A Customized ADMM Approach for Large-Scale Nonconvex Semidefinite Programming
Abstract
:1. Introduction
2. Applications
2.1. Combinatorial Problems
2.1.1. Related Works on MAX-CUT
2.1.2. Specialization to Community Detection
2.2. Nonnegative Factorization
2.2.1. Optimization over Spectrahedron
2.2.2. Factorization with Partial Observations
2.2.3. Projective Nonnegative Matrix Factorization
3. Related Work
3.1. Convex Relaxations
3.2. Low-Rank Convex Cases
3.3. Nonconvex Cases
3.4. Global Optimality of a Nonconvex Problem with Linear Objective
3.5. Nonconvex Constraint
3.6. ADMM for Nonconvex Problems
4. Linearized ADMM on Full SDP
4.1. Duality
4.2. Linearized ADMM
Algorithm 1 ADMM for solving (11) |
|
4.2.1. Minimizing over Y
4.2.2. Minimizing over X and Z
4.3. Convergence Analysis
5. ADMM on Simplified Nonconvex SDP
5.1. ADMM
5.2. Convergence Analysis
Algorithm 2 ADMM for solving (23) |
|
6. Numerical Experiments
6.1. Solving the Baseline (SDR)
6.2. Rounding
6.3. Computer Information
6.4. MAX-CUT
6.5. Image Segmentation
6.6. Symmetric Factorization with Partial Observations
7. Conclusions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A. Derivation of X, Z Update
Implicit Inverse of H
Appendix B. Convergence Analysis for Matrix Form
- , , and .
- ,
- ,
- , and
- Update Y. For the update of Y in (17), taking , we have:
- Update X, Z. Similarly, the update of in (17), denoting , we have:
- Update S, U, and . For the update of the dual variables and the penalty coefficient, with , we have:
Appendix C. Convergence Analysis for Vector Form
- if is -strongly convex (where if g is convex but not strongly convex) then , and
- if is nonconvex but -smooth, then .
Appendix C.1. Linear Rate of Convergence when g Is Strongly Convex
References
- Bandeira, A.S.; Boumal, N.; Voroninski, V. On the low-rank approach for semidefinite programs arising in synchronization and community detection. In Proceedings of the Conference on Learning Theory, New York, NY, USA, 23–26 June 2016; pp. 361–382. [Google Scholar]
- Fortunato, S.; Hric, D. Community detection in networks: A user guide. Phys. Rep. 2016, 659, 1–44. [Google Scholar] [CrossRef]
- Javanmard, A.; Montanari, A.; Ricci-Tersenghi, F. Phase transitions in semidefinite relaxations. Proc. Natl. Acad. Sci. USA 2016, 113, E2218–E2223. [Google Scholar] [CrossRef] [PubMed]
- Gillis, N. Nonnegative Matrix Factorization: Complexity, Algorithms and Applications. Doctoral Dissertation, Université Catholique de Louvain (CORE), Louvain-La-Neuve, France, 2011. [Google Scholar]
- Ding, C.; He, X.; Simon, H.D. On the equivalence of nonnegative matrix factorization and spectral clustering. In Proceedings of the 2005 SIAM International Conference on Data Mining (SIAM), New Orleans, LA, USA, 11–15 July 2005; pp. 606–610. [Google Scholar]
- Da Costa, A.P.; Seeger, A. Cone-constrained eigenvalue problems: Theory and algorithms. Comput. Optim. Appl. 2010, 45, 25–57. [Google Scholar] [CrossRef]
- Gander, W.; Golub, G.H.; von Matt, U. A constrained eigenvalue problem. In Numerical Linear Algebra, Digital Signal Processing and Parallel Algorithms; Springer: Berlin/Heidelberg, Germany, 1991; pp. 677–686. [Google Scholar]
- Júdice, J.J.; Sherali, H.D.; Ribeiro, I.M. The eigenvalue complementarity problem. Comput. Optim. Appl. 2007, 37, 139–156. [Google Scholar] [CrossRef]
- Goemans, M.X.; Williamson, D.P. Improved approximation algorithms for maximum cut and satisfiability problems using semidefinite programming. J. ACM 1995, 42, 1115–1145. [Google Scholar] [CrossRef]
- Helmberg, C.; Rendl, F. A spectral bundle method for semidefinite programming. SIAM J. Optim. 2000, 10, 673–696. [Google Scholar] [CrossRef]
- Fujie, T.; Kojima, M. Semidefinite programming relaxation for nonconvex quadratic programs. J. Glob. Optim. 1997, 10, 367–380. [Google Scholar] [CrossRef]
- Burer, S.; Monteiro, R.D. A nonlinear programming algorithm for solving semidefinite programs via low-rank factorization. Math. Program. 2003, 95, 329–357. [Google Scholar] [CrossRef]
- Boumal, N.; Voroninski, V.; Bandeira, A. The non-convex Burer-Monteiro approach works on smooth semidefinite programs. In Proceedings of the 30th Annual Conference on Neural Information Processing Systems (NIPS 2016), Barcelona, Spain, 5–10 December 2016; pp. 2757–2765. [Google Scholar]
- Lee, D.D.; Seung, H.S. Algorithms for non-negative matrix factorization. In Proceedings of the Advances in Neural Information Processing Systems Conference, Denver, CO, USA, 4 October 2001; pp. 556–562. [Google Scholar]
- Wolkowicz, H.; Saigal, R.; Vandenberghe, L. Handbook of Semidefinite Programming: Theory, Algorithms, and Applications; Springer Science & Business Media: New York, NY, USA, 2012; Volume 27. [Google Scholar]
- Laurent, M. Sums of squares, moment matrices and optimization over polynomials. In Emerging Applications of Algebraic Geometry; Springer: Berlin/Heidelberg, Germany, 2009; pp. 157–270. [Google Scholar]
- Rendl, F. Semidefinite relaxations for partitioning, assignment and ordering problems. 4OR 2012, 10, 321–346. [Google Scholar] [CrossRef]
- Blekherman, G.; Parrilo, P.A.; Thomas, R.R. Semidefinite optimization and convex algebraic geometry. In Proceedings of the 2012 Annual Meeting of the Society for Industrial and Applied Mathematics (SIAM), Minneapolis, MN, USA, 9–13 July 2012. [Google Scholar]
- Anjos, M.F.; Lasserre, J.B. Introduction to semidefinite, conic and polynomial optimization. In Handbook on Semidefinite, Conic and Polynomial Optimization; Springer: Berlin/Heidelberg, Germany, 2012; pp. 1–22. [Google Scholar]
- Abbe, E.; Bandeira, A.S.; Hall, G. Exact recovery in the stochastic block model. IEEE Trans. Inf. Theory 2016, 62, 471–487. [Google Scholar] [CrossRef]
- Shi, J.; Malik, J. Normalized cuts and image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 2000, 22, 888–905. [Google Scholar]
- Karisch, S.E.; Rendl, F. Semidefinite programming and graph equipartition. Top. Semidefin. Inter. Point Methods 1998, 18, 77–95. [Google Scholar]
- Karger, D.; Motwani, R.; Sudan, M. Approximate graph coloring by semidefinite programming. J. ACM 1998, 45, 246–265. [Google Scholar] [CrossRef]
- Barahona, F.; Grötschel, M.; Jünger, M.; Reinelt, G. An application of combinatorial optimization to statistical physics and circuit layout design. Oper. Res. 1988, 36, 493–513. [Google Scholar] [CrossRef]
- De Simone, C.; Diehl, M.; Jünger, M.; Mutzel, P.; Reinelt, G.; Rinaldi, G. Exact ground states of Ising spin glasses: New experimental results with a branch-and-cut algorithm. J. Stat. Phys. 1995, 80, 487–496. [Google Scholar] [CrossRef]
- Poljak, S.; Tuza, Z. The expected relative error of the polyhedral approximation of the MAX-CUT problem. Oper. Res. Lett. 1994, 16, 191–198. [Google Scholar] [CrossRef]
- Helmberg, C.; Rendl, F. Solving quadratic (0,1)-problems by semidefinite programs and cutting planes. Math. Program. 1998, 82, 291–315. [Google Scholar] [CrossRef]
- Rendl, F.; Rinaldi, G.; Wiegele, A. A branch and bound algorithm for MAX-CUT based on combining semidefinite and polyhedral relaxations. In Proceedings of the 12th International IPCO Conference, Ithaca, NY, USA, 25–27 June 2007; Volume 4513, pp. 295–309. [Google Scholar]
- Burer, S.; Vandenbussche, D. A finite branch-and-bound algorithm for nonconvex quadratic programming via semidefinite relaxations. Math. Program. 2008, 113, 259–282. [Google Scholar] [CrossRef]
- Bao, X.; Sahinidis, N.V.; Tawarmalani, M. Semidefinite relaxations for quadratically constrained quadratic programming: A review and comparisons. Math. Program. 2011, 129, 129–157. [Google Scholar] [CrossRef]
- Krislock, N.; Malick, J.; Roupin, F. Improved semidefinite branch-and-bound algorithm for k-cluster. HAL Open Sci. Prepr. 2012, hal-00717212. Available online: https://inria.hal.science/file/index/docid/717823/filename/krislock-malick-roupin-2012a.pdf (accessed on 22 September 2023).
- Poljak, S.; Rendl, F.; Wolkowicz, H. A recipe for semidefinite relaxation for (0, 1)-quadratic programming. J. Glob. Optim. 1995, 7, 51–73. [Google Scholar] [CrossRef]
- Helmberg, C. Semidefinite Programming for Combinatorial Optimization; Konrad-Zuse-Zentrum für Informationstechnik: Berlin, Germany, 2000. [Google Scholar]
- Papadopoulos, S.; Kompatsiaris, Y.; Vakali, A.; Spyridonos, P. Community detection in social media. Data Min. Knowl. Discov. 2012, 24, 515–554. [Google Scholar] [CrossRef]
- Girvan, M.; Newman, M.E. Community structure in social and biological networks. Proc. Natl. Acad. Sci. USA 2002, 99, 7821–7826. [Google Scholar] [CrossRef]
- Keeling, M. The implications of network structure for epidemic dynamics. Theor. Popul. Biol. 2005, 67, 1–8. [Google Scholar] [CrossRef]
- Holland, P.W.; Laskey, K.B.; Leinhardt, S. Stochastic blockmodels: First steps. Soc. Netw. 1983, 5, 109–137. [Google Scholar] [CrossRef]
- Queiroz, M.; Judice, J.; Humes, C., Jr. The symmetric eigenvalue complementarity problem. Math. Comput. 2004, 73, 1849–1863. [Google Scholar] [CrossRef]
- Deshpande, Y.; Montanari, A.; Richard, E. Cone-constrained principal component analysis. In Proceedings of the 28th Conference on Neural Information Processing Systems, Montreal, QC, Canada, 8–13 December 2014; pp. 2717–2725. [Google Scholar]
- Zass, R.; Shashua, A. Nonnegative sparse PCA. In Proceedings of the 20th Annual Conference on Neural Information Processing Systems, Vancouver, BC, Canada, 8–9 December 2007; pp. 1561–1568. [Google Scholar]
- Lee, D.D.; Seung, H.S. Learning the parts of objects by non-negative matrix factorization. Nature 1999, 401, 788. [Google Scholar] [CrossRef] [PubMed]
- Yuan, Z.; Oja, E. Projective nonnegative matrix factorization for image compression and feature extraction. In Proceedings of the Scandinavian Conference on Image Analysis, Joensuu, Finland, 19–22 June 2005; pp. 333–342. [Google Scholar]
- Friedlander, M.P.; Macedo, I. Low-rank spectral optimization via gauge duality. SIAM J. Sci. Comput. 2016, 38, A1616–A1638. [Google Scholar] [CrossRef]
- Jaggi, M.; Sulovsk, M. A simple algorithm for nuclear norm regularized problems. In Proceedings of the 27th International Conference on Machine Learning (ICML-10), Haifa, Israel, 21–24 June 2010; pp. 471–478. [Google Scholar]
- Candès, E.J.; Recht, B. Exact matrix completion via convex optimization. Found. Comput. Math. 2009, 9, 717. [Google Scholar] [CrossRef]
- Recht, B.; Fazel, M.; Parrilo, P.A. Guaranteed minimum-rank solutions of linear matrix equations via nuclear norm minimization. SIAM Rev. 2010, 52, 471–501. [Google Scholar] [CrossRef]
- Udell, M.; Horn, C.; Zadeh, R.; Boyd, S. Generalized low rank models. Found. Trends® Mach. Learn. 2016, 9, 1–118. [Google Scholar] [CrossRef]
- Burer, S.; Monteiro, R.D. Local minima and convergence in low-rank semidefinite programming. Math. Program. 2005, 103, 427–444. [Google Scholar] [CrossRef]
- Pataki, G. On the rank of extreme matrices in semidefinite programs and the multiplicity of optimal eigenvalues. Math. Oper. Res. 1998, 23, 339–358. [Google Scholar] [CrossRef]
- Barvinok, A.I. Problems of distance geometry and convex properties of quadratic maps. Discret. Comput. Geom. 1995, 13, 189–202. [Google Scholar] [CrossRef]
- Candes, E.J.; Eldar, Y.C.; Strohmer, T.; Voroninski, V. Phase retrieval via matrix completion. SIAM Rev. 2015, 57, 225–251. [Google Scholar] [CrossRef]
- Boyd, S.; Parikh, N.; Chu, E.; Peleato, B.; Eckstein, J. Distributed optimization and statistical learning via the alternating direction method of multipliers. Found. Trends® Mach. Learn. 2011, 3, 1–122. [Google Scholar]
- Glowinski, R.; Marroco, A. Sur l’approximation, par éléments finis d’ordre un, et la résolution, par pénalisation-dualité d’une classe de problèmes de Dirichlet non linéaires. Rev. Fr. Autom. Inform. Rech. Oper. Anal. Numer. 1975, 9, 41–76. [Google Scholar] [CrossRef]
- Gabay, D.; Mercier, B. A Dual Algorithm for the Solution of Non Linear Variational Problems via Finite Element Approximation; Institut de Recherche d’Informatique et d’Automatique: Rocquencourt, France, 1975. [Google Scholar]
- Eckstein, J.; Yao, W. Understanding the convergence of the alternating direction method of multipliers: Theoretical and computational perspectives. Pac. J. Optim. 2015, 11, 619–644. [Google Scholar]
- Sun, R.; Luo, Z.Q.; Ye, Y. On the expected convergence of randomly permuted ADMM. arXiv 2015, arXiv:1503.06387. [Google Scholar]
- Yin, W. Three-Operator Splitting and its Optimization Applications. Set-Valued Var. Anal. 2017, 25, 829–858. [Google Scholar]
- Goldstein, T.; O’Donoghue, B.; Setzer, S.; Baraniuk, R. Fast alternating direction optimization methods. SIAM J. Imaging Sci. 2014, 7, 1588–1623. [Google Scholar] [CrossRef]
- Hong, M.; Luo, Z.Q.; Razaviyayn, M. Convergence analysis of alternating direction method of multipliers for a family of nonconvex problems. SIAM J. Optim. 2016, 26, 337–364. [Google Scholar] [CrossRef]
- Wang, Y.; Yin, W.; Zeng, J. Global convergence of ADMM in nonconvex nonsmooth optimization. arXiv 2015, arXiv:1511.06324. [Google Scholar] [CrossRef]
- Li, G.; Pong, T.K. Global convergence of splitting methods for nonconvex composite optimization. SIAM J. Optim. 2015, 25, 2434–2460. [Google Scholar] [CrossRef]
- Magnússon, S.; Weeraddana, P.C.; Rabbat, M.G.; Fischione, C. On the convergence of alternating direction Lagrangian methods for nonconvex structured optimization problems. IEEE Trans. Control. Netw. Syst. 2016, 3, 296–309. [Google Scholar] [CrossRef]
- Liu, Q.; Shen, X.; Gu, Y. Linearized admm for non-convex non-smooth optimization with convergence analysis. arXiv 2017, arXiv:1705.02502. [Google Scholar]
- Lu, S.; Hong, M.; Wang, Z. A nonconvex splitting method for symmetric nonnegative matrix factorization: Convergence analysis and optimality. In Proceedings of the 2017 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), New Orleans, LA, USA, 5–9 March 2017. [Google Scholar]
- Xu, Y.; Yin, W.; Wen, Z.; Zhang, Y. An alternating direction algorithm for matrix completion with nonnegative factors. Front. Math. China 2012, 7, 365–384. [Google Scholar] [CrossRef]
- Jiang, B.; Ma, S.; Zhang, S. Alternating direction method of multipliers for real and complex polynomial optimization models. Optimization 2014, 63, 883–898. [Google Scholar] [CrossRef]
- Huang, K.; Sidiropoulos, N.D. Consensus-ADMM for general quadratically constrained quadratic programming. IEEE Trans. Signal Process. 2016, 64, 5297–5310. [Google Scholar] [CrossRef]
- Shen, Y.; Wen, Z.; Zhang, Y. Augmented Lagrangian alternating direction method for matrix separation based on low-rank factorization. Optim. Methods Softw. 2014, 29, 239–263. [Google Scholar] [CrossRef]
- Rockafellar, R.T. Augmented Lagrange multiplier functions and duality in nonconvex programming. SIAM J. Control 1974, 12, 268–285. [Google Scholar] [CrossRef]
- Clarke, F.H. Optimization and Nonsmooth Analysis; SIAM: Philadelphia, PA, USA, 1990; Volume 5. [Google Scholar]
- Lions, P.L.; Mercier, B. Splitting algorithms for the sum of two nonlinear operators. SIAM J. Numer. Anal. 1979, 16, 964–979. [Google Scholar] [CrossRef]
- Douglas, J.; Rachford, H.H. On the numerical solution of heat conduction problems in two and three space variables. Trans. Am. Math. Soc. 1956, 82, 421–439. [Google Scholar] [CrossRef]
- Spingarn, J.E. Applications of the method of partial inverses to convex programming: Decomposition. Math. Program. 1985, 32, 199–223. [Google Scholar] [CrossRef]
- Eckstein, J.; Bertsekas, D.P. On the Douglas Rachford splitting method and the proximal point algorithm for maximal monotone operators. Math. Program. 1992, 55, 293–318. [Google Scholar] [CrossRef]
- Combettes, P.L.; Pesquet, J.C. A proximal decomposition method for solving convex variational inverse problems. Inverse Probl. 2008, 24, 065014. [Google Scholar] [CrossRef]
Database | n | Sparsity | BK | V | MR1 | MRR | SDR |
---|---|---|---|---|---|---|---|
g3-8 | 512 | 0.012 | 41,684,814 | 34,105,231 | 36,780,180 | 35,943,350 | 33424095 |
g3-15 | 3375 | 0.018 | 281,029,888 | 235,893,612 | 255,681,256 | 241,740,931 | 212,669,181 |
pm3-8-50 | 512 | 0.012 | 454 | 394 | 346 | 378 | 416 |
pm3-15-50 | 3375 | 0.018 | 2964 | 2594 | 1966 | 2140 | 2616 |
G1 | 800 | 0.0599 | 11,624 | 10,938 | 11,047 | 11,321 | 11,360 |
G2 | 800 | 0.0599 | 11,620 | 10,834 | 11,082 | 11,144 | 11,343 |
G3 | 800 | 0.0599 | 11,622 | 10,858 | 10,894 | 11,174 | 11,367 |
G4 | 800 | 0.0599 | 11,646 | 10,849 | 10,760 | 11,192 | 11,429 |
G5 | 800 | 0.0599 | 11,631 | 10,796 | 10,783 | 11,352 | 11,394 |
G6 | 800 | 0.0599 | 2178 | 1853 | 1820 | 1949 | 1941 |
G7 | 800 | 0.0599 | 2003 | 1694 | 1644 | 1705 | 1774 |
G8 | 800 | 0.0599 | 2003 | 1688 | 1641 | 1728 | 1766 |
G9 | 800 | 0.0599 | 2048 | 1771 | 1681 | 1807 | 1830 |
G10 | 800 | 0.0599 | 1994 | 1662 | 1641 | 1737 | 1732 |
G11 | 800 | 0.005 | 564 | 496 | 460 | 480 | 506 |
G12 | 800 | 0.005 | 556 | 486 | 448 | 480 | 512 |
G13 | 800 | 0.005 | 580 | 516 | 476 | 498 | 528 |
G14 | 800 | 0.0147 | 3060 | 2715 | 2768 | 2861 | 2901 |
G15 | 800 | 0.0146 | 3049 | 2625 | 2810 | 2803 | 2884 |
G16 | 800 | 0.0146 | 3045 | 2667 | 2736 | 2862 | 2910 |
G17 | 800 | 0.0146 | 3043 | 2638 | 2789 | 2840 | 2920 |
G18 | 800 | 0.0147 | 988 | 798 | 768 | 841 | 858 |
G19 | 800 | 0.0146 | 903 | 700 | 641 | 694 | 780 |
G20 | 800 | 0.0146 | 941 | 723 | 691 | 766 | 788 |
G21 | 800 | 0.0146 | 931 | 696 | 713 | 810 | 794 |
G22 | 2000 | 0.01 | 13,346 | 12,461 | 12,548 | 12,751 | 12,926 |
G23 | 2000 | 0.01 | 13,317 | 12,540 | 12,528 | 12,853 | 12,889 |
G24 | 2000 | 0.01 | 13,314 | 12,540 | 12,447 | 12,723 | 12,904 |
G25 | 2000 | 0.01 | 13,326 | 12,447 | 12,558 | 12,733 | 12,874 |
G26 | 2000 | 0.01 | 13,314 | 12,445 | 12,475 | 12,718 | 12,847 |
G27 | 2000 | 0.01 | 3318 | 2824 | 2508 | 2807 | 2909 |
G28 | 2000 | 0.01 | 3285 | 2753 | 2518 | 2796 | 2845 |
G29 | 2000 | 0.01 | 3389 | 2864 | 2628 | 2901 | 2896 |
G30 | 2000 | 0.01 | 3403 | 2887 | 2639 | 2937 | 2971 |
G31 | 2000 | 0.01 | 3288 | 2833 | 2518 | 2902 | 2825 |
G32 | 2000 | 0.002 | 1398 | 1220 | 1066 | 1204 | 1254 |
G33 | 2000 | 0.002 | 1376 | 1202 | 1054 | 1166 | 1250 |
G34 | 2000 | 0.002 | 1372 | 1208 | 1096 | 1170 | 1222 |
G35 | 2000 | 0.0059 | 7670 | 6605 | 6914 | 6764 | 7209 |
G36 | 2000 | 0.0059 | 7660 | 6564 | 6943 | 6598 | 7228 |
G37 | 2000 | 0.0059 | 7666 | 6478 | 6839 | 6789 | 7183 |
G38 | 2000 | 0.0059 | 7681 | 6486 | 6759 | 6768 | 7212 |
G39 | 2000 | 0.0059 | 2395 | 1616 | 1697 | 1840 | 1997 |
G40 | 2000 | 0.0059 | 2387 | 1617 | 1438 | 1921 | 1890 |
G41 | 2000 | 0.0059 | 2398 | 1606 | 1656 | 1778 | 1899 |
G42 | 2000 | 0.0059 | 2469 | 1707 | 1756 | 1862 | 1971 |
G43 | 1000 | 0.02 | 6659 | 6222 | 6236 | 6398 | 6475 |
G44 | 1000 | 0.02 | 6648 | 6275 | 6192 | 6447 | 6458 |
G45 | 1000 | 0.02 | 6652 | 6243 | 6255 | 6407 | 6454 |
G46 | 1000 | 0.02 | 6645 | 6217 | 6233 | 6398 | 6407 |
G47 | 1000 | 0.02 | 6656 | 6221 | 6266 | 6433 | 6454 |
G48 | 3000 | 0.0013 | 6000 | 5882 | 5006 | 5402 | 6000 |
G49 | 3000 | 0.0013 | 6000 | 5844 | 5038 | 5362 | 6000 |
G50 | 3000 | 0.0013 | 5880 | 5814 | 4994 | 5410 | 5880 |
G51 | 1000 | 0.0118 | 3846 | 3317 | 3446 | 3524 | 3642 |
G52 | 1000 | 0.0118 | 3849 | 3360 | 3471 | 3499 | 3662 |
G53 | 1000 | 0.0118 | 3846 | 3323 | 3510 | 3516 | 3660 |
G54 | 1000 | 0.0118 | 3846 | 3306 | 3428 | 3509 | 3651 |
n | 1000 | 3000 | 5000 | 8000 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
0.1 | 0.5 | 0.8 | 0.1 | 0.5 | 0.8 | 0.1 | 0.5 | 0.8 | 0.1 | 0.5 | 0.8 | |
CPU time/s | 9.74 | 13.53 | 13.97 | 61.15 | 78.99 | 64.76 | 117.54 | 85.24 | 131.64 | 212.26 | 220.42 | 337.74 |
0.86 | 0.85 | 0.86 | 0.89 | 0.89 | 0.89 | 0.89 | 0.88 | 0.87 | 0.88 | 0.90 | 0.89 | |
STD | 0.043 | 0.020 | 0.021 | 0.010 | 0.006 | 0.008 | 0.008 | 0.012 | 0.018 | 0.004 | 0.008 | 0.008 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, C. A Customized ADMM Approach for Large-Scale Nonconvex Semidefinite Programming. Mathematics 2023, 11, 4413. https://doi.org/10.3390/math11214413
Sun C. A Customized ADMM Approach for Large-Scale Nonconvex Semidefinite Programming. Mathematics. 2023; 11(21):4413. https://doi.org/10.3390/math11214413
Chicago/Turabian StyleSun, Chuangchuang. 2023. "A Customized ADMM Approach for Large-Scale Nonconvex Semidefinite Programming" Mathematics 11, no. 21: 4413. https://doi.org/10.3390/math11214413
APA StyleSun, C. (2023). A Customized ADMM Approach for Large-Scale Nonconvex Semidefinite Programming. Mathematics, 11(21), 4413. https://doi.org/10.3390/math11214413