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Abstract: We investigate a class of challenging general semidefinite programming problems with
extra nonconvex constraints such as matrix rank constraints. This problem has extensive applications,
including combinatorial graph problems, such as MAX-CUT and community detection, reformulated
as quadratic objectives over nonconvex constraints. A customized approach based on the alternating
direction method of multipliers (ADMM) is proposed to solve the general large-scale nonconvex
semidefinite programming efficiently. We propose two reformulations: one using vector variables and
constraints, and the other further reformulating the Burer–Monteiro form. Both formulations admit
simple subproblems and can lead to significant improvement in scalability. Despite the nonconvex
constraint, we prove that the ADMM iterates converge to a stationary point in both formulations,
under mild assumptions. Additionally, recent work suggests that in this matrix form, when the matrix
factors are wide enough, the local optimum with high probability is also the global optimum. To
demonstrate the scalability of our algorithm, we include results for MAX-CUT, community detection,
and image segmentation.

Keywords: semidefinite optimization; symmetric matrix factorization; nonconvex optimization;
large-scale graph problems
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1. Introduction

We consider rank-constrained semidefinite optimization problems (SDPs) of the type:

min
Z,X

f (Z), (1)

s.t. A(Z) = b, Z = XXT , X ∈ C,

where the matrix variable Z ∈ Sn
+ is an n× n symmetric semidefinite matrix, and X ∈ Rn×r

a low-rank symmetric factor. The linear constraints A(Z) = b constrain either the diagonal
or trace of Z, and the set C controls desirable features of the factor—e.g., nonnegativity, inte-
ger, norm-1, etc. (C may be nonconvex.) The objective function f (x) is convex, differentiable
everywhere, with L f -Lipschitz gradient, but the overall problem (1) is nonconvex.

This problem is equivalent to many important nonconvex SDPs, such as the MAX-CUT
problem and its related applications [1–3], rank-constrained nonnegative matrix factoriza-
tion problem [4,5], and constrained eigenvalue problems [6–8]. It is known that exactly
solving (1) globally is in general a very difficult problem, as it includes many NP-hard
problems. Methods for heuristically solving (1) fall in three categories: (i) solving the
convexified SDP, where (1) does not have the rank-r or X ∈ C constraint, using any convex
optimization method [9–11], (ii) approximately solving (1) using an alternating minimiza-
tion method [12,13] and relying on statistical arguments suggesting that the acquired local
optimal = the global optimal [13], or (iii) using other application-specific approaches [2,14].
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The methods investigated in this paper fall in the second category. Specifically, we investi-
gate solving (1) using ADMM and linearized ADMM on two reformulations. We find that
these flexible reformulations allow easy incorporation of low-rank and sparse structures,
making the resulting algorithm extremely scalable in both memory and computation, which
we demonstrate on a number of popular applications.

However, often nonconvex formulations of SDPs are not favored because the conver-
gence behavior of standard algorithms is not well understood. Specifically, an iterative
procedure can do one of four things: diverge, oscillate within a bounded interval, converge
to an arbitrary point, or converge to a useful point. We show that linearized ADMM on
a nonsymmetric reformulation of (1) can either converge to a stationary point or diverge
to ±∞; it cannot oscillate or converge to a non-stationary point. Additionally, for the case
without linear constraints, vanilla ADMM is guaranteed to converge to a stationary point
with a monotonically decreasing augmented Lagrangian term, and at a linear rate if the
objective is strongly convex.

2. Applications

It is well known that many convex optimization problems can be reformulated as
SDPs (e.g., [15]). In nonconvex optimization, SDPs are studied in several key areas, as tight
convex relaxations of otherwise NP-hard problems.

2.1. Combinatorial Problems

A simple reparameterization of the constraint x ∈ Rn, xi ∈ {−1, 1} is as X = xxT ,
diag(X) = 1. This property has been heavily exploited for finding lower bounds in combi-
natorial optimization [9,16,17] and generalized further to polynomial optimization [18,19].
Of high interest is the MAX-CUT problem:

min
x∈Rn

xTCx, s.t. xi ∈ {−1, 1}, i = 1, . . . , n, (2)

where C = (A − diag(A1))/4 and A ∈ Sn is the symmetric adjacency matrix of an
undirected graph. Written in this way, the solution to (1) is exactly the maximum cut of an
undirected graph with nonnegative weights Aij.

This seemingly simple framework appears in many other applications, such as commu-
nity detection [20] and image segmentation [21], and is equivalent to the nonconvex SDP:

min
Z

Tr(CZ), s.t. Zkk = 1, Z � 0, rank(Z) = 1. (3)

Lifting x ∈ Rn to a skinny matrix X ∈ Rn×k generalizes this technique to partitioning [22]
and graph coloring problems [23].

2.1.1. Related Works on MAX-CUT

More generally, combinatorial methods can be solved using branch-and-bound schemes,
using a linear relaxation of (1) as a bound [24,25], where the binary constraint x ∈ {−1, 1}
is relaxed to 0 ≤ (x + 1)/2 ≤ 1. Historically, these “polyhedral methods” were the main
approach to finding exact solutions to the MAX-CUT problem. Though this is an NP(non-
deterministic polynomial-time)-hard problem, if the graph is sparse enough, branch-and-
bound converges quickly even for very large graphs [25]. However, when the graph is
not very sparse, the linear relaxation is loose, and finding efficient branching mechanisms
is challenging, causing the algorithm to run slowly. The MAX-CUT problem can also be
approximated by one pass of the linear relaxation (with bound frelax

fexact
≥ 2× #edges) [26].

A tighter approximation can be found with the semidefinite relaxation, which is
also used for better bounding in branch-and-bound techniques [27–31]. In particular, the
rounding algorithm of [9] returns a feasible x̂ given optimal Z, and is shown in expectation
to satisfy xTCx

x̂TCx̂ ≥ 0.878. For this reason, the semidefinite relaxation for problems of type (1)
is heavily studied (e.g., [11,32,33]).
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2.1.2. Specialization to Community Detection

A small modification of the matrix C generalizes problems of form (2) and (3) to
community detection in machine learning. Here, the problem is to identify node clusters in
undirected graphs that are more likely to be connected with each other than with nodes
outside the cluster. This prediction is useful in many graphical settings, such as interpreting
online communities through social networks or linking behavior [34], interpreting biological
ecosystems [35], finding disease sources in epidemiology [36], and many more. There are
many varieties and methodologies in this field, and it would be impossible to list them all,
though many comprehensive overviews exist (e.g., [2]).

The stochastic binary model [37] is one of the simplest generative models for this
application. Given a graph with n nodes and parameters 0 < q < p < 1, the model
partitions the nodes into two communities and generates an edge between nodes in a
community with probability p and nodes in two different communities with probability q.
Following the analysis in [20], we can define C = p+q

2 11T − A, where A is the graph
adjacency matrix, and the solution to (1) gives a solution to the community detection
problem with sharp recovery guarantees.

2.2. Nonnegative Factorization

For a symmetric matrix C, the maximum eigenvalue/eigenvector pair of C is the
solution to the nonconvex optimization problem:

max
x∈Rn

xTCx, s.t. ‖x‖2 = 1. (4)

By inverting the sign of C, we can transform this into a minimization problem or equiva-
lently acquire the minimum eigenvalue/eigenvector pair. Interestingly, despite the nonconvex
nature of (4), we have many efficient globally optimal methods for finding x, e.g., Lanczos,
Arnoldi, etc. However, adding any additional constraints, such as nonnegativity of x [38],
and simple methods generally do not work without heavy data assumptions [39]. This is of
interest in problems such as phase retrieval, recommender systems with positive-only observa-
tions, clustering and topic models, etc. Here, we discuss three variations of the nonnegative
factorization problem appearing in the literature, all of which are special instances of (1).

2.2.1. Optimization over Spectrahedron

We can frame (4) as a linear objective over the spectrahedron:

min
Z∈Sn

Tr(CZ), s.t. Tr(Z) = 1, Z � 0. (5)

If additionally the maximum eigenvalue of C is isolated (corresponding only to one
leading eigenvector), then Z = xxT and Cx = λmax(C)x. To see this, by definition,

λmax(C) = max
x:‖x‖2=1

xTCx

= max
Z:Z=xxT ,‖x‖2=1

Tr(CZ) (6)

= max
Z:Tr(Z)=1,X�0

Tr(CZ).

As a consequence, note that though (5) is convex, the solution Z∗ will always have
rank 1 when λmax(C) has multiplicity 1. A simple extension of (5) often used in nonnegative
PCA [40] is:

min
Z∈Sn ,x∈Rn

Tr(CZ),

s.t. Tr(Z) = 1, Z � 0, Z = xxT , x ≥ 0,
(7)

which is an instance of (1) with C the nonnegative orthant.
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2.2.2. Factorization with Partial Observations

An equivalent way of formulating the top-k nonnegative-eigenvector problem is as the
nonnegative minimizer X to ‖XXT −C‖2 where X is Rn×k. However, in many applications,
we may not have full view of the matrix C, (e.g., C is a rating matrix). Suppose that an
index set Ω defines the observed entries, e.g., {i, j} ∈ Ω implies that Cij is known. Then,
the nonnegative factorization problem can be written as:

min
Z∈Sn ,x∈Rn ∑

i,j∈Ω
(Zij − Cij)

2, (8)

s.t. Z = xxT , x ≥ 0.

This formulation exists in [41].

2.2.3. Projective Nonnegative Matrix Factorization

A third method toward this goal is to optimize over the low-rank projection matrix
itself [42], a variant of nonnegative matrix factorization, solving:

min
Z∈Sn ,X∈Rn×k

‖B− ZB‖2, (9)

s.t. Z = XXT , X ≥ 0,

Here, the data matrix may not even be symmetric, but 1
Tr(Z)ZB will approximate the

projection of B to its top-k singular vectors.

3. Related Work
3.1. Convex Relaxations

If r = n and C = Sn, then (1) is a convex problem, and can be solved using many
conventional methods with strong convergence guarantees. However, even in this case, if
n is large, traditional semidefinite solvers are computationally limiting. In the most general
case, an interior point method solves at each iteration a KKT system of at least order n6,
and most first-order methods for general SDPs require eigenvalue decompositions, which
are of order O(n3) per iteration.

3.2. Low-Rank Convex Cases

In fact, assuming low-rank solutions often allows for the construction of faster SDP
methods. In [43], it is noted that the rank of the primal PSD matrix variable is equal
to the multiplicity of the matrix variable arising from the gauge dual formulation, and
finding only those r corresponding eigenvectors can recover the primal solution. In [10],
a similar observation is made of the Lagrange dual variable and thus the dual problem
can be solved via a modified bundle method. More generally, the recently popularized
conditional gradient algorithm (also called the Frank–Wolfe algorithm) efficiently solves
norm-constrained problems for nonsymmetric matrices [44], exploiting the fact that the
dual norm minimizer can be computed efficiently; see also [45–47].

3.3. Nonconvex Cases

In close connection with these observations, [12,48] proposed simply reformulating
semidefinite matrix variables Z = XXT , solving the “standard” nonconvex SDP:

min
X∈Rn×r

〈C, XXT〉, s.t. A(XXT) = b, (10)

by sequentially optimizing the Lagrangian. However, solving (1) is still numerically
burdensome; in the augmented Lagrangian term, the objective is quartic in R, and is
usually solved using an iterative numerical method, such as L-BFGS.
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3.4. Global Optimality of a Nonconvex Problem with Linear Objective

The main motivation behind solving rank-constrained problems using convex opti-
mization methods comes from key results in [49,50] which show that for a linear SDP, when
X∗ is the optimum and r = rank(X∗), then r(r+1)

2 ≥ m where m is the number of linear
constraints. Furthermore, a recent work [13] shows that almost all local optima of FSDP are
also global optima, suggesting that any stationary point of the FSDP is also a reasonable
approximation of (1), if the constraint space of (10) is compact and sufficiently smooth,
e.g., AiY linearly independent whenever 〈Ai, YYT〉 = bi for all i = 1, . . . , m. The MAX-CUT
problem satisfies this constraint; an example of a linear SDP without this condition is the
phase retrieval problem [51], when m > n.

3.5. Nonconvex Constraint C
Although there are many cases where the linear constraint in (1) serves a distinct

purpose, largely it is introduced to tighten the convex relaxation. When working in the
nonconvex formulation, for many applications, the linear constraint becomes superfluous,
and a more useful reformulation may be:

min
x,y

g(x), s.t. x = y, y ∈ C,

for some nonconvex set C (e.g., C = {−1, 1}n). Note that the projection on C is extremely easy,
despite its nonconvexity. Although less explored, this idea is not new; see [52] (chapter 9).

3.6. ADMM for Nonconvex Problems

The alternating direction method of multipliers (ADMM) [53,54] is now a popular
method [52] for convex large-scale distributed optimization problems with understood
convergence rates [55] and variations [56–58]. It is closely related to dual decomposi-
tion methods, but alternates its subproblems, and makes use of augmented Lagrangians,
which smooths the subproblems and reduces the influence of the dual ascent step size.
Although there are extensions to many variable blocks, most ADMM implementations use
two variable block decompositions, solving:

min
x

g(x) + h(y), s.t. Ax = By,

by alternatingly minimizing over each variable in the augmented Lagrangian:

Lρ(x, y; u) = g(x) + h(y) + uT(Ax− By) +
ρ

2
‖Ax− By‖2

2,

and then incrementally updating the dual variable:

x+ = arg min
x
Lρ(x, y; u),

y+ = arg min
x
Lρ(x+, y; u),

u+ = u + ρ(Ax+ − By+).

Here, any ρ > 0 will achieve convergence.
In general, there is a lack of theoretical justification for ADMM on nonconvex prob-

lems despite its good numerical performance. Almost all works concerning ADMM on
nonconvex problems investigate when nonconvexity is in the objective functions ([59–63],
and also [64,65] for matrix factorization). Under a variety of assumptions (e.g., convergence
or boundedness of dual objectives) they are shown to converge to a KKT stationary point.

In comparison, relatively fewer works deal with nonconvex constraints. Ref. [66] tackles
polynomial optimization problems by minimizing a general objective over a spherical con-
straint ‖x‖2 = 1, Ref. [67] solves general QCQPs, and Ref. [68] solves the low-rank-plus-sparse
matrix separation problem. In all cases, they show that all limit points are also KKT stationary
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points, but do not show that their algorithms will actually converge to the limit points. In this
work, we investigate a class of nonconvex constrained problems and show with much milder
assumptions that the sequence always converges to a KKT stationary point.

We now present our main results, the algorithms, and convergence analysis for differ-
ent formulations.

4. Linearized ADMM on Full SDP

We first investigate a reformulation of (1) as:

min
Z,X,Y

f (Z) + δ{0}(A(Z)− b) + δC(Y),

s.t. Z = (XYT)Ω, X = Y, (11)

with variables Z ∈ Sn×n, X ∈ Rn×r, and Y ∈ Rn×r. The affine and C constraints are lifted
to the objective via an indicator function:

δC(x) =

{
0 if x ∈ C,
∞ else.

The notation AΩ for a symmetric matrix A is the projection of A on the sparsity pattern Ω:

(AΩ)ij =

{
Aij, if {i, j} ∈ Ω
0, else,

and we write A ∈ Sn
Ω if AΩ = A. Specifically, Ω captures the effective sparsity of the problem;

that is, f (Z) = f (ZΩ) and A(Z) = A(ZΩ). We assume {i, i} ∈ Ω for all i, so the second is
trivially true.

4.1. Duality

As shown in [69], a notion of a dual problem can be established via the augmented
Lagrangian of (11):

Lρ(Z, X, Y; S, U) =

f (Z) + δC(Y) + 〈U, X−Y〉+ 〈S, Z− XYT〉 (12)

+
ρ

2
‖X−Y‖2

F +
ρ

2
‖Z− XYT‖2

F,

where the dual problem is:

max
S,U

min
Z,X,Y

Lρ(Z, X, Y; S, U).

The minimization of Lρ over Z and X is the solution to:

∇ f (Z)−A∗(ν) + S + ρ(Z− XYT) = 0
U − SY + ρ(XYTY− ZY) + ρ(X−Y) = 0

A(Z) = b,
(13)

where ν > 0 is a Lagrange dual variable for the local constraintA(Z) = b. The minimization
of Lρ over Y is the solution to the generalized projection problem:

min
Y∈C

〈Y− Ŷ, Y− Ŷ〉H = Tr((Y− Ŷ)H(Y− Ŷ)T), (14)

where: Ŷ = U + SX + ρ(X + ZTX), H = ρ(I + XTX). For general nonconvex problems, it
is difficult to guarantee global minimality. Here, we introduce two sought-after properties
that are more reasonably attainable.
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Definition 1 ([70]). The tangent cone of a nonconvex set C at x is given by TC(x) = {d :
for all t → 0, x̂ → x, x̂ ∈ C, there exists d̂ → d, x̂ + td̂ ∈ C}. The normal cone of C at x

(:= NC(x)) is the polar of the tangent cone.

Definition 2. For a minimization of a smooth constrained function min
x∈C

f (x) we say that x∗ is a

KKT-stationary point if −∇ f (x∗) ∈ NC(x∗).

Definition 3. For a function defined over M variables L(X1, . . . , Xm), we say that X∗1 , . . . , X∗m
are (block) coordinatewise minimum points if for each k = 1, . . . , m,
X∗k = argmin

X
L(X∗1 , . . . , X∗k−1, X, X∗k+1, . . . , X∗m).

Note that it is not always the case that stationarity is stronger than coordinatewise
minimum. A simple example is C = {−1, 1}n. Then, for all points x ∈ C, the tangent
cone is {0} and the normal cone is Rn. Then, every point in C is stationary, no matter the
objective function.

Proposition 1. If Algorithm 1 converges to coordinatewise minimum points ((X, Z)∗, Y∗, S∗, U∗),
then the primal points (i) satisfy (13) for some choice of ν ≥ 0, (ii) minimize (14), (iii) and are
primal-feasible, e.g., X∗ = Y∗ and (X∗(YT)∗)Ω = Z∗. Furthermore, (X∗, Y∗, Z∗, S∗, U∗) are
stationary points of (12).

Proof. It is clear that the convergent points of Algorithm 1 exactly satisfy the three conditions.
To show that these points are stationary, note that the augmented Lagrangian is convex with
respect to X, Z jointly, and is a projection on a compact set C with respect to Y. Therefore:

∇X,Z,S,ULρ(Z∗, X∗, Y∗; S∗, U∗) = 0, (15)

−∇YL̄ρ(Z∗, X∗, Y∗; S∗, U∗) ∈ NC(Y∗),

where L̄ρ(Z, X, Y; S, U) = −〈U, Y〉 − 〈S, XYT〉+ ρ
2‖X−Y‖2

F +
ρ
2‖Z− XYT‖2

F, with all the
differentiable terms of Lρ involving Y.

4.2. Linearized ADMM

We propose to solve (11) via the linearized ADMM, e.g., where at each iteration, the
objective is replaced by its current linearization:

f (Z) ≈ f̂ k(Z) := f (Zk−1) + 〈∇ f (Zk−1), Z− Zk−1〉.

We then build the linearized augmented Lagrangian function as:

L̂k(Z, X, Y; S, U) = gk(X, Z) + h(Y) + 〈U, X−Y〉 (16)

+〈S, Z− XYT〉+ ρ

2
‖X−Y‖2

F +
ρ

2
‖Z− XYT‖2

F

where gk(X, Z) = f̂ k(Z) + δ{0}(A(Z)− b), h(Y) = δC(Y) and S ∈ Rn×n and U ∈ Rn×r

are the dual variables corresponding to the two coupling constraints. The full algorithm is
given in Algorithm 1.
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Algorithm 1 ADMM for solving (11)

1: Inputs: ρ0 > 0, α > 1, tol ε > 0
2: Initialize: Z0, X0; S0, U0 as random matrices
3: Outputs: Z, X = Y
4: for k = 1 . . . do
5: Update Yk+1 the solution of:

min
Y∈Rn×k

‖Zk − XkYT +
Sk

ρk ‖
2
F + ‖Xk −Y +

Uk

ρk ‖
2
F, (17)

s.t. Y ∈ C

6: Update (Z, X)k+1 as the solutions of:

min
X,Z∈Sn

Ω

Lk+1(Z, X, Yk+1; Sk, Uk; ρk), (18)

s.t. A(Z) = b

where L is the linearized augmented Lagrangian as defined in (16).
7: Update S, U and ρ via:

Sk+1 = Sk + ρk(Zk+1 − Xk+1(Yk+1)T)Ω

Uk+1 = Uk + ρk(Xk+1 −Yk+1) (19)

ρk+1 = αρk

8: if max{‖Xk −Yk‖, ‖(Zk − Xk(Yk)T)Ω‖} ≤ ε then
9: break

10: end if
11: end for

4.2.1. Minimizing over Y

The generalized projection (14) can be solved a number of ways. Note that if r = 1,
then H is a positive scalar, and the problem reduces to Y+ = projY∈C

(
1
H Ŷ
)

. When

C = {−1, 1}n, this process reduces to recovering the signs of Ŷ i.e., Yi = signC(Ŷi), and
when C = {u : ‖u‖2 = 1} the set of unit-norm vectors, Y is just a properly scaled version
of Ŷ: Y = 1

‖Ŷ‖2
Ŷ. However, in general, it is difficult to compute the generalized projection

over a nonconvex set. When C is convex, the generalized projection problem (14) can be
computed using projected gradient descent. Note that the objective of (14) is 1-strongly
convex; thus, we expect fast convergence in this subproblem. In practice, we find that if r is
not too large, often a few tens of iterations is enough.

4.2.2. Minimizing over X and Z

Using standard linear algebra techniques, the linear system (13) can be reduced to a
few simple instructions. First, we solve for the Lagrange dual variable ν associated with
the linear constraints (and localized to the minimization of X and Z):

A(A∗(ν)(YYT + I)) = (20)

ρ(b−A(DYT + YYT)) +A((G + S)(I + YYT)),

where D = 1
ρ (SY−U) +Y and G = ∇ f (Zk−1) the local gradient estimate. When A = diag,

(20) reduces to n scalar element-wise computations νi =
ρ(b−(DYT)ii)+((G+S)(I+YYT))ii

(YYT)ii+1 . When

A = Tr, ν = ρ(b−Tr(DYT)+Tr((G+S)(I+YYT))
Tr(YYT)+1 . Note that in both cases, no n× n matrix need

ever be formed, so the memory requirement remains O(nr). (See Appendix A for elabora-
tion). Then, the primal variables are recovered via X = BY + D, and Z = (XYT)Ω + B,
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with B = − 1
ρ (C −A∗(ν) + S). In these cases, the complexity is dominated by multipli-

cations between n× n and n× r matrices. Thus, the method is especially efficient when
r � n.

4.3. Convergence Analysis

Theorem 1. Assume that f (Z) is L f -smooth. Assume the dual variables are bounded, e.g.,

max{‖Sk‖F, ‖Uk‖F, ‖Yk‖F}k ≤ BP < +∞, and
L f

σmax
is bounded above, where σmax = 1 −√

σ4
Y+4σ2

Y−σ2
Y

2 , σY = ‖Yk+1‖2. Then, by running Algorithm 1 with ρk = αρk−1 = αkρ0, if Lk is
bounded below, then the sequence {Pk, Dk} converges to a stationary point of (12).

Proof. See Appendix B.

Corollary 1. If r ≥
⌈√

2n
⌉

and the stationary point of Algorithm 1 converges to a second-order
critical point of (1), then it is globally optimal for the convex relaxation of (10) [13].

Unfortunately, the extension of KKT stationary points to global minima is not yet
known when r(r+1)

2 < n (i.e., r = 1). However, our empirical results suggest that even
when r = 1, often a local solution to (10) well-approximates the global solution to (1).

5. ADMM on Simplified Nonconvex SDP

When the linear constraints are not present, (1) can be reformulated without Z, into:

min
X,Y

g(X) + δC(Y), s.t.X = Y, (21)

with matrix variables X ∈ Rn×r, Y ∈ Rn×r, and where g(X) = f (XXT) is smooth. We can
also define an augmented Lagrangian of (21) as Lρ(X, Y; U) = g(X) + δC(Y) + 〈U, X −
Y〉+ ρ

2‖X−Y‖2
F.

Theorem 2. The coordinatewise minimum points X∗ = Y∗ satisfying:

0 = ∇g(X∗) + U + ρ(X−Y)

Y = projC(X +
1
ρ

U)

X = Y,

(22)

are the stationary points of the problem:

min
X

g(X), s.t.X ∈ C. (23)

Proof. The KKT stationary points of (23) can be characterized in terms of the normal cone
of C at X∗; specifically, X∗ is stationary if:

〈∇g(X∗), X− X∗〉 ≤ 0, ∀X ∈ C ∩Nε(X∗),

where Nε(X∗) is some small neighborhood containing X∗. (This is an equivalent defini-
tion of the Clarke stationary point [70], since in a close enough neighborhood to X∗, the
subdifferential of δC(x) is NC(x)).

Combining terms in (22) gives X∗ = Y∗ satisfying X∗ = projC
(

X∗ − 1
ρ∇g(X∗)

)
.

The optimality condition of the projection is 〈X − (X − 1
ρ∇g(X∗)), X − X∗〉 ≤ 0, ∀X ∈

C ∩Nε(X∗) which reduces to the desired condition.
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5.1. ADMM

The alternating steps in minimizing the augmented Lagrangian over the primal vari-
ables are extremely simple, compared with the previous matrix formulation. In general,
we are considering f (X) linear (in which case the update of X involves only addition)
or quadratic with strictly positive diagonal Hessian (which adds a small scaling step).
C = {−1, 1}n, C = {x : ‖x‖2 = 1}, even when r > 1.

5.2. Convergence Analysis

Definition 4. A differentiable convex function g(X) is Lg-smooth and Hg-strongly convex over

Rn if for any X, Y, g(X) − g(Y) ≥ 〈∇ f (X), X − Y〉 − Lg
2 ‖X − Y‖2

F and g(X) − g(Y) ≤
〈∇ f (X), X−Y〉 − Hg

2 ‖X−Y‖2
F.

Theorem 3. Assume g(X) is lower bounded over C, and is Lg-smooth. Given a sequence {ρk}
such that:

ρk − 3Lg

2
− L2

g
ρk+1 + ρk

2(ρk)2 > 0, ρk > Lg

for all k, then under Algorithm 2 the augmented Lagrangian L(Xk, Yk; Uk) is lower bounded and
convergent, with {Xk, Yk, Uk} → {X∗, Y∗, U∗} a stationary and feasible solution of (23).

Proof. See Appendix C.

Remark 1. Convergence is guaranteed under a constant penalty coefficient
ρk ≡ ρ0 ≥ 3+

√
17

2 Lg, α = 1. However, in implementation, we find empirically that increasing {ρk}
from a relatively small ρ0 can encourage convergence to more useful global minima.

Algorithm 2 ADMM for solving (23)

1: Inputs: ρ0 > 0, α > 1, tol ε > 0
2: Initialize: Z0, X0; S0, U0 as random matrices
3: Outputs: Z, X = Y
4: for k = 1 . . . do
5: Update Yk+1 the solution of:

min
Y∈Rn×k

‖Xk −Y +
Uk

ρk ‖
2
F, s.t.Y ∈ C. (24)

6: Update Xk+1 as the solution of:

0 = ∇g(X) + U + ρ(X−Y). (25)

7: Update U and ρ via:

Uk+1 = Uk + ρk(Xk+1 −Yk+1), (26)

ρk+1 = αρk.

8: if ‖Xk −Yk‖F ≤ ε then
9: break

10: end if
11: end for

Theorem 4. If g(X) is Hg-strongly convex and ρk = ρ constant, with ρ+Hg
2 ≥ L2

g
ρ , ρ > Lg then under

Algorithm 2 the augmented Lagrangian L(Xk, Yk; Uk) converges to L(X∗, Y∗, U∗) at a linear rate.

Proof. See Appendix C.1.
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6. Numerical Experiments

In this section, we give numerical results on the proposed methods for commu-
nity detection, MAX-CUT, image segmentation, and symmetric matrix factorization. In
each application, we evaluate and compare these four methods. (i) SD: the solution to a
semidefinite relaxation of (1) (SDR), where C = Rn,r. The binary vector factor x where
xxT = Z is recovered using a Goemans–Williamson style rounding. [9] technique. This
is our baseline method and is described in more detail below. (ii) MR1: Algorithm 1
with r = 1. (iii) MRR: Algorithm 1 with r =

⌈√
2n
⌉

, then rounded to a binary vec-
tor using a nonsymmetric version of the Goemans–Williamson style rounding [9] tech-
nique. Both MR1 and MRR have the following stopping criterion max{P(k), D(k)} ≤ ε

for some tolerance parameter ε > 0, where: P(k) :=
{
‖Zk−Zk−1‖2
‖Zk‖2

, ‖X
k−Xk−1‖2
‖Xk‖2

, ‖Y
k−Yk−1‖2
‖Yk‖2

}
,

D(k) := max
{
‖Z(k)−X(k)(Y(k))T‖2

‖Zk‖2
, ‖X

(k)−Y(k)‖2
‖X(k)‖2

}
. (Here, D(k) is also proportional to the differ-

ence in dual iterates, and thus P(k) and D(k) can be interpreted as primal and dual residu-
als, respectively). (iv) V: Algorithm 2, with stopping criterion max{P(k), D(k)} ≤ ε where

P(k) :=
{
‖xk−xk−1‖2
‖xk‖2

, ‖y
k−yk−1‖2
‖yk‖2

}
, D(k) := ‖xk−yk‖2

‖xk‖2
. The same primal and dual residual in-

terpretation can be used here as well. In all cases, we use the following scheme for ρ:
ρk = min{ρmax, ρk−1 ∗ γ}, where ρmax ≈ 10, 000 and γ ≈ 1.05 (slightly larger than 1).

6.1. Solving the Baseline (SDR)

As a baseline, we compare against the solution of the semidefinite relaxed problem
without factor variables X (e.g., C = Rn,n):

min
Z

f (Z), s.t. A(Z) = b, Z � 0. (27)

For a fair comparison, we use a first-order splitting method very similar to ADMM,
which is the Douglas–Rachford Splitting (DRS) method ([71,72], see also [73,74]). We
introduce dummy variables and solve the reformulation of (27):

min
Z1,Z2,Z3

g1(Z1) + g2(Z2) + g3(Z3), s.t.Z1 + Z2 + Z3,

where g1(Z1) = Tr(CZ1), g2(Z2) =

{
0, A(Z2) = b
+∞, else,

g3(Z3) =

{
0, Z3 � 0
+∞, else.

. An

application of the DRS on this reformulation (see also Algorithm 3.1 in [75]) is then the
following iteration scheme: for i = 1, 2, 3,

X(k+1)
i = proxtgi

(Zi), Ŷi = 2X(k+1)
i − Z(k)

i ,

Y(k+1) =
1
3
(X(k+1)

1 + X(k+1)
2 + X(k+1)

3 ),

Z(k+1)
i = Z(k)

i + ρ(Y(k+1) − X(k+1)
i )

and for a convex function f z = proxt f (u) ⇐⇒ argmin
z

f (z) + 1
2t‖z− u‖2

2.

6.2. Rounding

Following the technique in [9], we can estimate x from a rank r matrix X ≈ xxT

by randomly projecting the main eigenspaces on the unit sphere. The exact procedure
is as follows. (i) For the symmetric SDP solution X, we first perform an eigenvalue
decomposition X = QΛQT and form a factor F = QΛ1/2 where the diagonal elements of
Λ are in decreasing magnitude order. Then, we scan k = 1, . . . , n and find xk,t = sign(Fkzt)
for trials t = 1, . . . 10. Here, Fk contains the first k columns of F, and each element of
zt ∈ Rk is drawn i.i.d from a normal Gaussian distribution. We report the values for
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xr = argmin
xk,t

{xT
r Cxr}. (ii) For the MRR method, we repeat the procedure using a factor

F = UΣ1/2 where X = UΣVT is the SVD of X. (iii) For MR1 and V, we simply take
xr = sign(x) as the binary solution.

6.3. Computer Information

The following simulations are performed on a standard desktop computer with an
Intel Xeon processor (3.6 GHz), and 32 GB of RAM. It is running with Matlab R2017a.

6.4. MAX-CUT

Table 1 gives the best MAX-CUT values using best-of-random-guesses and our ap-
proaches over four examples from the seventh DIMACS Implementation Challenge in 2002
(see http://dimacs.rutgers.edu/Workshops/7thchallenge/, problems downloaded from
http://www.optsicom.es/maxcut/). Often, we find the quality of our recovered solutions
close to the best-known solutions and often achieve similar suboptimality as the rounded
SDR solutions. However, the runtime comparison (Figure 1) suggests that the ADMM
methods (especially MR1 and SDR) are much more computationally efficient and scalable.
All experiments are performed with ε = 1× 10−3.

Figure 1. Time comparisons for DIMACS problems. (top): average runtime per iteration.
(bottom): total runtime. We observe that both V and MRR converge in relatively few iterations,
with MR1 taking slightly longer. However, as previously observed with splitting methods, the
convergence rate is sensitive to the parameter choices ρ(t). For best performance, we start with a
relatively small initial penalty coefficient and increase it with the iteration until the upper bound
is achieved.

http://dimacs.rutgers.edu/Workshops/7thchallenge/
http://www.optsicom.es/maxcut/
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Table 1. MAX-CUT values for graphs from the 7th DIMACS Challenge. MRR = matrix formulation,

r =
⌈√

2n
⌉

. SDR = SDP relaxation + rounding technique.

Database n Sparsity BK V MR1 MRR SDR

g3-8 512 0.012 41,684,814 34,105,231 36,780,180 35,943,350 33424095
g3-15 3375 0.018 281,029,888 235,893,612 255,681,256 241,740,931 212,669,181

pm3-8-50 512 0.012 454 394 346 378 416
pm3-15-50 3375 0.018 2964 2594 1966 2140 2616

G1 800 0.0599 11,624 10,938 11,047 11,321 11,360
G2 800 0.0599 11,620 10,834 11,082 11,144 11,343
G3 800 0.0599 11,622 10,858 10,894 11,174 11,367
G4 800 0.0599 11,646 10,849 10,760 11,192 11,429
G5 800 0.0599 11,631 10,796 10,783 11,352 11,394
G6 800 0.0599 2178 1853 1820 1949 1941
G7 800 0.0599 2003 1694 1644 1705 1774
G8 800 0.0599 2003 1688 1641 1728 1766
G9 800 0.0599 2048 1771 1681 1807 1830

G10 800 0.0599 1994 1662 1641 1737 1732
G11 800 0.005 564 496 460 480 506
G12 800 0.005 556 486 448 480 512
G13 800 0.005 580 516 476 498 528
G14 800 0.0147 3060 2715 2768 2861 2901
G15 800 0.0146 3049 2625 2810 2803 2884
G16 800 0.0146 3045 2667 2736 2862 2910
G17 800 0.0146 3043 2638 2789 2840 2920
G18 800 0.0147 988 798 768 841 858
G19 800 0.0146 903 700 641 694 780
G20 800 0.0146 941 723 691 766 788
G21 800 0.0146 931 696 713 810 794
G22 2000 0.01 13,346 12,461 12,548 12,751 12,926
G23 2000 0.01 13,317 12,540 12,528 12,853 12,889
G24 2000 0.01 13,314 12,540 12,447 12,723 12,904
G25 2000 0.01 13,326 12,447 12,558 12,733 12,874
G26 2000 0.01 13,314 12,445 12,475 12,718 12,847
G27 2000 0.01 3318 2824 2508 2807 2909
G28 2000 0.01 3285 2753 2518 2796 2845
G29 2000 0.01 3389 2864 2628 2901 2896
G30 2000 0.01 3403 2887 2639 2937 2971
G31 2000 0.01 3288 2833 2518 2902 2825
G32 2000 0.002 1398 1220 1066 1204 1254
G33 2000 0.002 1376 1202 1054 1166 1250
G34 2000 0.002 1372 1208 1096 1170 1222
G35 2000 0.0059 7670 6605 6914 6764 7209
G36 2000 0.0059 7660 6564 6943 6598 7228
G37 2000 0.0059 7666 6478 6839 6789 7183
G38 2000 0.0059 7681 6486 6759 6768 7212
G39 2000 0.0059 2395 1616 1697 1840 1997
G40 2000 0.0059 2387 1617 1438 1921 1890
G41 2000 0.0059 2398 1606 1656 1778 1899
G42 2000 0.0059 2469 1707 1756 1862 1971
G43 1000 0.02 6659 6222 6236 6398 6475
G44 1000 0.02 6648 6275 6192 6447 6458
G45 1000 0.02 6652 6243 6255 6407 6454
G46 1000 0.02 6645 6217 6233 6398 6407
G47 1000 0.02 6656 6221 6266 6433 6454
G48 3000 0.0013 6000 5882 5006 5402 6000
G49 3000 0.0013 6000 5844 5038 5362 6000
G50 3000 0.0013 5880 5814 4994 5410 5880
G51 1000 0.0118 3846 3317 3446 3524 3642
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Table 1. Cont.

Database n Sparsity BK V MR1 MRR SDR

G52 1000 0.0118 3849 3360 3471 3499 3662
G53 1000 0.0118 3846 3323 3510 3516 3660
G54 1000 0.0118 3846 3306 3428 3509 3651

6.5. Image Segmentation

Both community detection and MAX-CUT can be used in image segmentation, where
each pixel is a node and the similarity between pixels forms the weight of the edges. Generally,
solving (1) for this application is not preferred, since the number of pixels in even a moderately
sized image is extremely large. However, because of our fast methods, we successfully
performed image segmentation on several thumbnail-sized images, as seen in Figure 2.

Figure 2. Image segmentation. The center and right columns are the best MAX-CUT and community
detection results, respectively.

The C matrix is composed as follows. For each pixel, we compose two feature vectors:
f ij
c containing the RGB values and f ij

p containing the pixel location. Scaling f ij
c by some

weight c, we form the concatenated feature vector f ij = [ f ij
c , c f ij

p ], and form the weighted
adjacency matrix as the squared distance matrix between each feature vector A(ij),(kl) =

‖ f ij − f kl‖2
2. For MAX-CUT, we again form C = A−Diag(A1) as before. For commu-

nity detection, since we do not have exact p and q values, we use an approximation as
C = a11T − A where a = 1

n2 1T A1 the mean value of A. Sweeping C and ρ0, we give the
best qualitative result in Figure 2.
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6.6. Symmetric Factorization with Partial Observations

Recall the factorization with partial observations formulation as follows:

min
Z∈Sn ,X∈Rn×r ∑

i,j∈Ω
(Zij − Cij)

2, s.t.Z = XXT , X ≥ 0. (28)

Note that here we generalize the aforementioned formulation with r = 5. In this
setting, while the strongly convex Y−update in the proposed algorithm can no longer be
solved in closed form, projected gradient descent is applied to deal with it. The relative
error defined as ‖(Z∗ − C)Ω‖/‖CΩ‖ and CPU time with varying problem size and sparsity
are demonstrated in Table 2.

Table 2. Result for nonnegative factorization with partial observations from linearized ADMM
(5 trials). STD = standard deviation.

n 1000 3000 5000 8000

|Ω|/n2 0.1 0.5 0.8 0.1 0.5 0.8 0.1 0.5 0.8 0.1 0.5 0.8

CPU time/s 9.74 13.53 13.97 61.15 78.99 64.76 117.54 85.24 131.64 212.26 220.42 337.74

‖(Z∗−C)Ω‖
‖CΩ‖ 0.86 0.85 0.86 0.89 0.89 0.89 0.89 0.88 0.87 0.88 0.90 0.89

STD 0.043 0.020 0.021 0.010 0.006 0.008 0.008 0.012 0.018 0.004 0.008 0.008

7. Conclusions

We present two methods for solving quadratic combinatorial problems using ADMM on
two reformulations. Though the problem has a nonconvex constraint, we give convergence
results to KKT solutions under mild conditions. From this, we give empirical solutions
to several graph-based combinatorial problems, specifically MAX-CUT and community
detection; both can be used in additional downstream applications, like image segmentation.

Funding: This research received no external funding.

Data Availability Statement: No new data were created or analyzed in this study. Data sharing is
not applicable to this article.

Conflicts of Interest: The author declares no conflict of interest.

Appendix A. Derivation of X, Z Update

In a linearized case, consider G = ∇ f (Zk−1) = GΩ. Then, the optimality conditions are:

G−A∗(ν) + S + ρ(Z− (XYT)Ω) = 0

U − SY + ρ((XYT)ΩY− ZY) + ρ(X−Y) = 0

A(Z) = b.

Using D = ρ−1(SY−U) + Y, B = −ρ−1(G−A∗(ν) + S), we obtain:

−B + Z− (XYT)Ω = 0

−D + (XYT)ΩY− ZY + X = 0

A(Z) = b.

Substitute for Z: Z = (XYT)Ω + B ⇒ D + ((XYT)Ω + B)Y = (XYT)ΩY + X ⇒
D + BY = X. Since we assume the diagonal is in Ω, A(XΩ) = A(X), so to solve for ν:

A((XYT)Ω + B) = A(XYT + B)

= A((D + BY)YT + B) = b,
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and therefore A(B(YYT + I)) = b−A(DYT). Insert B and simplify:

b−A(DYT)

= A((−ρ−1(G−A∗(ν) + S))(YYT + I))

= −ρ−1A((G−A∗(ν) + S)(YYT + I)),

and thus:

b−A(DYT) + ρ−1A((G + S)(YYT + I)) (A1)

= ρ−1A(A∗(ν)(YYT + I)) = ρ−1Hν,

where H is an m×m matrix with: Hij = 〈Ai, Aj(YYT + I)〉. Thus this system reduces to
ν = H−1(b−A(DYT) + ρ−1A((G + S)(YYT + I))

)
.

Implicit Inverse of H

When A = diag, (20) reduces to n scalar element-wise computations

νi =
ρ(b−(DYT)ii)+((G+S)(I+YYT))ii

(YYT)ii+1 . When A = Tr, ν = ρ(b−Tr(DYT)+Tr((G+S)(I+YYT))
Tr(YYT)+1 . Note

that in both cases, the computation for ν can be done without ever forming an n × n
matrix. For example, for A = diag, DYT

ii = ρ−1(SYYT)ii − ρ−1(UYT)ii + (YYT)ii Recall
that for any two matrices A,B ∈ Rn×r, (ABT)ii = AT

i Bi where Ai, Bi are the ith rows
of A and B; thus, an efficient way of computing ν is (i) Compute more skinny matrices
F1 = SY, F2 = GY. (ii) Compute the element-wise products G1 = F1 ◦ Y, G2 = U ◦ Y,
G3 = F2 ◦ Y, and G4 = Y ◦ Y, where (A ◦ B)ij = AijBij (element-wise multiplication).
(iii) Compute the row sums gi = Gi1, i = 1, ..., 4. (iv) Compute the “numerator vector”
h1 = ρ(b− (ρ−1(g1 − g2) + g4) + diag(G) + diag(S) + g3 + g1 and “denominator vector”
h2 = g4 + 1. (v) Then, νi =

(h1)i
(h2)i

.
A similar procedure can be executed for A = Tr to keep memory requirements low.

Appendix B. Convergence Analysis for Matrix Form

To simplify notation, we first collect the primal and dual variables Pk = (Z, X, Y)k and
Dk = (Λ1, Λ2)

k. We define the augmented Lagrangian at iteration k as:

Lk : = L(Pk; Dk; ρk) = f (Zk) + δC(Y)

+ 〈U, X−Y〉+ 〈S, Z− XYT〉 (A2)

+
ρ

2
‖X−Y‖2

F +
ρ

2
‖Z− XYT‖2

F,

and its linearization at iteration k as:

L̄k := L̄(Pk; Dk; ρk; f̄ k) = f̄ k + δC(Y)

+ 〈U, X−Y〉+ 〈S, Z− XYT〉+ ρ

2
‖X−Y‖2

F, (A3)

+
ρ

2
‖Z− XYT‖2

F

Here, f̄ k := f (Zk−1) + 〈Gk−1, Z− Zk−1〉 such that f k is the linearization of f at Zk−1.

Lemma A1. ∇2LY = ∇2L̄Y � ρk I.

Proof. Given the definition of L, we can see that the Hessian ∇2LY = ρk(M + I) � ρk I
where M = blkdiag(XTX, XTX, ...) � 0.

Lemma A2. ∇2L̄(X,Z) � ρk
(

1−
√

λ2
N+4λN−λN

2

)
I.
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Proof. For (X, Z), we have ∇2
(X,Z)Lk = ρk

[
I + NNT −N
−NT I

]
where

N = blkdiag(YT , . . . , YT) ∈ Rnr×n2
. Note that for block diagonal matrices, ‖N‖2 = ‖Y‖2.

Note also that the determinant of 1
ρk∇2

(X,Z)Lk is det((I + NNT) − NNT) = 1 ≥ 0, so

∇2
(X,Z)L̃k � 0 and equivalently λmin(∇2

(X,Z)Lk) > 0.

To find the smallest eigenvalue λmin(∇2
(X,Z)Lk), it suffices to find the largest σ > 0

such that:

H2 = (ρk)−1∇2
(X,Z)L̃k − σI (A4)

=

[
(1− σ)I + NNT −N

−NT (1− σ)I

]
� 0.

Equivalently, we want to find the largest σ > 0 where (1− σ)I � 0 and the Schur com-
plement of H2 i.4., H3 = (1 − σ)I + NNT(1 − (1 − σ)−1)) � 0. Defining
σY = ‖Y‖2 the largest singular vector of Yk+1, and noting that λmin(αI + A) = α + λmin(A)
for any positive semidefinite matrix A, we have λmin(H3) = (1− σ)+ (σY)

2(1− (1− σ)−1).
We can see that (1− σ)λmin(H3) is a convex function in (1− σ), with two zeros at 1− σ =
±
√

σ4
Y+4σ2

Y−(σY)
2

2 . In between the two roots, λmin(H3) < 0. Since the smaller root cannot

satisfy 1− σ > 0, we choose σmax = 1−
√

σ4
Y+4σ2

Y−(σY)
2

2 > 0 as the largest feasible σ that

maintains λmin(H3) ≥ 0. As a result, λmin(∇2
(X,Z)L̄) = ρkσmax = ρk

(
1−
√

σ4
Y+4σ2

Y−σ2
Y

2

)
.

Figure A1 shows how this term behaves according to the spectral norm of Y.

Figure A1. Strong convexity with respect to X, Z. Smallest eigenvalue of ∇2
X,ZL as a function of the

spectral norm of Y.

We now prove the main theorem.

Lemma A3. Consider the sequence:

Lk := L(Pk; Dk)

= f (Zk−1) + 〈∇ f (Zk−1), Z− Zk−1〉+ δC(Y)

+ 〈U, X−Y〉+ 〈S, Z− XYT〉+ ρ

2
‖X−Y‖2

F

+
ρ

2
‖Z− XYT‖2

F.
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If f (Z) is L f -Lipschitz smooth, then sequence Lk generated from Algorithm 1 satisfies:

Lk+1 −Lk ≤
−ck

1‖Xk+1 − Xk‖2
F − ck

2‖Zk+1 − Zk‖2
F − ck

3‖Yk+1 −Yk‖2
F (A5)

+
ρk+1 + ρk

2(ρk)2

(
‖Sk+1 − Sk‖2

F + ‖Uk+1 −Uk‖2
F
)
.

with ck
1 = ρk

2

(
1−
√

σ4
Y+4σ2

Y−σ2
Y

2

)
, ck

2 = ck
1 −

L f
2 , and ck

3 = ρk

2 > 0.

Proof. The proof outline of Lemma A3 is to show that each update step is a non-ascent
step in the linearized augmented Lagrangian, and at least one update step is descent. We
can describe the linearized ADMM in terms of four groups of updates: the primal variable
Y, the primal variables X and Z, the dual variables U, S, and coefficient ρ. In other words,
at iteration k, taking:

• ∆Xk = Xk+1 − Xk, ∆Yk = Yk+1 −Yk, and ∆Zk = Zk+1 − Zk.
• Lk = L(Zk, Xk, Yk; Dk; ρk; Gk),
• LY = L(Zk, Xk, Yk+1; Dk; ρk; Gk),
• LXZ = L(Pk+1; Dk; ρk; Gk), and
• Lk+1 = L(Pk+1; Dk+1; ρk+1; Gk)

andLk+1−Lk = (LY−Lk)+ (LXZ−LY)+ (Lk+1−LXZ). We now lower bound each term.

• Update Y. For the update of Y in (17), takingLY = L(Zk, Xk, Yk+1; Dk; ρk; Gk), we have:

LY −Lk
(a)
≤ 〈∇YLY, Yk+1 −Yk〉

−
λmin(∇2

vecYLY)

2
‖Yk+1 −Yk‖2

F (A6)

(b)
≤ −ρk

2
‖Yk+1 −Yk‖2

F,

where (a) follows from the definition of strong convexity, and (b) the optimality of Yk+1.
• Update X, Z. Similarly, the update of (Z, X) in (17), denotingLXZ = L(Pk+1; Dk; ρk; Gk),

we have:

L̄XZ −LY

(a)
≤ 〈∇ZL̄XZ, Zk+1 − Zk〉+ 〈∇XL̄XZ, Xk+1 − Xk〉

−
λmin(∇2

(X,Z)L
XZ)

2
(
‖∆Zk‖2

F + ‖∆Xk‖2
F
)

(A7)

(b)
≤ −

λmin(∇2
(X,Z)L̄

XZ)

2

(
‖∆Zk‖2

F + ‖∆Xk‖2
F

)
,

where (a) follows from the definition of strong convexity, and (b) the optimality of
Xk+1 and Zk+1. To further bound LXZ − L̄XZ, we use the linearization definitions:

LXZ − L̄XZ

= f (Zk+1)− f (Zk)− 〈∇ f (Zk), ∆Zk〉 (A8)
(a)
≤

L f

2
‖Zk+1 − Zk‖2

F,

where (a) comes from the L f Lipschitz smooth property of f . For a function f with

Lipschitz constant L f , the following holds f (y) ≤ f (x) + 〈y− x,∇ f (x)〉+ L f
2 ‖y− x‖2

2.
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• Update S, U, and ρ. For the update of the dual variables and the penalty coefficient,
with Lk = L(Pk; Dk; ρk), we have:

LD −LXZ

(a)
= 〈Sk+1 − Sk, Zk+1 − Xk+1(Yk+1)T〉

+〈Uk+1 −Uk, Xk+1 −Yk+1〉

+
ρk+1 − ρk

2
(‖Zk+1 − Xk+1(Yk+1)T‖2

F) (A9)

+
ρk+1 − ρk

2
(‖Xk+1 −Yk+1‖2

F)

(b)
=

ρk+1 + ρk

2(ρk)2

(
‖Sk+1 − Sk‖2

F,+‖Uk+1 −Uk‖2
F
)
,

where (a) follows the definition of L and (b) from the dual update procedure.

The lemma statement results by incorporating (A6)–(A9).

Lemma A4. If Lk is unbounded below, then either problem (1) is unbounded below, or the sequence
L f ‖Zk − Zk−1‖F diverges.

Proof. First, consider the case that Lk is unbounded below. First, rewrite Lk equivalently as:

Lk = f (Zk−1) + 〈∇ f (Zk−1), Zk − Zk−1〉+ δC(Yk)

+
ρ

2
‖Xk −Yk +

1
ρk Uk‖2

F +
ρ

2
‖Zk − Xk(Yk)T

+
1
ρk Sk‖2

F −
1

2ρk ‖U
k‖2

F −
1

2ρk ‖S
k‖2

F.

Since ‖Uk‖F and ‖Sk‖F are bounded above, this implies that the linearization
gk := f (Zk−1) + 〈∇ f (Zk−1), Zk − Zk−1〉 is unbounded below.

Note that:

gk − f (Zk)

= f (Zk−1)− f (Zk)−∇ f (Zk−1), Zk−1 − Zk〉

≥ −
L f

2
‖Zk − Zk−1‖2

F,

which implies either f (Zk)→ −∞ or L f ‖Zk − Zk−1‖2
F → +∞.

Corollary A1. If Lk is unbounded below and the objective f (Z) = Tr(CZ), then it must be
that (1) is unbounded below. This follows immediately since L f = 0.

Theorem A1. Assume the dual variables are bounded, e.g., max{‖Sk‖F, ‖Uk‖F, ‖Yk‖F}k ≤
BP < +∞, and

L f
σmax

is bounded above, where σmax = 1−
√

σ4
Y+4σ2

Y−σ2
Y

2 , σY = ‖Yk+1‖2. Then,
by running Algorithm 1 with ρk = αρk−1 = αkρ0, if Lk is bounded below, then the sequence
{Pk, Dk} converges to a stationary point of (12).

Proof. If f (Z) is linear, take K0 = 0. If f (Z) is L f > smooth, take K̂ large enough such that
for all k > K0, αkρ ≥ L f σmax. By assumption, K0 is always finite.
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Taking ∆k
XYZ =

(
‖∆Zk‖2

F + ‖∆Xk‖2
F + ‖∆Yk‖2

F

)
and ck = min{c1, c2, c3} , the summa-

tion of (A5) leads to:

LK −LK0 =
K−1

∑
k=K0

Lk+1 −Lk

≤
K−1

∑
k=K0

ρk+1 + ρk

2(ρk)2

(
‖Sk+1 − Sk‖2

F + ‖Uk+1 −Uk‖2
F

)
−

K−1

∑
k=K0

ck∆k
XYZ (A10)

(a)
≤ 4BP

K−1

∑
k=K0

ρk+1 + ρk

2(ρk)2 −
K−1

∑
k=K0

ck∆k
XYZ

(b)
≤ 4BP

K−1

∑
k=K0

ρk+1 + ρk

2(ρk)2 ,

where (a) follows from the boundedness assumption of the dual variables, and (b) follows
from Lemmas A1 and A2, and careful construction of ρ with respect to L f and ‖Yk+1‖2.
Further simplifying, we see that LK is thus bounded above, since:

LK −LK0 ≤ lim
K→∞

4BP

K−1

∑
k=K0

ρk+1 + ρk

2(ρk)2

= 4BP
1 + α

2αK0 ρ

(
1 +

1
α
+

1
α2 + · · ·

)
=

4BP

2αK0 ρ
< +∞.

If Lk is not unbounded below, then:

0 ≤
K−1

∑
k=K0

(c1‖∆Xk‖2
F + c2‖∆Zk‖2

F + c3‖∆Yk‖2
F

)
≤ +∞. (A11)

Recall ck
3 = ρk

2 , and by boundedness assumption on ‖Yk+1
2 , for k > K0, ck

1, ck
2 ∝ ρk. Since

additionally ∑k ρk = +∞, then this immediately yields Zk+1 − Zk → 0, Xk+1 − Xk →
0, Yk+1 −Yk → 0.

Therefore, since the primal variables are convergent, this implies that:

Zk+1 − (Xk+1(Yk+1)T)Ω =
1
ρk (S

k+1 − Sk),

Xk+1 −Yk+1 =
1
ρk (U

k+1 −Uk),

converges to a constant. But since ρk → ∞ and the dual variables are all bounded, then it
must be that: Zk+1 − (Xk+1(Yk+1)T)Ω → 0, Xk+1 − Yk+1 → 0. Therefore, the limit points
X∗, Y∗, and Z∗ are all feasible, and simply checking the first optimality condition will verify
that this accumulation point is a stationary point of (12).

Appendix C. Convergence Analysis for Vector Form

Lemma A5. For two adjacent iterations of Algorithm 2, we have:

‖Uk+1 −Uk‖2
2 ≤ L2

g‖Xk+1 − Xk‖2
2. (A12)
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Proof. From the first-order optimality conditions for the update of X:

∇g(Xk+1) + Uk + ρk(Xk+1 −Yk+1) = 0. (A13)

Combining with the dual update, we obtain∇g(Xk+1) +Uk+1 = 0. Then, the result follows
from the definition of Lg.

Next, we will show that the augmented Lagrangian is monotonically decreasing and
lower bounded.

Lemma A6. Each step in the augmented Lagrangian update is decreasing, e.g., for:

L(X, Y; U; ρ) (A14)

:= g(X) + δC(Y) + 〈U, X−Y〉+ ρ

2
‖X−Y‖2

F

we have:

L(Yk+1, Xk+1; Uk+1; ρk+1) ≤ L(Yk+1, Xk+1; Uk; ρk)

≤ L(Yk+1, Xk; Uk; ρk) ≤ L(Yk, Xk; Uk; ρk). (A15)

Furthermore, the amount of decrease is:

L(Yk+1, Xk+1; Uk+1; ρk+1)−L(Yk, Xk; Uk; ρk)

≤ −ρk‖Yk+1 −Yk‖2
F − ck‖Xk+1 − Xk‖2

F. (A16)

Here,

• if g(X) is Hg-strongly convex (where Hg = 0 if g is convex but not strongly convex) then

ck =
ρk+Hg

2 − L2
g

ρk+1+ρk

2(ρk)2 , and

• if g(X) is nonconvex but Lg-smooth, then ck =
ρk−3Lg

2 − L2
g

ρk+1+ρk

2(ρk)2 .

Proof. Both the updates of Y and X globally minimize L with respect to those variables.
To minimize Y at (X, U) = (Xk, Uk):

L(Yk+1, X; U; ρ)−L(Yk, X; U; ρ) (A17)
(a)
≤ 〈∇YL(Yk+1, X; U; ρ), ∆Yk〉 − ρk

2
‖∆Yk‖2

2

(b)
≤ −ρk

2
‖∆Yk‖2

2. (A18)

To minimize X at (Y, U) = (Yk+1, Uk), we consider two cases. If g is Hg-strongly
convex, then:

L(Y, Xk+1; U; ρ)−L(Y, Xk; U; ρ)

(a)
≤ 〈∇XL(Y, Xk+1; U; ρ), Xk+1 − Xk〉

−
ρk + Hg

2
‖Xk+1 − Xk‖2

2 (A19)

(b)
≤ −

ρk + Hg

2
‖Xk+1 − Xk‖2

2,
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where (a) follows from the strong convexity of L(Y, X; U; ρ) with respect to X, and (b)
follows from the optimality condition of the update. If g is nonconvex but Lg-Lipschitz,
then note that:

g(Xk+1)− g(Xk)

≤ 〈∇g(Xk), Xk+1 − Xk〉+
Lg

2
‖Xk+1 − Xk‖2

F

(a)
= 〈∇g(Xk)−∇g(Xk+1), Xk+1 − Xk〉

+
Lg

2
‖Xk+1 − Xk‖2

F + 〈∇g(Xk+1), Xk+1 − Xk〉

(b)
≤ ‖∇g(Xk)−∇g(Xk+1)‖F‖Xk+1 − Xk‖F

+
Lg

2
‖Xk+1 − Xk‖2

F + 〈∇g(Xk+1), Xk+1 − Xk〉

(c)
≤

3Lg

2
‖Xk+1 − Xk‖2

F + 〈∇g(Xk+1), Xk+1 − Xk〉

where (a) follows from adding and subtracting a term, (b) from Cauchy–Schwartz, and (c)
from the Lipschitz gradient condition on g. Therefore:

L(Y, Xk+1; U; ρ)−L(Y, Xk; U; ρ)

(a)
≤ 〈∇XL(Y, Xk+1; U; ρ), Xk+1 − Xk〉

−
ρk − 3Lg

2
‖Xk+1 − Xk‖2

2

(b)
≤ −

ρk − 3Lg

2
‖Xk+1 − Xk‖2

2.

In the dual variables, using {X, Y} = {Xk+1, Yk+1} we have:

L(Y, X; Uk+1; ρk+1)−L(Y, X; µk; ρk)

(a)
≤ 〈Uk+1 −Uk, X−Y〉+ ρk+1 − ρk

2
‖X−Y‖2

F

(b)
≤ ρk+1 + ρk

2(ρk)2 ‖U
k+1 −Uk‖2

2

(c)
≤ L2

g
ρk+1 + ρk

2(ρk)2 ‖X
k+1 − Xk‖2

2,

where (a) follows the definition of L, (b) follows from the update of U, and (c) follows from
Lemma (A5) since ρk > 0 for al k. Incorporating these observations completes the proof.

Lemma A7. If ρk ≥ Lg and the objective g(X) is lower-bounded over C, then the augmented
Lagrangian (A14) is lower bounded.

Proof. From the Lg-Lipschitz continuity of ∇g(X) , it follows that:

g(X) ≥ g(Y) + 〈∇g(X), X−Y〉 −
Lg

2
‖X−Y‖2

F (A20)

for any X and Y. By definition:
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L(Yk, Xk; Uk; ρk)

= g(Xk) + 〈Uk, Xk −Yk〉+ ρk

2
‖Xk −Yk‖2

F

(a)
= g(Xk)− 〈∇g(Xk), Xk −Yk〉+ ρk

2
‖Xk −Yk‖2

F (A21)

(b)
≥ g(Yk) +

ρk − Lg

2
‖Xk −Yk‖2

F,

where (a) follows from the optimality in updating X and (b) follows from (A20). Since Lk is
unbounded below, then g(Yk) is unbounded below. Since Yk ∈ C for all k, this implies that
g is unbounded below over C.

Thus, if g(X) is lower-bounded over C, since the sequence {L(Xk, Yk; Uk)} is mono-
tonically decreasing and lower bounded, the sequence {L(Xk, Yk; Uk)} converges. Given
the monotonic descent of each subproblem (Lemma A6) and strong convexity of Lk with
respect to X and Y, it is clear that Xk → X∗, Yk → Y∗ fixed points. Combining with
Lemma A5 gives also Uk → U∗.

The proof of Theorem 3 easily follows from Lemma A7.

Appendix C.1. Linear Rate of Convergence when g Is Strongly Convex

Lemma A8. Consider Algorithm 2 with ρk constant. Then, collecting the variables all vectorized
x = (X, Y, Y),

Lk+1 −Lk ≤ −c3‖xk+1 − xk‖2,

where g is Hg strongly convex and:

c3 = max
θ∈(0,1)

min{
θ

(
ρ + Hg

2
−

L2
g

ρ

)
, (1− θ)

(
ρ + Hg

2Hg
−

L2
g

ρHg

)
,−ρ

}
.

Proof. From Lemma A6, we already have that:

Lk+1 −Lk ≤ −ρ‖Yk+1 −Yk‖2 − c‖Xk+1 − Xk‖2,

where for constant ρ, c = ρ+Hg
2 − L2

g
ρ . Moreover, when g(X) is Hg-strongly convex,

‖Uk+1 −Uk‖2 = ‖∇g(Xk+1)−∇g(Xk)‖2

≥ Hg‖Xk+1 − Xk‖2.

Therefore:
Lk+1 −Lk ≤ −θ

c
Hg
‖Uk+1 −Uk‖2

2 − (1− θ)c‖Xk+1 − Xk‖2.

for any θ ∈ (0, 1), We thus have:

Lk+1 −Lk

≤ −θc‖∆Xk‖2
F − (1− θ)

c
Hg
‖∆U‖2

F − ρ‖∆Yk‖2
F

≤ −min
{

θc, (1− θ)
c

Hg
,−ρ

}Xk+1 − Xk

Yk+1 −Yk

Uk+1 −Uk

,
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with ∆U = Uk+1 −Uk. Note that this does not mean L is strong convex with respect to the
collected variables x = (X, Y, Z) (L is not even convex). But with respect to each variable X,
Y, and Z, it is strongly convex.

Lemma A9. Again with ρk > 1 constant and collecting x = (X, Y, Z), we have:

Lk+1 −L∗ ≤ c4‖xk+1 − x∗‖2, c4 = min{Lg + ρ + 2, 2ρ, 1}

whenever Yk+1 and Y∗ are both in C.

Proof. Over the domain C, the augmented Lagrangian can be written as:

L(x) = g(X) + 〈U, X−Y〉+ ρ

2
‖X−Y‖2

F,

with gradient ∇L(x) =

∇g(X) + U + ρ(X−Y)
−Y + ρ(Y− X)

X−Y

 and thus:

‖∇L(x1)−∇L(x2)‖2
F

= ‖∇XL(x1)−∇XL(x2)‖2
F

+‖∇YL(x1)−∇YL(x2)‖2
F

+‖∇UL(x1)−∇UL(x2)‖2
F

≤ (Lg + ρ + 2)‖X1 − X2‖2
F + (2ρ)‖Y1 −Y2‖2

F

+‖U1 −U2‖2
F

≤ min{Lg + ρ + 2, 2ρ, 1}‖x2 − x1‖2
2,

which reveals the Lipschitz smoothness constraint for L as c4 = min{Lg + ρ + 2, 2ρ, 1}.
Then, using first-order optimality conditions,

Lk+1 ≤ L∗ + 〈∇L(x∗), xk+1 − x∗〉+ c4‖xk+1 − x∗‖2
2

(a)
≤ L∗ + c4‖xk+1 − x∗‖2

2,

where (a) follows from the optimality of L∗.

Lemma A10. Consider g(x) Hg-strongly convex in x, and ρ large enough so that c3 > 0. Then,
the number of steps for |Lk −L0| ≤ ε is O(log(1/ε)).

This proof is standard in the linear convergence of block coordinate descent when the
objective is strongly convex. Note that L is not strongly convex or even convex, but still all
the steps hold.

Proof. Take xk = {Xk, Yk, Uk} and x∗ = {X∗, Y∗, U∗}. Then:

L(xk)−L(x∗) = L(xk)−L(xk+1) + L(xk+1)−L(x∗)

≥ c3‖xk+1 − xk‖2 + L(xk+1)−L(x∗)

≥
(

c3

c4
+ 1
)
(L(xk+1)−L(x∗))

Therefore:
L(xk)−L(x∗)
L(x0)−L(x∗)

≤
(

c4

c4 + c3

)k

and so:
L(xk)−L(x∗) ≤ ε
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if:
k ≥ D1 log(1/ε) + D2

where:

D1 = log−1
(

c4 + c3

c4

)
, D2 =

log(L(x0)−L(x∗))

log
(

c4+c3
c4

) .
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