

	
Vertical

	
Diagonal






	

	

	
Original

	
Ciphered

	
Original

	
Ciphered

	
Original

	
Ciphered




	
Ours

	
Lena

	
0.9851

	
0.0010

	
0.9722

	
−0.0053

	
0.9622

	
0.0069




	

	
Baboon

	
0.7398

	
−0.0060

	
0.8764

	
−0.0062

	
0.7185

	
0.0068




	

	
Airfield

	
0.9423

	
−0.0029

	
0.9014

	
−0.0028

	
0.9103

	
−0.0077




	
Ref. [10]

	
Lena

	
0.9851

	
0.0020

	
0.9722

	
0.0003

	
0.9622

	
0.0005




	

	
Baboon

	
0.7398

	
0.0024

	
0.8764

	
−0.0005

	
0.7185

	
−0.0039




	

	
Boat

	
0.9383

	
7.0253 × 10    − 4   

	
0.9713

	
−7.5260 × 10    − 4   

	
0.9223

	
−0.0016




	
Ref. [12]

	
He