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Abstract: In this paper, we first consider the properties of the Goldie*-supplemented modules, and we
study the properties of totally Goldie*-supplemented modules as a version of the Goldie*-supplemented
modules. A module M is called Goldie*-supplemented module if, for every submodule U of M, there
exists a supplement submodule S of M such that Uβ∗S. A module M is called a totally Goldie*-
supplemented module if, for every submodule A of M, A is a Goldie*-supplemented module. We

emphasize that if M is totally Goldie*-supplemented, then
M
U

is totally Goldie*-supplemented for
some small submodule U of M. In addition, M = A ⊕ B is totally Goldie*-supplemented if A
and B are totally Goldie*-supplemented. Furthermore, we mention the connection between totally
Goldie*-supplemented, totally supplemented, and Goldie*-supplemented.
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MSC: 16D10; 16D99

1. Introduction

Let M be a unital left R-module over a unital ring R. Rad(M) and Jac(R) denote the
Jacobson radical of M and R, respectively. For any submodule U of M, U is called small in M
(U � M) if U + A = M for every nonzero submodule A of M; then, A = M. A submodule
U is called a (weak) supplement in M if U + A = M and U∩ A� U (U∩ A� M) for some
submodule A of M. A module M is said to be a (weakly) supplemented module if every
submodule of M has a (weak) supplement in M. Semisimple and artinian modules are
supplemented modules. A module M is called totally supplemented if every submodule of
M is supplemented.

Totally supplemented modules were introduced by Smith in [1] as a generalization
of supplemented modules. A module M is totally supplemented if every submodule of
M is supplemented. After this work, various aspects of totally supplemented modules,
such as totally cofinitely supplemented, totally weak supplemented, totally cofinitely
weak Rad-supplemented, and totally ⊕ generalized *cofinitely supplemented modules,
were studied by Bilhan in [2], Top in [3], Eryılmaz and Eren in [4], and Wasan and Dnan
in [5], respectively. The other generalization of supplemented modules, so-called Goldie*-
supplemented modules, were introduced and characterized in [6,7] as another approach
to supplemented modules. A module M is called Goldie*-supplemented (or briefly, G*s)
if there is a supplement submodule S of M with Uβ∗S for each submodule U of M. This
module structure, described in [6], lies between an amply supplemented module and
a supplemented module. Furthermore, in [8], the authors determined the Goldie-Rad-
supplemented modules inspired by [6].

Although many authors have studied several variations of totally supplemented
modules, totally G*-supplemented modules seem to be unexplored. In order to char-
acterize totally G*-supplemented modules, it is important to examine modules whose
submodules are G*-supplemented. We expect that all submodules of any module that are
G*-supplemented give an idea about totally G*-supplemented, totally supplemented, and
amply supplemented modules, and their relationships to each other. Therefore, we prove
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that any direct summand of a totally G*-supplemented module is a totally G*-supplemented
module. We show that every submodule of a totally G*-supplemented module over a left
V-ring is a direct summand. In addition, the relationships between totally G*-supplemented,
G*-supplemented, and totally supplemented modules are given under some restrictions.

2. Goldie*-Supplemented Modules

Before we start the main study of this work, we need to examine some properties of
the Goldie*-supplemented module which was described in [6] by Birkenmeier et al. via

the β∗ relation. The β∗ relation presented in [6] is defined as Uβ∗A if
U + A

U
� M

U
and

U + A
A

� M
A

. This means that if
U + A

U
+

X
U

=
M
U

for any submodule X of M containing

U, then
X
U

=
M
U

. Similarly, if
U + A

A
+

X
A

=
M
A

for any submodule X of M containing A,

then
X
A

=
M
A

. In ([6], Lemma 2.2), the authors said that β∗ is an equivalence relation and
0β∗U with U � M.

Definition 1 ([6], Definition 3.1). A module M is said to be Goldie*-supplemented (in short,
G*s) if each submodule of M is β∗ equivalent to a supplement submodule of M; equally, there is a
supplement submodule S of M such that Uβ∗S for each submodule U of M.

Example 1. Semisimple and linearly compact modules are G*s modules.

Example 2. Let R be a commutative local ring which has two incomparable ideals, I and J. Let
M = R/I ⊕ R/J. Then, M is G*s (see [6], Example 3.9(ii)).

Recall that a submodule U of M has ample supplements in M if, for every submodule
A of M with U + A = M, there is a supplement S of U with S ⊆ A. If all submodules have
ample supplements in M, then M is called amply supplemented ([9]). The Z-modules Zpk ,
where p is prime and k ∈ N, are amply supplemented modules. In particular, an amply
supplemented module implies a supplemented module.

With ([6], Theorem 3.6 and Proposition 3.11), we say the following implications:

amply supplemented⇒ G*s⇒ supplemented

The converse of the above implications is true under certain conditions. In partic-
ular, in [1], it was shown that the finitely generated supplemented modules are amply
supplemented. In this case, the finitely generated supplemented modules are also G*s.

Theorem 1. If M is G*s over a non-local Dedekind domain R, then M is amply supplemented.

Proof. Applying ([6], Theorem 3.6), we see that M is supplemented. Hence, ([1], Theorem 1.3)
implies that M is amply supplemented.

Proposition 1. If M is a G*s, then
M
U

is a G*s for U � M.

Proof. Let us take a submodule
A
U

of
M
U

for a submodule A of M. By hypothesis, Aβ*S. Here,

S is a supplement submodule in M. Let us consider the small epimorphism α : M → M
U

.

From ([6], Proposition 2.9(i)), α(A)β*α(S). In this situation,
A
U

β*(
S + U

U
). Using ([10],

Lemma 4), we see that
S + U

U
is also a supplement submodule in

M
U

. Thus,
M
U

is G*s.

Even if M/U is G*s, it is evident from the following example that M may not be G*s.
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Example 3 (see [11] , Remark 3.3). Let R = Zp,q = { a
b : a, b ∈ Z, b 6= 0, p - b, q - b} be a

ring where p and q are prime numbers. Then, R is a commutative uniform semilocal noetherian
domain with two maximal ideals. As a result, R is a semilocal ring which is not semiperfect.
Thus, R/Jac(R) is amply supplemented. Additionally, R/Jac(R) is G*s by ([6], Proposition 3.11).
However, the R-module R is not supplemented as stated in ([12], 42.6). On the other hand, the
R-module R is not G*s, by ([6], Theorem 3.6).

To prove that M is G*s while M/U is G*s, we need to use a refinable module. Recall
that M is called refinable if M = U + A for any submodules U, A of M, there is a direct
summand V of M with V ⊆ U, M = V + A [9].

Proposition 2. If
M
U

is G*s with U � M and M is a refinable, then M is G*s.

Proof. Suppose A is a submodule of M. From our assumption, (
A + U

U
)β*

S
U

, where
S
U

is a

supplement in
M
U

. Then, we deduce that, for some submodule X of M,
M
U

=
S
U

+
X + U

U
,

S
U
∩ X + U

U
=

(S ∩ X) + U
U

� S
U

. Consider an epimorphism f : M → M
U

. Notice that

M = S + X and S ∩ X � M from ([9], 2.2(5)). In fact, X is a weak supplement of S in M.

According to ([6], Proposition 2.9(ii)), f−1(
A + U

U
)β* f−1(

S
U
). It yields that (A + U)β*S.

By ([6], Corollary 2.12), Aβ*S in M. Using ([6], Theorem 2.6(ii)), it can be said that X is
also a weak supplement of A in M. It is natural to write as M = A + X and A ∩ X � M.
As M is refinable, for the direct summand A′ of M, A′ ⊆ A and M = A′ + X. In this case,
A′ ∩ X � M, by ([12], 19.3(2)). This allows us to say that X is a weak supplement of A′ in
M. Then, ([6], Corollary 2.7) shows that A′β*A, where A′ is a supplement in M. Hence, M
is G*s.

Proposition 3. If M is a finitely generated module over commutative ring R, then M is G*s if, and

only if,
M
U

is G*s for a linearly compact submodule U of M.

Proof. Suppose M is G*s. We know from ([6], Theorem 3.6) that M is supplemented. As

such,
M
U

is supplemented because of ([1], Theorem 2.8). Since M is finitely generated, we

deduce that
M
U

is amply supplemented by ([1], Corollary 4.6). Hence,
M
U

is G*s, by ([6], Propo-

sition 3.11). Conversely, ([6], Theorem 3.6) states that if
M
U

is G*s, then
M
U

is supplemented.
([1], Theorem 2.8) allow us to show that M is supplemented. As M is finitely generated, M
is amply supplemented by ([1], Corollary 4.6). As a consequence, M is G*s by ([6], Proposi-
tion 3.11).

We conclude the following consequence by utilizing Proposition 3.

Corollary 1. Let R be a commutative ring, M be a finitely generated module, and U be a linearly
compact submodule of M. In the following exact sequence,

0→ U → M→ M
U
→ 0

M is G*s if, and only if, U and
M
U

are G*s.
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Proposition 4. Let M be a quasi-projective module and U be a linearly compact submodule of M.
If in the exact sequence,

0→ U → M→ M
U
→ 0

U and
M
U

are G*s, M is G*s.

Proof. Let M be a quasi-projective module and U be a linearly compact submodule of

M. Assume
M
U

is a G*s. Then,
M
U

is supplemented by ([6], Theorem 3.6). It follows from
([1], Theorem 2.8) that M is supplemented. Since M is quasi-projective, M is G*s, by ([6],
Proposition 3.12), as desired.

A module M is called distributive if U ∩ (A + B) = (U ∩ A) + (U ∩ B) for all submod-
ules U, A, B of M.

Now, apply the distributive property to get the following result.

Proposition 5. If M = A⊕ B is a distributive module where A and B are G*s, then M is G*s.

Proof. Let U be a submodule of M. Using the distributive property, we have U = (U ∩
A)⊕ (U ∩ B). Since A and B are G*s, (U ∩ A)β*X and (U ∩ B)β*Y, where X and Y are
supplements in A and B, respectively. In other words, A = X + X′, X ∩ X′ � X for
some submodule X′ of A, and B = Y + Y′, Y ∩ Y′ � Y for some submodule Y′ of B.
According to ([6], Proposition 2.11), ((U ∩ A) + (U ∩ B))β*(X + Y). In this situation, we
write as Uβ*(X + Y). Now, we will show that X + Y is a supplement in M. We have
M = A + B = (X + X′) + (Y + Y′) = (X + Y) + (X′ + Y′). Since M is distributive, we
obtain that (X + Y) ∩ (X′ ∩ Y′) = (X ∩ X′) + (Y ∩ Y′) � X + Y by ([12], 19.3). This
indicates that X + Y is a supplement submodule in M.

Proposition 6. Let R be a commutative ring, let each Mi be G*s for i = 1, . . . , n, and let
M = M1 ⊕M2 ⊕ . . .⊕Mk such that R = ann(Mi) + ann(Mj) for all 1 ≤ i < j ≤ k. Thus, M
is G*s.

Proof. Consider a submodule U of M. By ([1], Lemma 4.1), U = (U ∩M1)⊕ . . .⊕ (U ∩Mk).
Since Mi is G*s, then (U ∩Mi)β*Si, where Si is a supplement submodule of Mi for i = 1, . . . , k.
It follows from ([6], Proposition 2.11) that Uβ*(S1 + S2 + . . . + Sk), where (S1 + S2 + . . . + Sk)
is a supplement submodule in M. If every Si is a supplement submodule in Mi, then
Mi = Si + Xi and Si ∩ Xi � Si for i = 1, . . . , k for some submodule Xi of Mi . In-
deed, we have M = M1 ⊕M2 ⊕ . . .⊕Mk = (S1 + S2 + . . . + Sk) + (X1 + X2 + . . . + Xk)
and (S1 + S2 + . . . + Sk) ∩ (X1 + X2 + . . . + Xk) = (S1 ∩ X1) + . . . + (Sk ∩ Xk) � S1 +
S2 + . . . + Sk by ([12], 19.3).

Proposition 7. Every submodule of G*s module over a left V-ring is a direct summand.

Proof. Assume that M is a G*s and U is a submodule of M. Then, Uβ*S for supplement
submodule S of M. This implies that M = S+X and S∩X is small in S for some submodule
X of M. If S ∩ X ⊆ Rad(S) ⊆ Rad(M), S ∩ X = 0, since Rad(M) = 0. As a result,
M = S⊕X. In particular, it follows from ([6], Theorem 2.6) that X is also a supplement of U
in M. Notice that M = U + X and U ∩ X � X. Similarly, U ∩ X ⊆ Rad(X) ⊆ Rad(M) = 0
and U ∩ X = 0. Thus, M = U ⊕ X.

3. Totally Goldie*-Supplemented Modules

In this part, we are interested in some properties of a totally Goldie*-supplemented
module. We mention that every factor module of a totally G*-supplemented module is
totally G*-supplemented, and the finite direct sum of totally G*-supplemented modules is
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totally G*-supplemented. Finally, we point out in Theorem 3 that totally G*-supplemented,
totally supplemented, and G*-supplemented modules are equivalent under additional
circumstances.

Definition 2. A module M is called a totally Goldie*-supplemented module (in short, tG*s) if
every submodule of M is G*s.
It is not hard to see that every tG*s is G*s.

Example 4. Semisimple and linearly compact modules are tG*s.

Proposition 8. Every tG*s module is totally supplemented.

Proof. If U is a submodule of M, then U is G*s by assumption. Then, ([6], Theorem 3.6)
applies, allowing the fact that U is supplemented to be obtained. Hence, M is totally
supplemented.

Every G*s module need not be tG*s. To show this, we can give the following example.

Example 5 (see [13], p. 482). Let R be a local Dedekind domain which is not a field domain.
Suppose that M = R(N). Then, M is not (amply) supplemented. The group N = R× M is a
ring with the operation (a, b).(x, y) = (ax, ay + xb) for a, x ∈ R and b, y ∈ M. Then, N is a
commutative local ring. Thus, N is amply supplemented. It follows from ([6], Proposition 3.11)
that N is G*s. Consider the ideal A = {0} × M of N. Hence, the submodule A of N is not a
supplemented N-module. Therefore, A is not G*s by ([6], Theorem 3.6) and, so, N is not tG*s.

We indicate the following relations:

tG*s =⇒ G*s
⇓ ⇓

totally supplemented =⇒ supplemented

Theorem 2. Let M be a refinable module. Then, M is G*s if, and only if, M is tG*s.

Proof. Suppose M is G*s and U is a submodule of M. It suffices to show that U is G*s. By
means of ([6], Corollary 3.3(i)), we conclude that U is G*s. Let X be a submodule of U.
Since M is G*s, Xβ*Y, where Y is a supplement in M. Note that M = Y + K and Y ∩ K � Y
for some submodule K of M. We can see that Y ∩ K � M from ([12], 19.3). This means
that K is a weak supplement of Y in M. However, K is also a weak supplement of X in M
based on ([6], Theorem 2.6). Therefore, M = X + K and X ∩ K � M. Since M is refinable,
there exists a direct summand A of M such that A ⊆ X and M = A + K. Since A ⊆ X,
then A ∩ K ⊆ X ∩ K � M implies A ∩ K � M. In this case, we can consider K as a
weak supplement of A in M. If A is a direct summand in M, then M = A⊕ B for some
submodule B of M. If A has a weak supplement K in M and X ∩ K � M, then Aβ*X from
([6], Corollary 2.7). Now, it remains to show that A is a supplement submodule of U. If
M = A⊕ B, then U = U ∩M = U ∩ (A⊕ B) = A⊕ (U ∩ B) by modularity. Thus, A is a
supplement of U ∩ B in U.

Theorem 3. Consider the following statements:

(1) M is tG*s,
(2) M is totally supplemented,
(3) M is G*s,
(4) M is supplemented.

Then, (1)⇒ (2)⇒ (3)⇒ (4). If M is refinable, (4)⇒ (3)⇒ (2)⇒ (1) holds.
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Proof. (1)⇒ (2) Clear from Proposition 8.
(2)⇒ (3) Recall that every totally supplemented is amply supplemented by ([1], Corollary 1.2).
Then, we obtain from ([6], Proposition 3.11) that M is G*s.
(3)⇒ (4) It is clear from ([6], Theorem 3.6).
(4) ⇒ (3) Let M be a refinable supplemented module and U be a submodule of M. We
claim that U is β* equivalent to any supplement submodule of M. From (4), U has a
supplement in M, say S. Namely, we can write M = U + S and U ∩ S� S. By ([12], 19.3),
U ∩ S� M. The refinable property says that there is a submodule A in M which is a direct
summand in M so that A ⊆ U and M = A + S. If U ∩ S� M, then A ∩ S� M, again by
([12], 19.3). This verifies that A has a weak supplement S in M. Since U ∩ S� M, Uβ*A by
([6], Corollary 2.7). Here, A is a supplement submodule in M, since A is a direct summand
in M. This proves (3).
(3)⇒ (2) If M is refinable G*s, then M is tG*s because of Theorem 2. From Proposition 8,
M is totally supplemented.
(2)⇒ (1) Suppose U is a submodule of M and X is a submodule of U. We will show that
U is G*s. M is G*s from (2), which implies (3). As such, Xβ*Y, where Y is a supplement
submodule in M. Then, M = Y + B and Y ∩ B � Y for some submodule B of M. By
([12], 19.3), Y ∩ B � M. In this case, B is a weak supplement of Y in M. Moreover, ([6],
Theorem 2.6) shows that M = X + B and X ∩ B � M. Since M is refinable, for a direct
summand A of M, A ⊆ X and M = A + B. If X ∩ B � M, A ∩ B � M from ([12],
19.3). Obviously, A is a weak supplement of B in M. Then, ([6], Corollary 2.7) shows that
Aβ*X. If A is a direct summand in M, then M = A⊕ A′ for some submodule A′ of M. By
modularity, U = U ∩M = U ∩ (A⊕ A′) = A⊕ (U ∩ A′), that is, A is a supplement of
U ∩ A′ in U. Hence, U is G*s.

The following two examples show that (4)⇒ (3) and (3)⇒ (2) in Theorem 3 do not
hold in general.

Example 6. (1) (see [6], Example 3.9(iii)). Let K be the quotient field of discrete valuation domain
R which is not complete. Let M = K⊕ K. Then, M is supplemented, but not G*s.

(2) (see [1], Example 1.7). Let R be a commutative ring and M be an R-module. Then, [R, M]
will denote the commutative ring of matrices of the form:(

s a
0 s

)
such that s ∈ R, a ∈ M, with the usual matrix addition and multiplication. Let R be any
commutative local domain which is not a field domain, let M be any free R-module of infinite
rank, and let S = [R, M] be the commutative ring. Then, the SS-module is local (that is,
amply supplemented). By ([6], Proposition 3.11), the SS-module is G*s, but SS is not totally
supplemented. Thus, SS is not tG*s.

Theorem 4. Let R be a non-local Dedekind domain. Then, the following statements are equivalent:

(1) M is tG*s,
(2) M is totally supplemented,
(3) M is G*s,
(4) M is supplemented.

Proof. It is clear from Theorem 3 that (1) ⇒ (2) ⇒ (3) ⇒ (4). Now, we will prove
that (4) ⇒ (1). Let U be a submodule of M. We need to prove that U is G*s. From ([1],
Theorem 1.3), M is totally supplemented. Then, we can say that U is supplemented. Again,
from ([1], Theorem 1.3), U is amply supplemented. According to ([6], Proposition 3.11), U
is G*s. As a consequence, M is tG*s.

The following result can be derived from Theorem 4.
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Corollary 2. Let R be a non-local Dedekind domain. Then, M is G*s if, and only if, M is amply
supplemented.

Proposition 9. If M is a tG*s, then
M
U

is tG*s for some submodule U of M.

Proof. Let
K
U

be a submodule of
M
U

for submodule K of M containing U. Our aim is

to show that
K
U

is G*s. Since K is tG*s, it follows from Proposition 8 that K is totally

supplemented. By ([1], Theorem 2.8),
K
U

is totally supplemented. Using ([1], Corollary 1.2),

we can say that
K
U

is amply supplemented. Hence, it easy to see from ([6], Proposition 3.11)

that
K
U

is G*s.

Proposition 10. Let M = A⊕ B be a distributive module for some submodules A and B of M. If
A and B are tG*s, then M is tG*s.

Proof. Take a submodule U of M. By the distributive property, U = (U ∩ A)⊕ (U ∩ B).
Since A and B are totally G*s, U ∩ A and U ∩ B are G*s. By Proposition 5, U is G*s, as
required.

Now we can adapt ([1], Lemma 4.2) to our situation.

Proposition 11. Let R be a commutative ring, and let M = M1 ⊕ M2 ⊕ . . . ⊕ Mk be a finite
direct sum of tG*s Mi (1 ≤ i ≤ k) such that R = ann(Mi) + ann(Mj) for all 1 ≤ i < j ≤ k.
Then, M is tG*s.

Proof. Suppose that Mi is tG*s for all 1 ≤ i ≤ k. Consider the submodule U of M. Then,
U = (U ∩M1)⊕ . . .⊕ (U ∩Mk) from ([1], Lemma 4.1). Since U ∩Mi ⊆ Mi for i = 1, . . . , k
and Mi’s are tG*s, U ∩Mi is G*s. Proposition 6 states that U is G*s. Therefore, M is tG*s.

Proposition 12 is analogous to ([1], Theorem 2.9). However, the distributive property
is needed in our result.

Proposition 12. Let M = M1⊕M2 for submodules M1 and M2 of M such that M2 is semisimple.
If M is distributive, then M is tG*s if, and only if, M1 is tG*s.

Proof. (⇒) Suppose that M is tG*s. By Proposition 9, M1 is tG*s, since
M
M2
∼= M1 (⇐) Let

U be a submodule of M. Since M2 is semisimple, M2 = (U ∩M2)⊕ K for some submodule
K of M2. Here, U ∩ M2 ∩ K = U ∩ K = 0. Then, M = M1 ⊕ M2 = M1 ⊕ (U ∩ M2) ⊕
K. By modularity, U = (U ∩ M2) ⊕ (U ∩ (M1 ⊕ K)). Let H = U ∩ (M1 ⊕ K), that is,
U = (U ∩M2)⊕ H. Then, H ∩ K = U ∩ (M1 ⊕ K) ∩ K = U ∩ K = 0. Hence, H embeds
in M1. By hypothesis, H is G*s. Since M2 is semisimple, U ∩M2 is also semisimple. By
Example 1, U ∩M2 is G*s. Thus, U is G*s, based on Proposition 5. As a result, M is tG*s.

Proposition 13. Let M be a refinable tG*s. Then, for each submodule U of M, U = S + A such
that S is a supplement submodule of M and A� M.

Proof. Let U be a submodule of M. From assumption, we can say that M is G*s. Then,
Uβ*S for a supplement submodule S of M. Namely, M = S + X and S ∩ X � S for some
submodule X of M. Following ([12], 19.3), we can say that S ∩ X � M. Consequently,
X is a weak supplement of S in M. Moreover, ([6], Theorem 2.6) states that X is a weak
supplement of U in M. This implies that M = U + X and U ∩ X � M. To see the result,
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we follow the refinable property. Then, for a direct summand A′ of M, A′ ⊆ U and also
M = A′ + X. It turns out that U = U ∩ (A′ + X) = A′ + (U ∩ X) by modular law.

Proposition 14. Let M be tG*s over a left V-ring and U be a submodule of M. Then, U is a direct
summand in M.

Proof. Since every tG*s is G*s, the proof is proved by Proposition 7.

4. Conclusions

In this work, we have investigated the modules with submodules that are Goldie*-
supplemented (G*s) modules. The interesting results we obtained allowed us to characterize
totally Goldie*-supplemented (tG*s) modules. One of the interesting results is that the
factor module of a tG*s module is also tG*s. We have shown that the finite direct sum of
G*s (tG*s) is also G*s (tG*s) under the distributive property. Furthermore, we have proved
that M is tG*s if, and only if, the direct summand of M is tG*s by using the distributive
property. Moreover, every submodule of G*s (tG*s) over a left V-ring is a direct summand.
Specifically, we have indicated the connection between G*s, tG*s, totally supplemented,
and supplemented modules, provided that these modules coincide under the refinable
condition. The theory of supplemented modules, totally supplemented modules, and their
variations has been actively studied and is still being studied. There is potential for future
work in the study of rings whose modules are tG*s. In addition, it may be intriguing to
examine totally cofinitely Goldie*-supplemented modules.
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