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Abstract: This paper addresses the synchronization problem of delayed stochastic neural networks
with discontinuous activation functions (DSNNsDF), specifically focusing on fixed/preassigned-time
synchronization. The objective is to develop a class of simplified controllers capable of effectively
addressing the challenges posed by time delays, discontinuous activation functions, and stochastic
perturbations during the synchronization process. In this regard, we propose several controllers
with simpler structures to achieve the desired preassigned-time synchronization (PTS) result. To
enhance the accuracy of time estimation, stochastic fixed-time control theory is employed. Rigorous
numerical simulations are conducted to validate the effectiveness of our approach. The utilization of
our proposed results significantly improves the performance of the synchronization controller for
DSNNsDF, thereby enabling advancements and diverse applications in the field.

Keywords: fixed/preassigned-time synchronization; simpler structure of controller; stochastic
perturbations; time delays; discontinuous activation functions
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1. Introduction

Neural networks (NNs) have been of interest to scholars since they simulate biological
network models and find their numerical applications in pattern recognition [1], optimiza-
tion [2] and so on. The introduction of energy functions into recursive NNs by biophysicist
Hopfield established the basis for stability analysis and opened the door to dynamical analysis
of NNs. This approach has led to remarkable insights into the inner workings of NNs and
has explored new possibilities for applications [3,4]. Synchronization, a significant dynamical
property, refers to the convergence of different NN states to the same trajectory, resulting in a
zero synchronization error. To date, investigations into synchronization of NNs have yielded
impressive achievements and continue to attract widespread attention [5–7].

With the rise in popularity of neural network (NN) applications, researchers have
observed that stochastic perturbations can often have a detrimental impact on the dynamic
behavior of NNs, leading to potentially severe consequences. Haykin, in his work refer-
enced as [8], highlights that synaptic transmission in real nervous systems is subject to noise
due to random fluctuations resulting from neurotransmitter release and other probabilistic
factors. Hence, it becomes imperative to consider stochastic perturbations when analyzing
NN dynamics, leading to the development of a model known as stochastic neural networks
(SNNs) [9,10].

Moreover, time-delay and discontinuous signal transmissions exist among numerous
neurons, such as circuit switching and high slope non-linearity [11,12], which leads to a
serious negative impact on synchronization and even completely destroy the existing syn-
chronization results. Mathematically, these phenomena can be represented as time-varying
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delays and discontinuous activation functions within NNs’ mathematical model. Therefore,
a major focus of our research is centered around developing a synchronization controller
that can effectively mitigate the negative effects caused by discontinuous activation func-
tions (DF) and time delays in SNNs, i.e., delayed SNNs with discontinuous activation
functions (DSNNsDF).

The finite-time control was introduced in [13] offering distinct advantages over tradi-
tional asymptotic and exponential control methods. Finite-time control is anticipated to
exhibit faster convergence and superior control performance. The core idea of finite-time
control is to give an estimated time for the control effect to be achieved by system pa-
rameters and initial states [14,15]. In various application fields in [16,17], synchronization
outcomes achieved through the utilization of finite-time control have been extensively
documented, highlighting their significance and indispensable role. However, for synchro-
nization of SNNs, the existence of stochastic perturbations results in the initial states of
SNNs always being in fluctuating, which in turn finite-time control still fails to provide an
accurate estimate of time for synchronization.

Fortunately, the field of non-linear control for stochastic systems has witnessed signifi-
cant advancements with the introduction of fixed-time control. This approach has proved
to be practical and feasible, especially after it was further improved as stochastic fixed-time
stability [18]. Building upon these foundations, fixed-time synchronization (FxTS) has
emerged as a popular choice due to its ability to achieve fast convergence rates, all while
being free from the constraint of initial states [19]. Recently, several approaches have been
proposed to address the FxTS problem, showcasing the versatility and effectiveness of this
technique in [20,21]. In [20], stochastic Lyapunov functional and matrix analysis techniques
were adopted to solve the FxTS problem for DSNNs. In [21], the FxTS for SNNs was
achieved by quantified adaptive controllers. The above results provide effective tools and
techniques for the application and promotion of SNNs to achieve synchronization behavior
with guaranteed convergence in a fixed time frame.

Although FxTS has an excellent performance in numerous issues, it still has some
problems. On the one hand, considerable conservatism exists in the estimation for synchro-
nization time. On the other hand, the settling time, as an a posterior estimate, is still difficult
to apply in some specific cases. Considering the above limitations, the preassigned-time
synchronization (PTS) was put forward, meant to specify the settling time of synchro-
nization as an a priori explicit value [22,23]. Up to now, PTS-related research is in full
swing and has been applied in engineering cases [24–26]. In [24], the preassigned time
was designed as a complex function for specific parameters in the PTS controller. In [25], a
pure power-low controller was designed to achieve PTS. Ref. [26] employed PTS to address
control problems related to a group of nonlinear systems that do not possess a triangular
structure. As PTS is considered for optimal control on time scales, we can foresee a wide
range of applications for this technique, and there is no doubt that it will be an active area
of research in the future.

So far, most of the subsequent research on PTS has focused on how to optimize the
existing PTS controllers. In early PTS studies, there were always unbounded inputs or
extremely complex structures in controller designs [27,28], which hinders the popularity of
PTS. In fact, plenty of investigations have been discussed around how to simplify the PTS
controller [29,30]. In [29], the PTS controller was simplified to only two absolute power
terms of error states, yet this can still pose slight difficulties for practical applications.
In [30], the PTS controller was greatly simplified while it is only valid for specific circuit
systems. As a result, the above motivation is to explore the exploitation of simple as well as
efficient PTS controllers.

Building upon the aforementioned discussions, our key innovations are summarized as

(1) The PTS problem for delayed SNNs with DF (DSNNsDF) is solved. Compared with the
previous PTS results in [23,25], this paper focuses on effective control design that can
eliminate the negative effects caused by time delays, DF, and stochastic perturbations.
Thus, our obtained PTS results are more valuable and practical.
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(2) Based on a preliminary design of the FxTS controller with simple structure, the criteria
of FxTS as well as an estimation time are obtained by the incomplete beta functions.
Compared to previous FxTS controllers in [20,21,29], our controller has the simplest
structure. Moreover, due to the reduction of criteria and the improvement of estimation
method, the obtained estimation for the synchronization time is more accurate and
less conservative.

(3) A simple and efficient PTS controller is designed based on the former FxTS result.
Compared with the previous PTS controller in [21,27,28], our PTS controller is capable
of achieving the ideal synchronization effect with minimal control gains owing to
more accurate time estimation and the simplest controller.

Notations: R represents the totality of real numbers. R+ represents the set of non-
negative real numbers. Rn represents the n-dimensional Euclidean space, and N rep-
resents the set of {1, 2, . . . , n}. For a function f : R → R, if the right and left lim-
its f+(x), f−(x) exist at a point x, the notation K[ f (x)] represents the closed interval
[min { f−(x), f+(x)}, max { f−(x), f+(x)}]. A continuous function z : R→ R is said to, if
it is strictly increasing, belong to the class K and z(0) = 0. sign(·) represents the classical
signum function. For a matrix Y, YT denotes its transpose and if Y is square matrix thus
Tr{Y} denotes its trace. P{A} denotes the probability of the event A occurring. E(·) de-
notes mathematical expectation. a.a and a.s denote the abbreviation of “almost all” and
“almost surely”.

2. Preliminaries

Consider a class of DSNNsDF as follows

dps(t) =
(
− cs ps(t) +

n

∑
r=1

αsr fr(pr(t)) +
n

∑
r=1

βsr fr(pr(t− τr(t)))
)

dt + σs(ps(t), t)dω(t) (1)

where positive integers s, r ∈ N represent the indices of neurons. ps(t) represents the
state of p-th neuron. τr(t) ∈ R represents the time-varying delay for the q-th neuron for
0 ≤ τr(t) ≤ τ. fr(·) represents the discontinuous activation function. The self-feedback
connection weight is considered as cs > 0. The connection weight between p-th and q-th
neurons is denoted by αsr, delayed connection weight βsr. Moreover, a complete filtered
probability space (Ω, F ,F, P) is specified, in which a natural filtration F = {Ft ≥ 0; t ∈ R+}
is satisfied the usual conditions; in that case, the algebra F0 contains all P-null sets in the
algebra F , and F is right-continuous in the sense that ∩s>tFs = Ft, for t ∈ R+. The function
σs(·, t) is the noise intensity of Borel measurable continuous.

Then, some indispensable assumptions and lemmas are provided to facilitate our
proof.

Assumption 1 ([31]). The activation function fr(·) is continuous for all points except for a finite
set of isolated point ι, with left limit f−r (ι) and right limit f+r (ι) exist. Moreover, there exist positive
constants hr, mr and Mr, such that

sup |Φr −Ψr| ≤ hr|x− y|+ mr |Φr| ≤ Mr

where x, y ∈ R, Φr ∈ K[ fr(x)], Ψr ∈ K[ fr(y)].

Assumption 2 ([13]). For σs(·, t), there exist constants ρs > 0, such that

[σs(ps(t), t)− σs(qs(t), t)]T [σs(ps(t), t)− σs(qs(t), t)] ≤ ρs(ps(t)− qs(t))2

where ps(t), qs(t) ∈ R.

Remark 1. Both Assumptions 1 and 2 are very widely used in research related to SNNs. On the
one hand, the Linear growth conditions in Assumption 1 is a restriction for the NNs’ activation
function term. Attributed to the Linear growth conditions has a regularization effect, it can both
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solve the problem of gradient explosion in the fitting process of neural networks and avoid the
overfitting of NNs. On the other hand, Assumption 2 is a restriction for the presence of random
noise in NNs. Since Ito noise is essentially a random signal with mean value 0, its effects can be
limited and assumed to seek a more simplified control effect.

The conventional sense solution of the system (1) does not exist owing to the fact that it is a
differential equation with discontinuous right-hand side. To tackle this issue, the Filippov solution,
introduced in [12], is employed to obtain a meaningful solution for system (1).

Definition 1 ([12]). For the function p(t) : [−τ, T)→ Rn, for T ∈ [0,+∞), to be considered a
solution (in Filippov’s sense) of system (1) on [−τ, T), it must satisfy the following conditions

(1) p(t) is continuous on [−τ, T) and absolutely continuous on [0, T).
(2) there exists a measurable function g(t) = (g1(t), g2(t), . . . , gn(t)) : [−τ, T) → Rn such

that for almost every t ∈ [0, T), the component gr(t) satisfies gr(t) ∈ K[ fr(pr(t))] and

dps(t) =
(
− cs ps(t) +

n

∑
r=1

αsrgr(t) +
n

∑
r=1

βsrgr(t− τr(t))
)

dt + σs(ps(t), t)dω(t) (2)

Definition 2 ([12]). Given a continuous function φ = (φ1, φ2, . . . , φn)T : [−τ, 0] → Rn and
any measurable selection ϕ = (ϕ1, ϕ2, . . . , ϕn)T : [−τ, 0]→ Rn where ϕr(l) ∈ K[ fr(φr(l))] for
almost every l ∈ [−τ, 0], and initial condition (φ, ϕ) can be defined for the initial value problem
associated with system (1): Select functions p(t) and g(t) such that p(t) is a solution of system (1)
on [−τ, T) for some T > 0, g(t) is the output associated with p(t), and

dps(t) =
(
− cs ps(t) +

n

∑
r=1

αsrgr(t) +
n

∑
r=1

βsrgr(t− τr(t))
)

dt

+ σs(ps(t), t)dω(t) for a.a. t ∈ [0, T),

gr(t) ∈K[ fr(pr(t))], for a.a. t ∈ [0, T),

ps(l) =φs(l), ∀l ∈ [−τ, 0],

gr(l) =ϕr(l), for a.a. l ∈ [−τ, 0].

(3)

Remark 2. From Definitions 1 and 2, Filippov’s solution provides a mathematical framework to
handle non-smooth behavior and discontinuous terms in dynamic systems, allowing for accurate
modeling and analysis of systems with abrupt changes. By defining Filippov’s solution precisely,
we can capture such systems’ dynamics effectively. The initial value problem finds solutions to
differential equations that satisfy specified initial conditions. In the context of Filippov’s solution, it
determines system behavior at a starting point considering the impact of discontinuities, crucial for
accurate predictions and understanding system response over time.

Regard (1) as drive system, then the response system is defined as follows:

dqs(t) =
(
− csqs(t) +

n

∑
r=1

αsr fr(qr(t)) +
n

∑
r=1

βsr fr(qr(t− τr(t)))

+ us(t)
)

dt + σs(qs(t), t)dω(t)

(4)

where qs(t) represents the s-th state and us(t) is the designed controller, which maybe discon-
tinuous. The other parameters have the same physical interpretations with system (1).

The initial value problem associated with system (4) is formulated as, according to
Definition 2,
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dqs(t) =
(
− csqs(t) +

n

∑
r=1

αsr g̃r(t) +
n

∑
r=1

βsr g̃r(t− τr(t)) + ũs(t)
)

dt

+ σs(qs(t), t)dω(t) for a.a. t ∈ [0, T),

g̃r(t) ∈ K[ fr(qr(t))], ũs(t) ∈ K[us(t)] for a.a. t ∈ [0, T),

qs(l) = χs(l), ∀l ∈ [−τ, 0],

g̃r(l) = ψr(l), for a.a. l ∈ [−τ, 0].

(5)

In this paper, the synchronization error is defined as es(t) = qs(t)− ps(t), for s ∈ N+,
thus

des(t) =
(
− cses(t) +

n

∑
r=1

αsr(g̃r(t)− gr(t))

+
n

∑
r=1

βsr(g̃r(t− τr(t))− gr(t− τr(t)))

+ ũs(t)
)

dt + σs(es(t), t)dω(t)

(6)

where parameters are the same as systems (1) and (4).
To promote the illustrations of synchronization result, below are some definitions and

lemmas related to stochastic systems that are applicable to the error system (6).

Definition 3 ([13]). For any C2 function V(t) ∈ R and error system (6), the infinitesimal
generator L is denoted as the differential operator of V(t)

LV(e(t)) =
∂V(e(t))

∂e

(
− cses(t) +

n

∑
r=1

αsr(g̃r(t)− gr(t))

+
n

∑
r=1

βsr(g̃r(t− τr(t))− gr(t− τr(t))) + ũs(t)
)

+
1
2

Tr{σT
s (es(t), t)

∂2V(e)
∂e2 σs(es(t), t)}

(7)

in which
1
2

Tr{σT
s (es(t), t) ∂2V(t)

∂p2 σs(es(t), t)} represents the Hessian term.

Definition 4 ([13]). It is said that the error system (6) is finite-time stable in probability, for any
initial value e(l) ∈ Rn, if system (6) admits the solution e(t; e(l)) and satisfies

(1) Finite-time attractiveness in probability: For any non-zero initial error e(l), the first hitting
time t(e(l)) = inf {t ≥ 0; e(t; e(l)) = 0}, regarded as stochastic settling time, is almost
surely finite, i.e., P{t(e(l)) < +∞} = 1 and e(t + t(e(l)); e(l)) = 0, a.s., ∀t ≥ 0.

(2) Stability in probability: For given values r > 0 and ε ∈ (0, 1), there exists a positive
value δ(ε, r) such that the probability of the error e(t; e(l)) being within a specified range
|e(t; e(l))| < r in which r ≤ 1− ε holds for any t ≥ 0 and for initial error |e(l)| < δ(ε, r).

Definition 5 ([18]). The error system (6) is said to be fixed-time stability in probability, if constant
Tmax > 0 and the following conditions are satisfied, for any initial state e(l) ∈ Rn,

(1) The error system (6) is finite-time stability in probability;
(2) Mathematical expectation E(t(e(l))) for settling time function is bounded with Tmax, which

is independent of the initial state for E(t(e(l))) ≤ Tmax, ∀e(l) ∈ Rn. Furthermore, if Tmax
can be arbitrarily selected as required, error system (6) is said to be preassigned-time stability
in probability.

Remark 3. The fixed-time stability for stochastic system is much more complicated than determin-
istic system due to the stochastic perturbation present in system (6), as reflected in the two points of
the first hitting time and mathematical expectation for settling time function. The former aims at
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determining the time when the state of the drive-response system is initially achieved, then the latter,
from a statistical point of view, provides a method for estimating the mean value of an upper bound
on the time required to complete the synchronization.

Lemma 1 ([18]). For error system (6), suppose there exists a continuous differentiable function
Λ(·) > 0,

∫ ε
0

1
Λ(l)dl ≤ G for any Λ̇(e) ≥ 0, e > 0, G > 0 and 0 < ε < +∞, and there also exists

a positive definite, radially unbounded C2 function V(·) : Rn → R+ such that

LV(e) ≤ −Λ(V(e)), (8)

then, the error system (6) is fixed-time stable in probability for ∀e(l) ∈ Rn\{0} with the stochastic
settling time E(t(e(l))) ≤ G.

Lemma 2 ([22]). For any C2 function V(·) : Rn → R+, there exist constants k, k1 > 0, k2 >
0,κ > 0,ℵ > 0 and 0 < z1 < 1 < z2 such that

(1) k1‖e(t)‖2 ≤ V(e) ≤ k2‖e(t)‖2,
(2) LV(e) ≤ kV(e)−κVz1(e)− ℵVz2(e),

then error system (6) is fixed-time stability in probability with E(t(e(l))) ≤ Tmax and

Tmax ,



T1
max =

π csc(κπ)

κ(z2 − z1)
(
κ
ℵ )

κ , k ≤ 0,

T2
max =

π csc(κπ)

ℵ(z2 − z1)
(
ℵ

κ − k
)1−κ I(

ℵ
Υ

, κ, 1− κ)

+
π csc(κπ)

κ(z2 − z1)
(

κ
ℵ − k

)κ I(
κ
Υ

, 1− κ, κ), 0 < k < min{a, b},

(9)

where κ = (1− z1)/(z2 − z1), Υ = κ + ℵ − k and the incomplete beta function ratio, denoted as
I(z3, z4, z5) is defined as

I(z3, z4, z5) =
1

B(z4, z5)

∫ z3

0
tz4−1(1− t)z5−1dt,

and

B(z4, z5) =
∫ 1

0
tz4−1(1− t)z5−1dt

where 0 ≤ z3 ≤ 1 and z4, z5 > 0.

Lemma 3 ([22]). For any C2 function V(t) : Rn → R+, there exists an arbitrary positive Tp such
that

LV(e) ≤ Tmax

Tp

(
kV(e)−κVz1(e)− ℵVz2(e)

)
, (10)

where variables are the same as Lemma 2, then error system (6) is preassigned-time stability in
probability within Tp.

Lemma 4 ([32]). For any real number δ1, δ2, . . . , δs ≥ 0, the follow inequalities are satisfied

n

∑
s=1
|δs|$ ≥


(

n
∑

s=1
|δs|)$, $ ∈ (0, 1],

n1−$(
n
∑

s=1
|δs|)$, $ > 1.
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3. Main Results

This part will give the simplified controller and derive the sufficient criteria for achiev-
ing FxTS and PTS of systems (1) and (4).

3.1. Simplified Controller Design

Firstly, the simplified controller us(t) of (4) is designed as

us(t) = −γs1 sign(es(t))− γs2 sign(es(t))|es(t)|θ , (11)

where s ∈ N, γs1, γs2 > 0 and θ > 1.
Thus, from systems (1) and (4), the error system (6) is transformed into

des(t) =
(
− cses(t) +

n

∑
r=1

αsr(g̃r(t)− gr(t)) +
n

∑
r=1

βsr(g̃r(t− τr(t))− gr(t− τr(t)))

+ ũs(t)
)

dt + σs(es(t), t)dω(t)

(12)

where
ũs(t) ∈ K[us(t)] = −γs1hs(t)− γs2hs(t)|es(t)|θ (13)

with

hs(t) = K[sign(es(t))] =


−1 es(t) < 0,
[−1, 1] es(t) = 0,
1 es(t) > 0.

Let

ks = −2cs +
n

∑
r=1

(|αsr|hr + |αrs|hs + ρr), (14)

κs = 2γs1 −
n

∑
r=1

(mr|αsr| − 2Mr|βsr|), (15)

and
ℵs = 2n

1−θ
2 γs2. (16)

3.2. FxTS of DSNNsDF

Theorem 1. Suppose that Assumptions 1 and 2 are satisfied, if for ∀r, s ∈ N+,

max
s
{ks} < min{min

s
{κs}, min

s
{ℵs}}, (17)

then systems (1) and (4) realize FxTS under the controller (11) with Tmax estimated as (9) with the
parameters k = max

s
{ks}, κ = min

s
{κs} and ℵ = min

s
{ℵs}.

Proof. Choose the Lyapunov function

V(t) =
n

∑
s=1

e2
s (t). (18)

To obtain the infinitesimal generator of V(t) along the trajectories of the error system (6)
along these trajectories of es(t) ∈ R\{0} and a.a. t ∈ [0, T),
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LV(t) = 2
n

∑
s=1

es(t)ės(t)

= 2
n

∑
s=1

[es(t)
(
− cses(t) +

n

∑
r=1

αsr(g̃r(t)− gr(t))

+
n

∑
r=1

βsr(g̃r(t− τr(t))− gr(t− τr(t)))

− γs1 sign(es(t))− γs2 sign(es(t))|es(t)|θ
)
]

+ Tr{σT
s (es(t), t)σs(es(t), t)}.

(19)

From Assumption 1, one has

2
n

∑
s=1

n

∑
r=1

es(t)αsr(g̃r(t)− gr(t)) ≤ 2
n

∑
s=1

n

∑
r=1
|es(t)||αsr||g̃r(t)− gr(t)|

≤ 2
n

∑
s=1

n

∑
r=1
|es(t)||αsr|(hr|er(t)|+ mr)

≤
n

∑
s=1

n

∑
r=1

(
e2

s (t)(|αsr|hr + |αrs|hs) + 2mr|es(t)||αsr|
)

.

(20)

By Assumption 2 and (11), we can

LV(t) =
n

∑
s=1

e2
s (t)

(
− 2cs +

n

∑
r=1

(|αsr|hr + |αrs|hs + ρr)
)

−
n

∑
s=1

2es(t)
(

γs1 −
n

∑
r=1

mr(|αsr|+ |βsr|)
)
−

n

∑
s=1

2γs2|es(t)|θ+1
(21)

where ρr > 0.
From Lemma 4, it follows

n

∑
s=1

es(t) =
n

∑
s=1

(e2
s (t))

1
2 ≥

( n

∑
s=1

e2
s (t)

) 1
2
= V

1
2 (t),

n

∑
s=1

eθ+1
s (t) ≥ n

1−θ
2 (

n

∑
s=1

e2
s (t))

θ+1
2 = n

1−θ
2 V

θ+1
2 (t).

If (17) is satisfied, (21) is transformed as

LV(t) ≤ kV(t)−κV
1
2 (t)− ℵV

θ+1
2 (t), (22)

From Lemma 2, we can obtain that error system (6) is fixed-time stable in probability,
which means systems (1) and (4) achieve FxTS in probability. Besides, there exists a
settling time E(t(e(l))) satisfies e(t) = 0 as t ≥ E(t(e(l))) and a upper bound Tmax, for
∀e(l) ∈ Rn\{0}. Combined with Lemma 3 and (22), we can make an estimation of the
settling time based on the following two cases.

Case 1: If k ≤ 0, the settling time E(t(e(l))) is estimated as

T1
max =

2π csc(π
θ )

κθ
(
κ
ℵ )

1
θ . (23)
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Case 2: If 0 < k < min{κ,ℵ}, the settling time E(t(e(l))) is estimated as, for Υ =
κ + ℵ − k,

T2
max =

2π csc(π
θ )

ℵθ
(
ℵ

κ − k
)1− 1

θ I(
ℵ
Υ

,
1
θ

, 1− 1
θ
)

+
2π csc(π

θ )

κθ
(

κ
ℵ − k

)
1
θ I(

κ
Υ

, 1− 1
θ

,
1
θ
).

(24)

The proof is completed.

Remark 4. In Theorem 1, the FxTS result for DSNNsDF and the settling time E(t(e(l))) are
obtained. Compared with existing results in [21,23,25], the FxTS for stochastic systems is more
challenging. Due to the existence of stochastic perturbations, on the one hand, Ito’s formula and the
infinitesimal operator are utilized necessarily to derive the results for stochastic system. On the other
hand, the initial state may change rapidly or cannot be measured in practical applications, so the
stochastic finite-time result is hard to estimate the exact settling time. Therefore, it is indispensable
to derive the sufficient conditions for FxTS and obtain settling time in (23) or (24).

Remark 5. The first task in FxTS is how to estimate the settling time more accurately, which
ensures that the systems achieve the desired control effect. Different from (22) in this paper, most of
the existing FXTS results are obtained by means of LV(t) ≤ −κVz1(x)− ℵVz2(x). This paper
offers two key advantages: (1) Our result includes the existing k ≤ 0 results, i.e., Case 1, and
further supplies the situation in Case 2 when k > 0. (2) The direct integration incorporates a
beta function, eliminating the need for scaling and reducing conservatism, thereby enabling a more
precise estimation of the settling time.

Remark 6. Although the utilization of the beta function improves the accuracy of settling time
estimation, the resulting expression in (24) is overly complex, posing a challenge for practical
calculations and applications.

For convenience, a special group of controller parameters is presented as a simplified
case in Corollary 1.

Corollary 1. Suppose that Theorem 1 is satisfied, when θ = 2, systems (1) and (4) achieve FxTS,
for z = 4κℵ − k2, and the settling time is estimated by

T3
max =


2√
z (

π
2 − arctan k√

z ), 0 < k < 2
√
κℵ

2
k , k = 2

√
κℵ

1√
−z ln k+

√
−z

k−
√
−z , k > 2

√
κℵ.

(25)

Remark 7. Another important task in FxTS is how to design an effective and concise controller.
Compared with previous works in [19–21,23,25,29,33–35], the FxTS effect is ensured by only
one sign function item and one the power of absolute error item (θ > 1) in this paper. Without
considering the time delay, several basic items of FxTS controller are shown in Table 1 along with
the specific comparison between us(t) in this paper and previous work.

Table 1. The comparison of different FxTS controllers.

K Sign(es(t)) K = 1 K = |es(t)| K = |es(t)|θ (0 < θ < 1) K = |es(t)|θ (θ > 1)

this paper X X

[29,33] X X

[21,25,34] X X

[19,20,23,35,36] X X X
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Remark 8. One of the major innovations of this paper is to greatly simplify the controller architecture
for realizing FxTS. By choosing a simplified controller design, several key advantages are aimed to
be addressed: (1) Ease of implementation: a simpler controller architecture contributes to an easier
implementation in a practical setup. (2) Reduced conservatism: More controller parameters means
more sufficient conditions in the results, each of which increases conservatism and is reflected in
the final estimation time. (3) Reduced computational complexity: The simplicity of the controller
design usually reduces the computational complexity. By minimizing computational requirements, a
simplified controller can effectively improve overall system performance. (4) Enhanced Robustness:In
some scenarios, a simpler controller architecture can enhance the robustness of the system. The fewer
components and parameters that need to be fine-tuned, the lower the likelihood of error or instability.
Certainly, fewer parameters means higher requirements for each parameter while maintaining the same
control effect. The increased energy consumption in this process will be discussed in our future work.

Remark 9. To further simplify the controller (11) employs an upper bound of activation functions
to mitigate the negative effect of time delay. This scheme, while further simplifying the controller,
increases the conservatism of the estimated time considerably. Additionally, a less conservative
approach is to use a time-delay controller to counteract the effect of the time delay, but this would
make the controller structure more complex. The detailed results are shown in Corollary 2.

Corollary 2. For a more complex controller

us(t) = −γs1 sign(es(t))− γs2 sign(es(t))|es(t)|θ − γs3 sign(es(t))
n

∑
r=1
|er(t− τr(t))|, (26)

suppose that Assumptions 1 and 2 are satisfied and

max
s
{ks} < min{min

s
{κ∗s }, min

s
{ℵs}}, γs3 ≥ max

s
{|βsr|hr}, (27)

where

κ∗s = γs1 −
n

∑
r=1

mr(|αsr|+ |βsr|),

then systems (1) and (4) achieve FxTS with the settling time

T4
max =



2π csc(π
θ )

κ∗θ (
κ∗
ℵ )

1
θ , k ≤ 0,

2π csc(π
θ )

ℵθ
(
ℵ

κ∗ − k
)1− 1

θ I(
ℵ
Υ

,
1
θ

, 1− 1
θ )

+
2π csc(π

θ )

κ∗θ (
κ∗
ℵ − k

)
1
θ I(

κ∗
Υ

, 1− 1
θ

,
1
θ
), 0 < k < min{κ,ℵ}.

(28)

3.3. PTS of DSNNsDF

To further optimize the FxTS results, we adjust the parameters of controller (11) to
achieve PTS of systems (1) and (4).

The adjusted controller is designed as follows

ũs(t) =−
(
γs1 + ks(

T̃
Tp
− 1)

)
sign(es(t))−

T̃
Tp

γs2 sign(es(t))|es(t)|θ (29)

where ks is defined in (14), Tp is a arbitrarily preassigned time, T̃ is selected as

T̃ =

{
T1

max, k ≤ 0,
T2

max, 0 < k < min{κ,ℵ}
(30)

and remaining parameters are the same as those in (11).
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Theorem 2. Assume that Assumptions 1, 2 and (17) are satisfied, then systems (1) and (4) can
achieve PTS via the controller (26) within Tp.

Proof. Continuing with the selection of V(t) = ∑n
s=1 es(t)2, we can obtain the proof of

Theorem 1 in a similar approach to directly obtain

LV(t) ≤ kV(t)−κ T̃
Tp

V
1
2 (t)− ℵ T̃

Tp
V

θ+1
2 (t). (31)

Case 1: When k ≤ 0, we have

LV(t) ≤ T1
max
Tp

(
−κV

1
2 (t)− ℵV

θ+1
2 (t)

)
(32)

then, according to Lemma 3 and Theorem 1, systems (1) and (4) achieve PTS within the
preassigned time Tp.

Case 2: When 0 < k < min{κ,ℵ}, we can get kV(t) ≤ T2
max
Tp

kV(t) and

LV(t) ≤ T2
max
Tp

(
kV(t)−κV

1
2 (t)− ℵV

θ+1
2 (t)

)
(33)

then, systems (1) and (4) achieve PTS within the preassigned time Tp.
The proof is completed.

Remark 10. It is worth noting that the conditions for guaranteeing PTS in Theorem 2 are the same as
in Theorem 1. On the one hand, users need to compute the negative effects due to random perturbations,
time delays, and discontinuous terms, from (14)–(17), only once. On the other hand, users can still
guarantee the stabilization of the error system when designing the PTS controller.

Remark 11. Note that PTS discussed in this paper are all in the case of Tp < T̃, whose goal is to
further shorten the synchronization time. Therefore, if Tp ≥ T̃, the controller (11) still meets the
requirements of PTS without adjustment.

4. Numerical Simulation

In this section, we will verify the validity of the FxTS and PTS results of the discussed
DSNNsDF with a numerical example using Matlab R2022b, see Appendix A for more
detailed code. For n = 2, we consider the following model

dps(t) =
(
− cs ps(t) +

2

∑
r=1

αsr fr(pr(t)) +
2

∑
r=1

βsr fr(pr(t− τr(t)))
)

dt + σs(ps(t), t)dω(t) (34)

where c1 = c2 = 1, α11 = 2, α12 = −0.1, α21 = −5, α22 = 4.5, β11 = −1.5, β12 = −0.1,
β21 = −0.2, β22 = −4, τr(t) = et/(1 + et) and σs(ps(t), t) = 0.05p(t). The activation
function is

fr(pr(t)) =

{
tanh(pr(t)) + 0.1, pr(t) > 0,
tanh(pr(t))− 0.1, pr(t) ≤ 0

with M1 = M2 = 1.1, h1 = h2 = 1 and m1 = m2 = 0.2. Then, the phase plot of system (34) is
shown in Figure 1a with p(l) = (0.6, 0.2)T , l ∈ [−1, 0]. Figure 1b shows the time evolution
of states of system (34) with the same initial states in Figure 1a.



Mathematics 2023, 11, 4414 12 of 15

-2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5

-10

-8

-6

-4

-2

0

2

4

6

8

(a)

0 50 100 150 200 250 300

-10

-8

-6

-4

-2

0

2

4

6

8

10

(b)

Figure 1. The time evolutions of states. (a) The phase plot of system (34). (b) The trajectories of p1(t)
and p2(t).

Regard the system (34) as the drive system (2), thus system (4) is described as

dqs(t) =
(
− csqs(t) +

2

∑
r=1

αsr fr(qr(t))

+
2

∑
r=1

βsr fr(qr(t− τr(t))) + us(t)
)

dt + σs(qs(t), t)dω(t)

(35)

where us(t) is the designed as follows{
u1(t) =− 3.5 sign(e1(t))− 3 sign(e1(t))|e1(t)|2,

u2(t) =− 3.5 sign(e2(t))− 3 sign(e2(t))|e2(t)|2.
(36)

From (34), we can calculate that k = 3.1, κ = 10.32 and ℵ = 4.2426, thus (17) is satisfied.
In this case, (34) and (35) can achieve FxTS within Tmax = 1.9395 s. Then, we select 10 sets
of random numbers from [−15,15] as the initial states of (34) and (35). Figure 2a depicts the
error trajectories in FxTS via controller (36).

In order to achieve PTS within Tp = 0.5 s, the controller parameters are adjusted
according as follow{

u1(t) =− 12.4249 sign(e1(t))− 11.6370 sign(e1(t))|e1(t)|2,

u2(t) =− 12.4249 sign(e2(t))− 11.6370 sign(e2(t))|e2(t)|2.
(37)

Figure 2b depicts the error trajectories in PTS via controller (37) with Tp = 0.5 s.
Thus, Figure 2 demonstrates the feasibility of main results that (34) and (35) can realize
synchronization before the calculated fixed time or an preassigned time.

Remark 12. Based on the FxTS controller (11), the PTS controller (29) is designed. If the estimation
for synchronization time can be estimated as small as possible, the controller gain can be effectively
reduced. Owing to the flexible utilization of the beta function, our work is much more accurate
in estimated time than previous work in [21,25,36,37] with the same conditions in Example 1, as
shown in Table 2.

Table 2. The derived settling-time from various results.

Theorem 1 [21,25] [36,37]

settling-time 1.9395 3.3552 3.4452
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Remark 13. From Figure 2b, it is evident that by modifying only specific parameters of the FxTS
controller, PTS of (34) and (35), can be achieved accordingly. This modification enables optimal
control from a time perspective. In comparison to existing results on preassigned-time control
in [24,26], Table 3 illustrates the compared controller gains for the case of various PTS.

(a) (b)

Figure 2. The error trajectories of (a) FxTS and (b) PTS with initial states in [−15, 15].

Table 3. The controller inputs of various PTS schemes.

Theorem 2 [24] [26]

gain form T̃
Tp

k − kVk(t)

Vk(t) ln(k)Tp

k
t− Tp

gain value
(t : 0→ TP)

Constants Change rapidly +∞ (t→ TP)

Remark 14. The above simulation results demonstrate that the controller we designed in is feasible
and effective in theory for the FxTS and PTS problems of DSNNsDF, which motivates us to
extend the DSNNsDF synchronization controller to neural network applications that are more
practical applications, especially in the areas of cooperative task execution, intelligent robot control
and adaptive control. In these areas, the results in this paper can help us both estimate/assign
synchronization time more accurately and save energy consumption by designing simple and
efficient controllers.

5. Conclusions

This paper has presented a novel approach for designing a controller with simple
structure to solve the PTS problem for DSNNsDF. The proposed approach has involved
designing a controller within the framework of Filippov’s solution to achieve FxTS while
mitigating the negative effects of time delays, discontinuous activation functions, and
stochastic disturbance. Subsequently, criteria ensuring FxTS have been derived and the
settling time has been calculated for two cases (k ≤ 0 and 0 < k < min{κ,ℵ}) with a
more accurate method. Based on the obtained FxTS results, an effective controller has been
modified to achieve PTS of DSNNsDF. The superiority of our work has been demonstrated
through several comparisons between the designed controller and the estimated times.
Finally, numerical simulation has been presented to validate the FxTS and PTS controller
design scheme.

In future research, our interest will focus on investigating the impact of controller
simplification on energy consumption, and then seeking the optimal balance between them.
Besides, we also will strive for the promotion and popularization of DSNNsDF in practical
application fields, such as automation robotic control systems, distributed sensor networks,
intelligent transportation systems and so on.
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Appendix A

To improve the transparency and reproducibility of the numerical results, we provide
the MATLAB code used to obtain the numerical results in the appendix below: https:
//github.com/limengxixi/MDPI.git, accessed on 22 September 2023.

Abbreviations
The following abbreviations are used in this manuscript:

FxTS fixed-time synchronization
PTS preassigned-time synchronization
DSNNsDF delayed stochastic neural networks with discontinuous activation functions
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