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Abstract: This paper discusses the classification of fuzzy metrics based on their continuity conditions,
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types of fuzzy metrics, concluding that a Deng metric in [0, 1]-topology must also be Erceg, Chen, and
Shi metrics. This paper also proves that the product of countably many Deng pseudo-metric spaces
remains a Deng pseudo-metric space, and demonstrates some σ-locally finite properties of Deng
metric space. Additionally, this paper constructs two interrelated mappings based on normal space
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1. Introduction

In general topology, given a topological space (X, δ), it is natural to ask whether there
is a metric for X such that δ is the metric topology. Such a metric metricizes the topological
space and the space is said to be metrizable. Around the 1950s, through the efforts of
R.H. Bing [1], Y.M. Smirnov and C.H. Dowker [2], J. Nagata [3], and M.H. Stone [4], this
problem was satisfactorily solved and, eventually, their comprehensive proposition is called
Nagata–Smirnov metrization admittedly in general topology, unquestionably, which is
the most important theorem of topology. By that time, the main theory of topology had
been perfected. However, scholars engaged in academic research never stopped exploring
the unknown areas and sought new ways to gain a breakthrough in topological theory.
In 1968, C.L. Chang [5] introduced the fuzzy set theory of Zadeh [6] into topology for
the first time, which declared the birth of [0, 1]-topology. Soon after that, J.A. Goguen [7]
further generalized L-fuzzy set to the proposed [0, 1]-topology and his theory is now
recognized as L-topology. From then on, this kind of lattice-valued topology formed
another important branch of topology, and thereafter many creative results and original
thoughts were presented (see [8–31], etc.).

Nevertheless, how to generalize classical metrics to the lattice-valued topology rea-
sonably has always been a great challenge. So far, there have been some fuzzy metrics
introduced in the branch of learning (see [9,13,15,16,28,32–34], etc.). Considering the
codomain is either an ordinary number or a fuzzy number, these metrics are roughly
divided into two types.

One type is composed of these metrics, each of which is defined by such a function
whose distance between objects is fuzzy, while the objects themselves are crisp. Addition-
ally, each of them always induces a fuzzifying topology. In recent years, these metrics
have been promoted by quite a few experts, such as I. Kramosil, J. Michalek, A. George,
P. Veeramani, V. Gregori, S. Romaguera, J. Gutiérrez García, S. Morillas, and F.G. Shi, etc.
(see [16,17,27,35–46], etc.).
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The other type consists of these metrics, each of which is defined by such a mapping
p : M×M → [0,+∞), where M is the set of all standard fuzzy points of the underlying
classical set X. In this case, every such fuzzy metric always induces a fuzzy topology
(see [9,13–15,28,30], etc.).

About the latter, there are roughly three kinds of fuzzy metrics in history, with which
the academic community has gradually been familiar. In addition, there is the recently
discovered fourth metric. We will list the four fuzzy metrics below, one by one.

The first is the Erceg metric, which was presented in 1979 by M.A. Erceg [15]. Since
then, many scholars have been engaged in this research and have obtained many beautiful
results. Among them, a typical proposition can be found in [24], where J.H. Liang showed
Urysohn’s metrization theorem in 1984: an L-topological space is Erceg metrizable if it is T1,
regular, and CI I . In 1985, M.K. Luo [25] constructed an example of the Erceg metric on IX

whose metric topology has no σ-locally finite base, which implies that the [0, 1]-topological
space of this example is not CI I of course, but then Liang’s conclusion is still the best one.
In this paper, Liang’s conclusion is only a corollary of our result in [0, 1]-topology. Later on,
based on Peng’s simplification method [47], the Erceg metric was further simplified by P.
Chen and F.G. Shi (see [12,48]):

(I) An Erceg pseudo-metric on LX is a mapping p : M×M→ [0,+∞) satisfying

(A1) If a ≥ b, then p(a, b) = 0;

(A2) p(a, c) ≤ p(a, b) + p(b, c);

(B1) p(a, b) =
∨

c�b
p(a, c);

(A3) ∀a, b ∈ M, ∃x 6≤ a′ s.t. p(b, x) < r ⇔ ∃y 6≤ b′ s.t. p(a, y) < r.

An Erceg pseudo-metric p is called an Erceg metric if it further satisfies

(A4) If p(a, b) = 0, then a ≥ b,

where “� ” is the way-below relation in Domain Theory and LX is a completely distribu-
tive lattice [49,50].

The second is Shi metric (or p.q. metric), which is proposed in 1988 by L.C. Yang [30].
It was proved by Yang that each topological molecular lattice with CI I property is p.q.-
metrizable (refer to [30,50] for details). After that, this kind of metric was studied in depth
by F.G. Shi (see [12,28,48,51,52], etc.). Its definition is as follows:

(II) A Shi pseudo-metric (resp., Shi metric) on LX is a mapping p : M×M→ [0,+∞)
satisfying (A1)–(A3) (resp., (A1)–(A4)) and the following

(B2) p(a, b) =
∧

c�a
p(c, b).

Similarly, according to our later proofs in this paper, Yang’s proposition is still a
corollary of our result in [0, 1]-topology.

The third is Deng metric supplied in 1982 by Z.K. Deng [13], where Deng [14] showed
that if a [0, 1]-topological space is T1, regular and CI I then it is Deng metrizable. In this
paper, we will extend this result substantially. Incidentally, Y.Y. Lan and F. Long also
provided a result about Deng pseudo-metrization problem [53]. However, the proof was
not completely right after careful checking pointed out by us. It is worth mentioning that,
since Deng’s research is only limited to this special lattice IX, Deng pseudo-metric was
later extended to LX by P. Chen [54]:

(III) An extended Deng pseudo-metric (resp., extended Deng metric) on LX is a
mapping p : M×M→ [0,+∞) satisfying (A1)–(A3) (resp., (A1)–(A4)) and the following:

(B3) p(a, b) =
∧

b�c
p(a, c).
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In summary, the above three kinds of fuzzy metrics are defined by using (A1)–(A4)
and different (B1)–(B3), respectively. Inspired by this, we conclude that there is another
new metric defined as follows:

(IV) A Chen pseudo-metric (resp., Chen metric) on LX is a mapping p : M×M →
[0,+∞) satisfying (A1)–(A3) (resp., (A1)–(A4)) and the following:

(B4) p(a, b) =
∨

a�c
p(c, b).

Some elementary properties related to it have been introduced in [9].
In this paper, we will focus mainly on the latter and study its metrization problem in

[0, 1]-topology. For this reason, we investigate the relationships between (I)–(IV) on IX and
fortunately acquire such a profound result: let C = { p | p be a Chen metric}, E = { p | p is
an Erceg metric }, D = { p | p is a Deng metric } and Y = { p | p is a Shi metric } on IX.
Then D = C ∩Y ∩ E.

Consequently, if a given [0, 1]-topology is Deng-metrizable, then it must be Erceg-, Shi-,
and Chen-metrizable. Thus, this paper mainly will discuss Deng metric and its metrization
problem in [0, 1]-topology.

To sum up, although so many scholars have been engaged in the study of fuzzy
metrics, it is a little pity that the metrization problem in [0, 1]-topology remains unsolved
now. This paper aims to study the metrization problem in [0, 1]-topology and will obtain
the generalization of Nagata–Smirnov metrization theorem in [0, 1]-topology.

2. Preliminaries

In this section, we cite the fundamental definitions that will be used in the sequel.
The letter X always refers to a nonempty set throughout this paper, and I denotes the unit
interval [0, 1].

A fuzzy set of X is a mapping A : X → I, which forms the family IX. The constant
fuzzy set of X with the value 1 (resp., 0) is denoted by 1 (resp., 0). A fuzzy point (resp.,
standard fuzzy point) xλ in X is a fuzzy set defined by xλ(x) = λ and xλ(y) = 0 if y 6= x,
where λ is a fixed number in (0, 1) (resp., (0, 1]). The set of all fuzzy points (resp., all
standard fuzzy points) of X is denoted by M0 (resp., M). M0 is a subfamily of M. Naturally,
these properties of M0 and M are also suitable for L-topology.

A subfamily δ of IX is called a [0, 1]-topology if it satisfies the following three con-
ditions: (O1) 1, 0 ∈ δ; (O2) if A, B ∈ δ, then A ∧ B ∈ δ; (O3) if {Aλ | λ ∈ Λ} ⊆ δ, then∨
λ∈Λ

Aλ ∈ δ. The pair (X, δ) is called a [0, 1]-topological space (a space for short). If δ ⊆ IX ,

then for each A ∈ δ, A and A′ are called a δ-fuzzy open set and a δ-fuzzy closed set (open
set and closed set for short), respectively.

Two fuzzy sets A and B are called quasi-coincident if there exists x belonging to X
such that A(x) + B(x) > 1 (see [55]). Let xα be a fuzzy point and let A be a fuzzy set of
X. The notation xα ∈ A means α < A(x) [13]. The closure of a fuzzy set A of (X, δ) is the
intersection of the members of the family of all closed sets containing A, denoted by A [13].
A fuzzy point xα is called a cluster point of a fuzzy set U of (X, δ) if each open neighborhood
of x1−α is quasi-coincident with U. Consequently, xα ≤ A if and only if xα is a cluster point
of A. Therefore, A =

∨{yβ | yβ is a cluster point of A} [13].
The space (X, δ) is called regular (resp., normal) if for any xλ ∈ M0 (resp., τ′ ∈ δ),

µ ∈ δ with xλ ∈ µ (resp., τ ≤ µ), there exists υ belonging to δ such that xλ ∈ υ ≤ υ ≤ µ
(resp., τ ≤ υ ≤ υ ≤ µ) [21]. A [0, 1]-topological space is T1 if and only if xλ is closed for
each fuzzy point xλ ∈ M0. A family ψ of fuzzy sets is a base of δ if ψ is a subfamily of δ and
for each fuzzy point xλ and each open neighborhood µ of xλ, there is a member υ of δ such
that xλ ∈ υ ≤ µ. A family κ of fuzzy sets is a subbase of δ if the family of finite intersections
of members of κ is a base of δ [13,56]. The space (X, δ) is CI I , or called second-countable if
the [0, 1]-topology δ has a countable basis.

A family of fuzzy sets Ψ is called locally finite (resp., discrete) in a space (X, δ) if
and only if each fuzzy point xλ of the space has its an open neighborhood which is quasi-
coincident with only finitely many members (resp., at most one member) of Ψ (see [50]).
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A family of fuzzy sets is called σ-locally finite (resp., σ-discrete) in a space (X, δ) if and
only if it is the union of a countable number of locally finite (resp., discrete) subfamilies. A
subfamily σ of IX (resp., σ of δ) is called a (resp., an open) cover of a fuzzy set A in a space
(X, δ) if for each xα ∈ A, there exists B belonging to σ such that xα ∈ B. Furthermore, if
A = 1, then σ is called a cover of (X, δ). A cover B of a fuzzy set A is called a refinement of
a cover D if each member of B is a subset of a member of D [50].

Let {Xt}t∈T be an indexed family of sets. The Cartesian product of this indexed family,
denoted by ∏

t∈T
Xt, is the set of all functions x : T → ⋃

t∈T
Xt such that x(t) ∈ Xt for each

t ∈ T.
Let X = ∏

t∈T
Xt. Then, the t-th projection Jt : IX → IXt is defined by Jt(A)(yt) =

sup{A(x) | xt = yt} for each yt ∈ Xt and let J−1
t (B) =

∨{C ∈ IX | Jt(C) ≤ B}. The
product space of {(Xt, δt) | t ∈ T} is defined by {J−1

t (At) | At ∈ δt, t ∈ T} as a subbase [50].
Other unexplained terminologies and notations and further details can be found

in [7,9,13,50,56].

Definition 1 ([9,13]). A Deng pseudo-metric on IX is a mapping p : M0 × M0 →
[0,+∞) satisfying

(D1) If λ1 ≥ λ0, then p(xλ1 , xλ0) = 0;

(D2) p(xλ1 , zλ3) ≤ p(xλ1 , yλ2) + p(yλ2 , zλ3);

(D3) p(xλ1 , yλ2) =
∧

λ>λ2

p(xλ1 , yλ);

(D4) p(xλ1 , yλ2) = p(y1−λ2 , x1−λ1).

A Deng pseudo-metric p is called a Deng metric if it further satisfies the following:

(D5) If p(xλ1 , yλ2) = 0, then x = y, λ1 ≥ λ2.

Remark 1. In [54], we have proved the following results: (1) a Deng metric p on IX can be
extended to an extended Deng metric p∗; (2) p = p∗ | M0 ×M0; (3) p∗ and p induce the same
metric topology.

Based on the above (1)–(3), it is much easier to study the Deng metric by using
Definition 1 instead of (III) on IX as its definition. A similar treatment to (I), (II), and (VI)
on IX is to restrict their domains to M0 and use (D4) instead of (A3) while other conditions
remain unchanged.

Theorem 1 ([13]). Let p be a Deng pseudo-metric (resp., a Deng metric) on IX . For each r ∈ [0, 1)
define Ur(a) =

∨{b ∈ M0 | p(a, b) < r}. Then the family {Ur(a) | a ∈ M0, r ∈ [0,+∞)} forms
a base of δp, called the [0, 1]-topology induced by p. The space (X, δp) is called a Deng pseudo-metric
space (resp., a Deng metric space).

Theorem 2 ([13]). If p is a Deng pseudo-metric on IX , then (X, δp) is regular, normal.

In [13], Deng has proved such a result: If (X, δ) is regular and CI I , then it is normal [13].
It is a special case of the following result:

Theorem 3 ([9,50]). If (X, δ) is regular, and δ has a σ–locally finite base, then it is normal.

Theorem 4 ([13,50]). If {Aλ | λ ∈ Γ} is locally finite in a space (X, δ), then
∨

λ∈Γ
Aλ =

∨
λ∈Γ

Aλ.

Theorem 5 ([52]). Suppose that (X, δ) is normal, and let a closed set A and an open set B satisfy
A ≤ B. Then there is a family {Ur | r ∈ Q[0,1]} such that each element is an open neighborhood of
A and satisfies the following properties:
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(a) U0 = A, U1 = B;

(b) If r < s, then Ur ≤ Ur ≤ Us.

Theorem 6 ([52]). Let p be a Shi pseudo-metric on LX and define Pr(b) =
∨{c ∈ M | p(c, b) ≥ r}.

Then for c, b ∈ M, c ≤ Pr(b)⇔ p(c, b) ≥ r.

Theorem 7. Let p be a Deng pseudo-metric on IX. For any a ∈ M0 and each r ∈ [0, 1) define
Br(a) =

∨{b ∈ M0 | p(a, b) ≤ r}. Then

(1) Br(a) = Br(a);

(2) b ≤ Br(a)⇔ p(a, b) ≤ r.

Proof. Because of the following Theorem 9, Theorem 10, and the existing proposition [12]:
If p is an Erceg pseudo-metric on IX, then it satisfies (1) and (2). This theorem holds
as desired.

3. The Relationships between Four Kinds of Fuzzy Metrics on IX

In this section, we will investigate the relationships between the four kinds of metrics:
Erceg, Shi, Deng, and Chen metrics. First of all, we expose the main result as follows:

Theorem 8. On IX , let C = { p | p be a Chen metric }; E = { p | p is an Erceg metric}; D = {
p | p is a Deng metric }; Y = { p | p is a Shi metric}. Then D = C ∩Y ∩ E.

Proof. It can be obtained from the following Theorem 9–12.

Theorem 9. If p is a Shi pseudo-metric on IX , then it is an Erceg pseudo-metric.

Proof. To prove that p is an Erceg pseudo-metric on IX, we only need to prove that
p(xα, yβ) =

∨
γ<β

p(xα, yγ). The proof is as follows:

By (A1) and (A2), when γ < β, we have p(xα, yγ) ≤ p(xα, yβ). Hence p(xα, yβ) ≥∨
γ<β

p(xα, yγ). If p(xα, yβ) >
∨

γ<β
p(xα, yγ), then we may take two different numbers s, r > 0

such that
p(xα, yβ) > s > r ≥

∨
γ<β

p(xα, yγ).

In addition, for each γ < β, by triangle inequality p(xα, yβ) ≤ p(xα, yγ) + p(yγ, yβ),
we have

s < p(xα, yβ) ≤ p(yγ, yβ) + r.

Therefore, p(yγ, yβ) > s− r, so that p(yβ, yβ) =
∧

γ<β
p(yγ, yβ) ≥ s− r > 0. But this

contradicts (A1), as desired.

However, the converse is not true. Such a counterexample is given below.

Example 1. Let L = [0, 1] and X = {x}. For convenience, we denote LX and xλ for L and λ
respectively. Define a mapping p : (0, 1]× (0, 1]→ [0,+∞) by:

p(a, b) =
{

0, if a ≥ b;
1, if a < b.

Firstly, let us verify that p is an Erceg pseudo-metric on [0, 1].
(A1) and (A2) are trivial.
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(B1) if a, b ∈ (0, 1] and a ≥ b, then p(a, b) = 0. Therefore, we have
∨

x<b
p(a, x) = 0,

so that in this case p(a, b) =
∨

x<b
p(a, x). Similarly, when a < b, we can prove p(a, b) =∨

x<b
p(a, x) = 1. Consequently, p satisfies (B1).

(A3) we only need to prove that
∧

y>1−b
p(a, y) =

∧
x>1−a

p(b, x), which can be obtained

from the following implications:
∧

y>1−b
p(a, y) = 1⇔ y > 1− b implies y > a ⇔ 1− b ≥

a⇔ x > 1− a implies x > b⇔ ∧
x>1−a

p(b, x) = 1.

Secondly, we assert that p is not a Shi pseudo-metric. In fact, for any a ∈ (0, 1], we
have p(a, a) = 0. But

∧
c<a

p(c, a) = 1. Thus p(a, b) 6= ∧
c<a

p(c, b), as desired.

Theorem 10. If p is a Deng pseudo-metric on IX , then it is a Shi pseudo-metric.

Proof. For any two fuzzy points xa and yb, we only need to prove p(xa, yb) =
∧

c<a
p(xc, yb).

If c < a, then p(xa, yb) ≤ p(xc, yb). So p(xa, yb) ≤
∧

c<a
p(xc, yb). If p(xa, yb) = r <∧

c<a
p(xc, yb) = t, then by (D4) we have p(y1−b, x1−a) = r < t, so that by (D3) there exists

a number s > 1− a such that p(y1−b, xs) < t, i.e., p(x1−s, yb) < t. But that contradicts∧
c<a

p(xc, yb) = t. Consequently, p(xa, yb) =
∧

c<a
p(xc, yb), as desired.

Conversely, we have the following proposition:

Theorem 11. If a Shi pseudo-metric p further is a Chen pseudo-metric on IX, then p is a Deng
pseudo-metric.

To prove this, we first need to prove the following two Lemmas 1 and 2.

Lemma 1. Let p be a Shi pseudo-metric on IX and for each r ∈ [0, 1) define Ur(a) =
∨{b ∈ IX |

p(a, b) < r}. Then Ur(yλ) =
∨

α>1−λ
Pr(yα)′.

Proof. Let xβ ∈
∨

α>1−λ
Pr(yα)′ and take γ such that xβ < xγ ≤

∨
α>1−λ

Pr(yα)′. Because

1− γ ≥ ∧
α>1−λ

Pr(yα)(x), there exists a number α > 1− λ such that 1− γ ≥ Pr(yα)(x),

and then for each δ > 1− γ we have δ > Pr(yα)(x). Therefore by Theorem 6, we can
obtain p(xδ, yα) < r. Again by (A3) in (I) ((A3) on the special case IX of LX is for any
xλ1 , yλ2 , ∃t > 1− λ1 s.t. p(yλ2 , xt) < r ⇔ ∃s > 1− λ2 s.t. p(xλ1 , ys) < r), there exists
xω(xδ) (xω has something to do with xδ) with ω > 1− δ such that p(yλ, xω) < r. Let
xq =

∨{xω(xδ) | δ > 1− γ}. Then xδ 6≤ x1−q, i.e., xδ > x1−q. This implies that, as long
as xδ > x1−γ, it must hold that xδ > x1−q. Thus xγ ≤ xq. Since xβ < xγ ≤ xq, there exists
xω(xδ) such that xβ ≤ xω, and so p(yλ, xβ) ≤ p(yλ, xω) < r. Hence xβ ≤ Ur(yλ). Because
xβ is arbitrary, we have

∨
α>1−λ

Pr(yα)′ ≤ Ur(yλ).

Conversely, let xα ∈ Ur(yλ). Then p(yλ, xα) < r. For each xβ > x1−α, i.e., α > 1− β,
by (A3) there exists γ > 1− λ such that p(xβ, yγ) < r, and then by Theorem 6, xβ 6≤ Pr(yγ).
Hence xβ 6≤

∧
γ>1−λ

Pr(yγ). That is to say, as long as xβ > x1−α, i.e., xβ 6≤ x1−α, it is true

that xβ 6≤
∧

γ>1−λ
Pr(yγ). Consequently,

∧
γ>1−λ

Pr(yγ)(x) ≤ x1−α, i.e., xα ≤
∨

γ>1−λ
Pr(yγ)′.

Because xα is arbitrary, we have Ur(yλ) ≤
∨

γ>1−λ
Pr(yγ)′, as desired.

Lemma 2. If p is a Shi pseudo-metric on IX , then
∨

α>1−λ1

p(xα, yλ2) =
∨

β>1−λ2

p(yλβ
, xλ1).
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Proof. Denote
∨

α>1−λ1

p(xα, yλ2) =
∨

β>1−λ2

p(yλβ
, xλ1) as (H1). Then it is easy to check that

(H1) is equivalent to the following property:
(H1)∗ ∃α > 1− λ1 s.t. p(xα, yλ2) > r ⇔ ∃β > 1− λ2 s.t. p(yλβ

, xλ1) > r.
Now, let us prove (H1)∗.
Assume that there is α with α > 1− λ1 such that p(xα, yλ2) > r. Take a number s

such that p(xα, yλ2) > s > r. By the process of proving of Theorems 7 and 9, we assert that
λ2 > Bs(xα)(y). Therefore, by Lemma 1, we can obtain the following formula:

λ2 > Bs(xα)(y) ≥ Us(xα)(y) =
∨

γ>1−α

Ps(xγ)
′(y).

Thus, for every γ > 1 − α it is true that λ2 > Ps(xγ)′(y). That is to say, as long
as α > 1− λ1, i.e., xλ1 6≤ x1−α such that p(xα, yλ2) > r, it is true that λ2 > Ps(xλ1)

′(y),
i.e., 1− λ2 < Ps(xλ1)(y). So there exists yω such that y1−λ2 < yω ≤ Ps(xλ1), and then
p(yω, xλ1) ≥ s > r by Theorem 6; similarly, so is the reverse, as desired.

Proof. The proof of Theorem 11 is as follows:
Let p be a Shi pseudo-metric on IX and it satisfies p(xλ2 , yλ1) =

∨
s>λ2

p(xs, yλ1). Then

we only need to prove that p satisfies (D3) and (D4).
(D4). Given any xλ1 , yλ2 ∈ M0. According to Lemma 2, we have∨

α>1−λ1

p(xα, yλ2) =
∨

β>1−λ2

p(yλβ
, xλ1),

and then p(x1−λ1 , yλ2) = p(y1−λ2 , xλ1).
(D3). By (D1) and (D2), if λ3 > λ1, then p(yλ2 , xλ1) ≤ p(yλ2 , xλ3). Thus, p(yλ2 , xλ1) ≤∧

λ3>λ1

p(yλ2 , xλ3).

Conversely, take any r with r ∈ (0,+∞) such that p(yλ2 , xλ1) < r. Then by (D4) and
(B1) we have

p(yλ2 , xλ1) = p(x1−λ1 , y1−λ2) =
∧

h<1−λ1

p(xh, y1−λ2) < r.

Therefore, there at least exists h with h < 1 − λ1 such that p(xh, y1−λ2) < r, i.e.,
p(yλ2 , x1−h) < r. Let 1− h = λ3. Then h < 1− λ1 ⇔ λ1 < 1− h = λ3 and p(yλ2 , xλ3) < r.
Consequently, p(yλ2 , xλ1) ≥

∧
λ3>λ1

p(yλ2 , xλ3), as desired.

Theorem 12. If p is a Deng pseudo-metric on IX , then it is a Chen pseudo-metric.

Proof. We only need to prove that p(xα, yβ) =
∨

α<γ
p(xγ, yβ). By (D1) and (D2) we have

p(xα, yβ) ≥
∨

α<γ
p(xγ, yβ). If p(xα, yβ) >

∨
α<γ

p(xγ, yβ), then there exist two numbers s

and r such that p(xα, yβ) > s > r ≥ ∨
α<γ

p(xγ, yβ). Therefore, for any γ > α we have

s < p(xα, yβ) ≤ p(xα, xγ) + p(xγ, yβ) ≤ p(xα, xγ) + r, and then s− r < p(xα, xγ). Hence
0 < s− r ≤ ∧

α<γ
p(xα, xγ) = p(xα, xα) = 0. But this is a contradiction, and then it must hold

p(xα, yβ) =
∨

α<γ
p(xγ, yβ), as desired.

Theorem 13. If p is a Chen pseudo-metric on IX and satisfies the property
∨

s>1−λ1

p(xs, yλ2) =∨
t>1−λ2

p(yt, xλ1), then p is an Erceg pseudo-metric.
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Proof. From
∨

s>1−λ1

p(xs, yλ2) =
∨

t>1−λ2

p(yt, xλ1) and p(xα, yβ) =
∨

γ>α
p(xγ, yβ), we can

obtain p(x1−λ1 , yλ2) = p(y1−λ2 , xλ1), and then∨
s<λ1

p(yλ2 , xs) =
∨

s<λ1

p(x1−s, y1−λ2)

=
∨

1−s>1−λ1

p(x1−s, y1−λ2) = p(x1−λ1 , y1−λ2) = p(yλ2 , xλ1).

Consequently, p is an Erceg pseudo-metric, as desired.

Conversely, we have the following result:

Theorem 14. If p is an Erceg pseudo-metric on IX and satisfies the property p(x1−λ1 , yλ2) =
p(y1−λ2 , xλ1), then p is a Chen pseudo-metric.

Proof. Since p(x1−λ1 , yλ2) = p(y1−λ2 , xλ1), we have the following equation:∨
t>λ2

p(yt, xλ1) =
∨

t>λ2

p(x1−λ1 , y1−t)

=
∨

1−t<1−λ2

p(x1−λ1 , y1−t) = p(x1−λ1 , y1−λ2) = p(yλ2 , xλ1).

Therefore, p is a Chen pseudo-metric, as desired.

In summary, because of Theorem 8 in this section, we have asserted that, if a given
[0, 1]-topology δ is Deng-metrizable, then δ must be Erceg-, Shi-, and Chen-metrizable.
For this reason, next, we will mainly focus on the Deng metric and its metrization in
[0, 1]-topology.

4. The Product of Countable Metric Spaces

In this section, let Q[0,1] be the set of all rational numbers in [0, 1], let ω = {1, 2, · · · , n,
· · · }, and let X = ∏

n∈ω
Xn, where Xn (n ∈ ω) is a nonempty set. For clarity, the set of all

fuzzy points in X is denoted by M0(X ), and for y ∈ X , y = (y1, y2, · · · , yn, · · · ).

Theorem 15. Let p be a Deng pseudo-metric on IX and let e(xα, yβ) = min[1, p(xα, yβ)]. Then
(X, δe) is a Deng pseudo-metric space whose topology δe is identical to that of (X, δp).

Consequently, each pseudo-metric space (X, δp) is homomorphic to a pseudo-metric space
(X, δe), where the range of e is the unit interval [0, 1].

Proof. The proof is trivial and omitted.

Theorem 16. Let {(Xn, δpn) | n ∈ ω} be a sequence of Deng pseudo-metric spaces, and the range
of pn (n ∈ ω) is the unit interval [0, 1]. Define a mapping p : M0(X )×M0(X )→ [0, 1] by:

p(xα, yβ) = ∑
n∈ω

2−n pn(Jn(xα), Jn(yβ)),

where Jn : IX → IXn is the n-th projection (see 2. Preliminaries on Jn). Then

(1) For each n ∈ ω, pn(Jn(xα), Jn(yβ)) =
∧

τ>β
pn(Jn(xα), Jn(yτ));

(2) The mapping p is a Deng pseudo-metric on IX ;

(3) The space (X , δp) is the product space of {(Xn, δpn) | n ∈ ω}.
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Proof. (1) Since Jn(yβ) = yn
β (n ∈ ω), we have

pn(Jn(xα), Jn(yβ)) = pn(Jn(xα), yn
β) =

∧
τ>β

pn(Jn(xα), yn
τ) =

∧
τ>β

pn(Jn(xα), Jn(yτ)).

(2) Since pn (n ∈ ω) satisfies (D1) and (D2), it is easy to check that p also satisfies (D1)
and (D2).

(D3) First, by the definition of p and (1), we have

p(xα, yβ) = ∑
n∈ω

2−n pn(Jn(xα), Jn(yβ)) = ∑
n∈ω

2−n ∧
τ>β

pn(Jn(xα), Jn(yτ))

≤ ∧
τ>β

∑
n∈ω

2−n pn(Jn(xα), Jn(yτ))

=
∧

τ>β
p(xα, yτ).

Conversely, let p(xα, yβ) = r. Then, for any ε > 0 we have

p(xα, yβ) =∑
n∈ω

2−n pn(Jn(xα, Jn(yβ)) =∑
n∈ω

2−n∧
τ>β

pn(Jn(xα), Jn(yτ)) < r + ε.

Let rn = 2−n ∧
τ>β

pn(Jn(xα), Jn(yτ)). Then
∧

τ>β
pn(Jn(xα), Jn(yτ)) < 2n × rn + ε. There-

fore, for each n there is a number τn with τn > β such that pn(Jn(xα), Jn(yτn)) < 2n × rn + ε.
Hence we have

∑
n∈ω

2−n pn Jn(xα), Jn(yτn)) < ∑
n∈ω

rn + ε ∑
n∈ω

2−n = r + ε.

Given every fixed natural number n, we can take a number µn with µn > β such that
µn ≤ min{τ1, τ2, · · · , τn}. Thus for any natural number m, we have

m
∑

i=1
2−i pi(Ji(xα), Ji(yµm)) +

∞
∑

i=m+1
2−i pi(Ji(xα), Ji(yτi ))

≤
∞
∑

i=1
2−i pi(Ji(xα), Ji(yτi )) < r + ε,

which is equivalent to the following inequality:

∞

∑
i=1

2−i pi(Ji(xα), Ji(yµm)) +
∞

∑
i=m+1

2−i[pi(Ji(xα), Ji(yτi ))− pi(Ji(xα), Ji(yµm))]<r + ε.

Consequently, for the fixed natural member m, we have

∞
∑

i=1
2−i pi(Ji(xα), Ji(yµm))

< r + ε−
∞
∑

i=m+1
2−i[pi(Ji(xα), Ji(yτi ))− pi(Ji(xα), Ji(yµm))]

= r + ε +
∞
∑

i=m+1
2−i[pi(Ji(xα), Ji(yµm))− pi(Ji(xα), Ji(yτi ))]

≤ r + ε +
∞
∑

i=m+1
2−i pi(Ji(yτi ), Ji(yµm))

≤ r + ε +
∞
∑

i=m+1
2−i.

Hence

∧
t>β

p(xα, yt) ≤
∧

µm>β

p(xα, yµm) =
∧

µm>β

∞

∑
i=1

2−i pi(Ji(xα), Ji(yµm)) ≤ r + ε.
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Because ε is arbitrary, we can obtain
∧

τ>β
p(xα, yτ) ≤ r = p(xα, yβ). Therefore, p

satisfies (D3).
(D4) Since it holds that pn(Jn(xα), Jn(yβ)) = pn(Jn(y1−β), Jn(x1−α)) for each n ∈ ω,

we conclude that p(xα, yβ) = p(y1−β, x1−α).
(3) First, let (X , δ) be the product space of {(Xn, δpn), n ∈ ω}. For any V ∈ δp and

xα ∈ V, there is an open neighborhood Ur(xα) of xα such that Ur(xα) ≤ V, where

Ur(xα) =
∨
{yβ | p(xα, yβ) =

∞

∑
i=1

2−n pn(Jn(xα), Jn(yβ)) < r}.

Taking a natural member q with 1
2q < r, we can get U 1

2q
(xα) ≤ V. Thus, if we define

W =
∨
{zγ | pn(Jn(xα), Jn(zγ)) <

1
2q+n+2 , n ≤ q + 2},

then W ≤ U 1
2q
(xα). This is because when zγ ∈W, we always have

p(xα, zγ) <
n=q+2

∑
n=1

1
2q+n+2 +

∞

∑
n=q+3

1
2n <

1
2q+2 +

1
2q+2 =

1
2q+1 <

1
2q .

Clearly, W is an open set in the product topology δ since it can be generated by the
subbase of the product space (X , δ). Therefore, we conclude that V is an open set in (X , δ).
Consequently, δp ⊆ δ.

Conversely, let U =
∨{xα | xn

α ∈ V}, where V is an open set of some δpn . Then U
is a member of the subbase of δ. If xα ∈ {xα | xn

α ∈ V}, then there is an open set Ur(xn
α)

(see Theorem 1 on Ur) belonging to δpn such that Ur(xn
α) ≤ V. Therefore, J−1

n (Ur(xn
α)) ≤ U.

Since p(xα, yβ) ≥ 2−n pn(xn
α , yn

β), the open set U r
2n
(xα) of δp is a subset of U. In fact, if

p(xα, yβ) <
r

2n , then pn(xn
α , yn

β) < r. Hence U r
2n
(xα) ≤ J−1

n (Ur(xn
α)), and then U r

2n
(xα) ≤ U.

Therefore, U is the union of some open sets in δp. Consequently, δ ⊆ δp. To sum up, the
proposition is proved.

5. σ-Locally Finite Property

In this section, some σ-locally finite properties of Deng pseudo-metric space will be
examined based on a defined distance function between fuzzy sets.

Definition 2. Let p be a Deng pseudo-metric on IX . A distance function d : IX × IX → [0,+∞)
is defined by:

d[A, B] = inf{p(xα, yβ) | xα ∈ A, y1−β ∈ B}.

Let A, B ∈ IX , and xα ∈ M0. Then, by definition, it is easy to prove that d[A, x1−α] =
inf{p(yβ, xα) | yβ ∈ A}, d[xα, B] = inf{p(xα, yβ) | y1−β ∈ B} and d[A, B] = d[B, A].

Theorem 17. Let p be a Deng pseudo-metric on IX. If fuzzy sets U and V are quasi-coincident,
then d[U, V] = d[V, U] = 0.

Proof. Because U and V are quasi-coincident, there is x belonging to X such that U(x) +
V(x) > 1. Let U(x) = γ and V(x) = β. Given α with 1− β < α < γ, we have xα ∈ U. Take
a number λ satisfying α > λ > 1− β. Since x1−λ ∈ V, d[U, V] ≤ p(xα, xλ) = 0. Similarly,
d[V, U] = 0.

Theorem 18. Let p be a Deng pseudo-metric on IX. Suppose that U is an open cover of (X, δp),
and for each U of U and each positive integer n, define Un =

∨{xα | d[xα, U′] ≥ 1
2n }. Then

d[Un, U′n+1] ≥
1

2n+1 .
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Proof. Let xα ∈ Un and y1−β ∈ U′n+1. For any z1−γ ∈ U′, we can obtain p(xα, yβ) +
p(yβ, zγ) ≥ p(xα, zγ) ≥ d[xα, U′]. Hence, it is clear that

p(xα, yβ) + d[yβ, U′] ≥ d[xα, U′], i.e., p(xα, yβ) ≥ d[xα, U′]− d[yβ, U′].

Because of xα ∈ Un, there is xη belonging to U such that η > α and d[xα, U′] ≥ d[xη , U′] ≥ 1
2n .

Because of y1−β ∈ U′n+1, we assert that d[yβ, U′] < 1
2n+1 . Thus p(xα, yβ) ≥ d[xα, U′] −

d[yβ, U′] > 1
2n − 1

2n+1 = 1
2n+1 . Consequently, d[Un, U′n+1] ≥

1
2n+1 .

Since U is a nonempty set, we can select a partial order on U such that U is well
ordered, denoted by “≺” (see Theorem 25 in Chapter 0 of [56]: Every nonempty set can be
well ordered).

Theorem 19. Let p be a Deng pseudo-metric on IX and let the family U be an open cover of (X, δp).
Choose a relation ≺ which well orders the family U and for each U ∈ U and each n ∈ ω define
U∗n = Un ∧ (∨{Vn+1 | V ∈ U and V ≺ U})′. Then

(1) Either V∗n ≤ U′n+1 or U∗n ≤ V′n+1 is true, depending on whether U follows or precedes V in
the ordering;

(2) In either case, d[U∗n , V∗n ] ≥ 1
2n+1 .

Proof. (1) The proof is straightforward.
(2) It is easy to see that V∗n ≤ Vn. Furthermore, if V ≺ U, then U∗n ≤ V′n+1. Hence

d[U∗n , V∗n ] ≥ d[V′n+1, Vn] = d[Vn, V′n+1] ≥
1

2n+1 . Similarly, when U ≺ V, d[U∗n , V∗n ] ≥
1

2n+1 .

Theorem 20. Let p be a Deng pseudo-metric on IX and let the family U be an open cover of
(X, δp). Given U ∈ U and given any n ∈ ω, for each corresponding U∗n , define U∼n =

∨{xα |
d[U∗n , x1−α] <

1
2n+3 }. Then

(1) U∼n is an open set;

(2) d[U∼n , V∼n ] ≥ 1
2n+2 .

Proof. (1) Take a fuzzy point xα and a number sα such that they satisfy d[U∗n , x1−α] =
r < 1

2n+3 and 0 < sα < 1
2n+3 − r, respectively. It follows that d[U∗n , z1−γ] ≤ d[U∗n , x1−α] +

p(xα, zγ) < r + sα < 1
2n+3 for any zγ ∈ Usα(xα). Therefore, Usα(xα) ≤ U∼n , so that U∼n is

an open set. In addition, if d[U∗n , x1−α] <
1

2n+3 < 1
2n+1 , then there is yµ ∈ U∗n such that

p(yµ, xα) < 1
2n+1 . But according to d[U∗n , U′n+1] ≥ d[Un, U′n+1] ≥

1
2n+1 , it must hold that

xα ≤ Un+1(x). Thus U∼n ≤ Un+1 ≤ U.
(2) Taking xα ∈ U∼n and yβ ∈ V∼n such that d[U∗n , x1−α] <

1
2n+3 and d[V∗n , y1−β] <

1
2n+3 ,

we have p(zγ, xα) + p(xα, y1−β) ≥ p(zγ, y1−β) ≥ d[U∗n , yβ] for any zγ ∈ U∗n . Therefore, we
have d[U∗n , xα] + p(xα, y1−β) ≥ d[U∗n , yβ], so that

d[U∗n , xα] + p(xα, y1−β) + d[y1−β, V∗] ≥ d[U∗n , yβ] + d[y1−β, V∗n ].

Since for any zγ ∈ U∗n , p(zγ, y1−β) + p(y1−β, wα) ≥ p(zγ, wα) ≥ d[zγ, V∗n ] and w1−α ∈
V∗n , we have p(zγ, y1−β) + d[y1−β, V∗n ] ≥ d[zγ, V∗n ]. In addition, in view of d[zγ, V∗] ≥
d[U∗n , V∗], we can check that p(zγ, y1−β) + d[y1−β, V∗n ] ≥ d[U∗n , V∗n ]. Therefore, we assert
that d[U∗n , yβ] + d[y1−β, V∗n ] ≥ d[U∗n , V∗n ], so that

d[U∗n , x1−α] + p(xα, y1−β) + d[y1−β, V∗n ] ≥ d[U∗n , V∗n ].
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Additionally, from xα ∈ U∼n and d[U∗n , V∗n ] ≥ 1
2n+1 , we have the following inequalities:

p(xα, y1−β) ≥ d[U∗n , V∗n ]− d[U∗n , x1−α]− d[y1−β, V∗n ] >
1

2n+1 −
1

2n+3 − d[y1−β, V∗n ].

Note that yβ ∈ V∼n and d[y1−β, V∗n ] =
∧

xω∈V∗n
p(y1−β, x1−ω) =

∧
xω∈V∗n

p(xω, yβ) =

d[V∗n , y1−β] ≤ 1
2n+3 . Therefore, p(xα, y1−β) >

1
2n+1 − 1

2n+3 − 1
2n+3 = 1

2n+2 , so that d[U∼n , V∼n ] ≥
1

2n+2 , as desired.

Theorem 21. Let Vn be the family of all sets of the form U∼n (n ∈ ω). Given fuzzy point xα. Then

(1) If there is a fixed number r > 0 such that d[xα, V∼n ] > r for each V∼n ∈ Vn, then x1−α 6≤∨
U∼n ∈Vn

U∼n ;

(2) If such a fixed number r > 0 is non-existent, then x1−α ≤
∨

U∼n ∈Vn

U∼n ;

(3) If α ≤ 1
2 , then there at most exists a U∼n ∈ Vn such that x1−α ≤ U∼n .

Proof. (1) Given U∼n ∈ Vn, we have p(xα, y1−β) > r for all yβ ∈ U∼n . By Theorem 7, y1−β 6≤
Br(xα), so that y1−β 6≤ Ur(xα), i.e., Ur(xα)(y) + β < 1. Therefore, Ur(xα)(y) + U∼n (y) ≤ 1
for all y ∈ X. Hence for each V∼n ∈ Vn, Ur(xα) and V∼n are non-quasi-coincident, as desired.

(2) Because such a fixed number r is non-existent, for any εk > 0, there is V∼n(εk)
such

that d[xα, V∼n(εk)
] < εk. This means that each open neighborhood of xα is quasi-coincident

with
∨

U∼n ∈Vn

U∼n . Therefore, x1−α ≤
∨

U∼n ∈Vn

U∼n , as desired.

(3) Because α ≤ 1
2 , we conclude that p(x1−α, xα) = 0. Assume that there exist

two U∼n , V∼n ∈ Vn such that x1−α ≤ U∼n and x1−α ≤ V∼n . Then by d[xα, U∼n ] = 0 and
d[xα, V∼n ] = 0 we have

d[V∼n , xα] + p(x1−α, xα) + d[xα, U∼n ] ≥ d[V∼n , U∼n ] ≥ 1
2n+2 .

Note that d[V∼n , xα] = d[xα, V∼n ]. Therefore, we can obtain that 0 ≥ 1
2n+2 . But this is

a contradiction.

6. Two Interrelated Mappings

To solve the metrization problem in [0, 1]-topology in the next section, we shall con-
struct two interrelated mappings in advance based on the normal spaces in this section.

Theorem 22. Let (X, δ) be normal [0, 1]-topological space and let A ∈ δ′, B ∈ δ with A ≤ B.
Therefore, there exists a corresponding family {Ur | r ∈ Q[0,1]} relative to A and B satisfying (a)
and (b) in Theorem 5.

Define a mapping f : M0 → [0, 1] by

f (xα) =

{
inf{r ∈ Q[0,1] | xα ∈ Ur}, xα ∈ B;
1, xα 6∈ B

and for all xα, yβ ∈ M0 let g(xα, yβ) = max{ f (yβ)− f (xα), 0}.
(i) Let Vr = U′1−r. Then, the family {Vr | r ∈ Q[0,1]} satisfies the following properties:

(1) V0 = B′, V1 = A′; (2) if r < s, then Vr ≤ Vs.
(ii) Define a mapping f ∗ : M0 → [0, 1] by

f ∗(xα) =

{
inf{r ∈ Q[0,1] | xα ≤ Vr}, xα ≤ A′;
1, xα 6≤ A′
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and for all xα, yβ ∈ M0 let g∗(xα, yβ) = max{ f ∗(yβ)− f ∗(xα), 0}. Then g∗(y1−β, x1−α) =
g(xα, yβ).

(iii) Both g and g∗ satisfy the properties (D1)–(D3) in Definition 1.

Proof. (i) The proof is straightforward.
(ii) Case 1. Assume that xα ∈ B. Then let us consider two subcases below.
Subcase 1. If xα ∈ A, then f (xα) = inf{r ∈ Q[0,1] | xα ∈ Ur} = 0.
(1) Assume that yβ ∈ B. (i) For the case of yβ ∈ A, we have f (yβ) = 0, and then

g(xα, yβ) = 0. On the other hand, according to xα ∈ A⇔ x1−α 6≤ A′ and yβ ∈ A⇔ y1−β 6≤
A′, we have f ∗(x1−α) = 1 and f ∗(y1−β) = 1. Hence g∗(y1−β, x1−α) = 0; (ii) For the case of
yβ 6∈ A, let f (yβ) = inf{r ∈ Q[0,1] | yβ ∈ Ur} = s. If s < 1, then g(xα, yβ) = s and there
exists a monotonically decreasing sequence S = {sn | sn ≥ s, yβ ∈ Usn , n ∈ ω} ⊆ Q[0,1]
such that lim

n→∞
sn = s. Therefore, for each ε ∈ Q[0,1] with ε > 0 there is a natural number

N(ε) such that y1−β ∈ U′sn−ε = V1−sn+ε whenever n > N(ε). Therefore,

f ∗(y1−β) = inf{r ∈ Q[0,1] | y1−β ≤ Vr} ≤ inf{1− sn + ε | y1−β ∈ V1−sn+ε} ≤ 1− s + ε,

so that f ∗(y1−β) ≤ 1− s by the arbitrariness of ε. In addition, if y1−β ≤ Vr, then from the
equivalence yβ ∈ Usn ⇔ 1− β > V1−sn(y) we have Vr ≥ V1−sn , i.e., r ≥ 1− sn for all sn ∈ S.
Thus f ∗(y1−β) = inf{r ∈ Q[0,1] | y1−β ≤ Vr} ≥ 1− s. Consequently f ∗(y1−β) = 1− s,
and then g∗(y1−β, x1−α) = s. If s = 1, i.e., f (yβ) = 1, then g(xα, yβ) = 1. In addition, by
f (yβ) = 1, we assert that yβ ∈ U1, but yβ 6∈ Ur for all other r ∈ Q[0,1]. Thus when r 6= 0,
y1−β ≤ Vr, and then f ∗(y1−β) = 0. Consequently g∗(y1−β, x1−α) = 1.

(2) If yβ 6∈ B, then f (yβ) = 1, and thus g(xα, yβ) = 1. According to yβ 6∈ B ⇔
y1−β ≤ B′, we assert that y1−β ≤ Vr for all r ∈ Q[0,1], so that f ∗(y1−β) = 0. Consequently,
g∗(y1−β, x1−α) = 1.

Subcase 2. Let xα 6∈ A and let f (xα) = t.
(1) If yβ ∈ B, then (i) For the case of yβ ∈ A, we have f (yβ) = 0. So g(xα, yβ) = 0.

Moreover, from yβ ∈ A⇔ y1−β 6≤ A′, we know f ∗(y1−β) = 1, and then g∗(y1−β, x1−α) = 0;
(ii) For the case of yβ 6∈ A, let f (yβ) = s. Then g(xα, yβ) = max{s− t, 0}. Similarly, it is
true that f ∗(x1−α) = 1− t and f ∗(y1−β) = 1− s. Thus, g∗(y1−β, x1−α) = max{1− t− (1−
s), 0} = max{s− t, 0}.

(2) If yβ 6∈ B, then f (yβ) = 1 and g(xα, yβ) = max{1− t, 0} = 1− t. In addition, by
f ∗(y1−β) = 0 and f ∗(x1−α) = 1− t, we have g∗(y1−β, x1−α) = 1− t.

Case 2. Assume that xα 6∈ B. Then f (xα) = 1 and f ∗(x1−α) = 0.
(1) Let yβ ∈ B. (i) If yβ ∈ A, then f (yβ) = 0, and thus g(xα, yβ) = 0. From f ∗(x1−α) = 0

we have g∗(y1−β, x1−α) = 0. (ii) If yβ 6∈ A, then from f (xα) = 1 we know g(xα, yβ) = 0.
Meanwhile, because of f ∗(x1−α) = 0, we can obtain g∗(y1−β, x1−α) = 0.

(2) Let yβ 6∈ B. Then, f (yβ) = 1. Note that f (xα) = 1. So g(xα, yβ) = 0. Owing to
f ∗(x1−α) = 0, we know g∗(y1−β, x1−α) = 0.

(iii) (D1) Let xα ≥ xβ. If xβ 6∈ B, then f (xα) = f (xβ) = 1. So g(xα, xβ) = 0. If
xβ ∈ B, then when xα 6∈ B, we have f (xα) = 1, and then g(xα, xβ) = 0; when xα ∈ B, we
have f (xα) = inf{r ∈ Q[0,1] | xα ∈ Ur} ≥ inf{r ∈ Q[0,1] | xβ ∈ Ur} = f (xβ), and then
g(xα, xβ) = 0. Besides, by g∗(y1−β, x1−α) = g(xα, yβ), it is easy to show that g∗ also satisfies
(D1).

(D2) To check g(xα, yβ) + g(yβ, zγ) ≥ g(xα, zγ) for any xα, yβ, zγ ∈ M0, we consider
the following two cases: (a) when g(xα, zγ) = 0, this conclusion is straightforward; (b) when
g(xα, zγ) 6= 0, we have f (zγ) > f (xα). In this case, (1) if g(yβ, zγ) = 0, then f (zγ) ≤ f (yβ),
and thus g(xα, yβ) = f (yβ)− f (xα) ≥ f (zγ)− f (xα) = g(xα, zγ); (2) if g(xα, yβ) = 0, then
f (yβ) ≤ f (xα), and then f (zγ)− f (yβ) ≥ f (zγ)− f (xα). Therefore, g(yβ, zγ) ≥ g(xα, zγ);
(3) if g(yβ, zγ) 6= 0 and g(xα, yβ) 6= 0, then f (zγ) > f (yβ) and f (yβ) > f (xα), and then
g(xα, yβ) + g(yβ, zγ) = [ f (yβ) − f (xα)] + [ f (zγ) − f (yβ)] = f (zγ) − f (xα) = g(xα, zγ).
Besides, by g∗(y1−β, x1−α) = g(xα, yβ), it is easy to see that g∗ also satisfies (D2).



Mathematics 2023, 11, 4430 14 of 20

(D3) (1) Assume that f (yβ) = 1. (a) If yβ ∈ B, then besides r = 1, yβ 6∈ Ur for all other
r ∈ Q[0,1]. Thus, for each η with β < η < B(y) we assert that besides r = 1, yη 6∈ Ur for all
other r ∈ Q[0,1]. Consequently f (yη) = 1. It follows that g(xα, yη) = max{1− f (xα), 0} =
g(xα, yβ); (b) if yβ 6∈ B, then for each γ with β < γ < 1 we have yγ 6∈ B, and then f (yγ) = 1.
Therefore, g(xα, yγ) = max{1− f (xα), 0} = g(xα, yβ).

(2) Assume that 0 ≤ f (yβ) = p < 1. (a) If there is a fixed number h > 0 such that
yβ+h ≤ Uq for each q with q ∈ (p, 1] ∩Q[0,1], and then f (yγ) = p for each γ with β < γ <
β + h. Therefore, g(xα, yγ) = max{p− f (xα), 0} = g(xα, yβ). (b) If such a fixed h is non-
existent, then by f (yβ) = inf{r ∈ Q[0,1] | yβ ∈ Ur} = p we assert that for any ε > 0 there
exists a r belonging to Q[0,1] such that yβ ∈ Ur and r− p < ε. Take a number γ satisfying
β < γ < β+ r−p

2 . Then f (yγ) < p+ ε. Let
∧

γ>β
f (yγ) = q. Clearly, p ≤ q. Thus for any ε > 0

we have q =
∧

γ>β
f (yγ) < p + ε. Because ε is arbitrary, we can obtain q ≤ p. Thus f (yβ) =∧

γ>β
f (yγ). Consequently, g(xα, yβ) = max{p − f (xα), 0} = max{ ∧

γ>β
f (yγ) − f (xα), 0}.

(1) If p − f (xα) < 0, then g(xα, yβ) = 0 and there exists a γ satisfying γ > β such that
f (yγ)− f (xα) < 0. Meanwhile,

∧
γ>β

g(xα, yγ) =
∧

γ>β
{max{ f (yγ)− f (xα), 0}} = 0. Hence

g(xα, yβ) =
∧

γ>β
g(xα, yγ). (2) If p− f (xα) = 0, then this means that for any ε > 0 there

exists a γ satisfying γ > β such that f (yγ) − f (xα) < ε. Therefore,
∧

γ>β
g(xα, yγ) =∧

γ>β
{max{ f (yγ) − f (xα), 0}} < ε, so that

∧
γ>β

g(xα, yγ) = 0. (3) If p − f (xα) > 0, then

f (yγ) − f (xα) > 0 for each γ > β. It follows that
∧

γ>β
g(xα, yγ) =

∧
γ>β
{max{ f (yγ) −

f (xα), 0}} = ∧
γ>β
{ f (yγ)− f (xα)} = p− f (xα). In summary, g satisfies (D3). Similarly, so

does g∗.

7. Metrization Theorem

For a [0, 1]-topological space (X, δ), if there is a Deng pseudo-metric (resp., Deng
metric) p on IX such that δ = δp, where δp is the pseudo-metric topology, then the space is
said to be Deng pseudo-metrizable (resp., Deng-metrizable). Similar treatment is given to the
Erceg metric, Chen metric, and Shi metric.

Theorem 23. If a [0, 1]-topological space is regular, and the topology has a σ-locally finite base,
then it is Deng pseudo-metrizable.

Proof. The sketch of proof is: Firstly, by Theorem 22 and the property of σ-locally finite
base, we will generate a countable family of Deng pseudo-metric spaces {(Xn, δpn) | n ∈ ω}.
Secondly, by Theorem 16, we will construct a Deng pseudo-metric on IX and prove that
the space (X , δp) is exactly the product space of the family {(Xn, δpn) | n ∈ ω}. Finally, we
will deduce that (X, δ) can be embedded into (X , δp).

Now let us complete the proof step by step. First, for each n ∈ ω let σn = {An
i | i ∈ Γn}

be locally finite in (X, δ) and let the union σ =
⋃{σn | n ∈ ω} be a base of (X, δ).

Arbitrarily select a pair of positive integers m, n. Let An
i ∈ σn and let it be fixed for the

moment. We consider the following open set:

Am,n
i =

∨
{Am | Am ∈ σm, Am ≤ An

i }.

For convenience, we denote Am,n
i as Ai. Because δm is locally finite, by Theorem 4 we

have Ai ≤ An
i . Next, the proof shall be divided into the following five steps.
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Step 1. By Theorem 22 there exists a family {Ur | r ∈ Q[0,1]} corresponding to Ai and
An

i . Therefore, we can define a mapping fi : M0 → [0, 1] by

fi(xα) =

{
inf{r ∈ Q[0,1] | xα ∈ Ur}, xα ∈ An

i ;
1, xα 6∈ An

i .

For any xα, yβ ∈ M0 let gi(xα, yβ) = max{ fi(yβ) − fi(xα), 0} and for each r ∈ Q[0,1] let
Vr = U′1−r. Then there exists a family {Vr | r ∈ Q[0,1]}. Therefore, we can define a
mapping f ∗i by

f ∗i (xα) =

{
inf{r ∈ Q[0,1] | xα ≤ Vr}, xα ≤ (Ai)

′;
1, xα 6≤ (Ai)

′.

Let g∗i (xα, yβ) = max{ f ∗i (yβ)− f ∗i (xα), 0}. Then by Theorem 22, we have g∗(y1−β, x1−α) =
g(xα, yβ).

Step 2. Let pi(xα, yβ) = [gi(xα, yβ) + g∗i (xα, yβ)]/2. Then pi is a Deng pseudo-metric
on IX. This is because both gi and g∗i satisfy the properties (D1)–(D3), and so does pi.
Besides, by Theorem 22, we have the following two equalities:

pi(xα, yβ) =
gi(xα, yβ) + g∗i (xα, yβ)

2
=

gi(xα, yβ) + gi(y1−β, x1−α)

2
;

pi(y1−β, x1−α) =
gi(y1−β, x1−α) + g∗i (y1−β, x1−α)

2
=

gi(y1−β, x1−α) + gi(xα, yβ)

2
.

Therefore, pi satisfies (D4).
Step 3. Since σn is locally finite, for any x1−α, y1−β ∈ M0 there are two open sets: an

open neighborhood Ux1−α
of x1−α and an open neighborhood Uy1−β

of y1−β such that they
are quasi-coincident with only a finite family {Cp | p = p1, p2, · · · , pl} ⊆ σn and a finite
set {Bj | j = j1, j2, · · · , jm} ⊆ σn, respectively. Let

{An
i | i = k1, k2, · · · , kq} = {Cp | p = p1, p2,· · · , pl}∪{Bj | j = j1, j2, · · · ,jm}.

Therefore, either Ux1−α
(zi) + An

i (zi) > 1 or Uy1−β
(zi) + An

i (zi) > 1 is true for each i
(i = k1, k2, · · · , kq) and corresponding zi ∈ X. This implies that there exists at most a finite
family {An

i | i = k1, k2, · · · , kq} such that xα ∈ An
i or yβ ∈ An

i . It follows that fi(xα) ≤ 1 or
fi(yβ) ≤ 1 (i = k1, k2, · · · , kq). On the other hand, when k ∈ Γn and k 6= i (i = k1, k2, · · · , kq),
it is easy to show that xα 6∈ An

k and yβ 6∈ An
k , and then fk(xα) = 1 and fk(yβ) = 1. Hence

gk(xα, yβ) = 0. In other words, when i ∈ Γn, it may be correct that gi(xα, yβ) 6= 0 only if i
belongs to the finite index set {k1, k2, · · · , kq}.

Similarly, for any xα, yβ ∈ M0, there exists at most a finite family {An
i | i =

q1, q2, · · · , qm} such that xα 6≤ (An
i )
′ or yβ 6≤ (An

i )
′. It follows that f ∗i (xα) 6= 0 or f ∗i (yβ) 6= 0

holds (i = q1, q2, · · · , qm). When k ∈ Γn and k 6= i (i = q1, q2, · · · , qm), we have xα ≤ (An
i )
′

and yβ ≤ (An
i )
′, and then f ∗k (xα) = 0 and f ∗k (yβ) = 0. Therefore, g∗k (xα, yβ) = 0. In other

words, when i ∈ Γn, it may be correct that g∗i (xα, yβ) 6= 0 only if i belongs to the finite index
set {q1, q2, · · · , qm}.

Let J = {k1, k2, · · · , kq} ∪ {q1, q2, · · · , qm}. Then for any xα, yβ ∈ M0, there exists at
most a finite index set J such that when i ∈ J, it may be correct that pi(xα, yβ) 6= 0. Therefore,
for the two positive integers m, n, we can define a mapping pm,n : M0 ×M0 → [0,+∞) by

pm,n(xα, yβ) = ∑{pi(xα, yβ) | An
i ∈ σn, i ∈ J}.

Next, we will prove that each pm,n is also a Deng pseudo-metric on IX. The proof is
as follows:
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(D1) Because each pi(i ∈ J) satisfies (D1), when xα ≥ yβ, we have

pm,n(xα, yβ) = ∑{pi(xα, yβ) | An
i ∈ σn, i ∈ J} = 0.

(D2) Let xα, yβ, zγ ∈ M0. Because pi satisfies (D2) for each i, we have

pm,n(xα, yβ) + pm,n(yβ, zγ)
= ∑{pi(xα, yβ) | An

i ∈ σn, i ∈ J}+ ∑{pi(yβ, zγ) | An
i ∈ σn, i ∈ J}

= ∑{pi(xα, yβ) + pi(yβ, zγ) | An
i ∈ σn, i ∈ J}

≥ ∑{pi(xα, zγ) | An
i ∈ σn, i ∈ J}

= pm,n(xα, zγ).

(D3) Because gi and g∗i satisfy (D3), i.e., we have the following two equalities:

∑{gi(xα, yβ) | An
i ∈ σn, i ∈ J} = ∑{

∧
γ>β

gi(xα, yγ) | An
i ∈ σn, i ∈ J},

∑{g∗i (xα, yβ) | An
i ∈ σn, i ∈ J} = ∑{

∧
γ>β

g∗i (xα, yγ) | An
i ∈ σn, i ∈ J}.

Note that the above two formulas are finite sums. Therefore,

pm,n(xα, yβ)

= ∑{pi(xα, yβ) | An
i ∈ σn, i ∈ J}

= ∑{[gi(xα, yβ) + g∗i (xα, yβ)]/2 | An
i ∈ σn, i ∈ J}

= ∑{gi(xα, yβ)/2 | An
i ∈ σn, i ∈ J}+ ∑{g∗i (xα, yβ)/2 | An

i ∈ σn, i ∈ J}
= ∑{

∧
γ>β

gi(xα, yγ)/2 | An
i ∈ σn, i ∈ J}+ ∑{

∧
γ>β

g∗i (xα, yγ))/2 | An
i ∈σn, i ∈ J}

= ∑{(
∧

γ>β
gi(xα, yγ) + g∗i (xα, yγ))/2 | An

i ∈ σn, i ∈ J}

=
∧

γ>β
∑{(gi(xα, yγ) + g∗i (xα, yγ))/2 | An

i ∈ σn, i ∈ J}

=
∧

γ>β
pm,n(xα, yγ).

(D4) Because pi satisfies (D4) for each i ∈ J, we have the following equalities:

pm,n(xα, yβ)
= ∑{pi(xα, yβ) | An

i ∈ σn, i ∈ J}
= ∑{pi(y1−β, x1−α) | An

i ∈ σn, i ∈ J}
= pm,n(y1−β, x1−α).

Therefore, {pm,n | m ∈ ω, n ∈ ω} is a countable family of Deng pseudo-metrics.
Meanwhile, we denote the topology generated by pm,n as δpm,n .

Step 4. We will prove that
⋃

δpm,n is a base of (X, δ). For this purpose, we only need to
prove the following (a) and (b).

(a) δpm,n ⊆ δ (m, n ∈ ω).

By Theorem 1, it is sufficient to find an open set Vxα ∈ δ such that xα ∈ Vxα ≤ Uε(xα)
for any open set Uε(xα) ∈ δpm,n .

Since σn is locally finite, there is an open neighborhood Ux1−α
of x1−α which is only

quasi-coincident with finitely many members: {An
il
| l = 1, 2, · · · , k} ⊆ σn. Therefore,

fi1(xα) ≤ 1, · · · , fik (xα) ≤ 1. (1)
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Since fil (xα) = inf{ril ∈ Q[0,1] | xα ∈ Uril
} = til (l = 1, 2, · · · , k), we may select an

open set Uril
with xα ∈ Uril

such that ril − til <
ε

2k . Therefore, when yβ ∈ Uril
, we have

fil (yβ) ≤ ril (l = 1, 2, · · · k). Thus

gil (xα, yβ) = max{ fil (yβ)− fil (xα), 0} ≤ max{ril − til , 0} < ε

2k
, l = 1, · · · , k.

when An
im ∈ σn with m 6= 1, 2, · · · , k, it must hold fim(xα) = 1, and then gim(xα, yβ) =

max{ fim(yβ)− fim(xα), 0} = 0.
Similarly, there is an open neighborhood Uxα of xα which is only quasi-coincident with

finitely many members: {An
jt | t = 1, 2, · · · , p} ⊆ σn. This implies that xα 6≤ (An

jt)
′ for each

jt (t = 1, 2, · · · , p), so that

f ∗j1(xα) > 0, · · · , f ∗jp
(xα) > 0. (2)

Let f ∗jt (xα) = inf{rjt ∈ Q[0,1] | xα ≤ Vjt} = sjt (t = 1, 2, · · · , p). Then, we can select an
open set Vrjt

with xα ≤ Vrjt
(t = 1, 2, · · · , p) such that rjt − sjt <

ε
4p . Take a number hjt of

Q[0,1] satisfying rjt < hjt < rjt +
ε

4p such that xα ≤ Vhjt
(t = 1, 2, · · · , p). Hence hjt − sjt <

ε
2p

(t = 1, 2, · · · , p). Because rjt < hjt, it is true that U1−hjt
≤ U1−rjt . Therefore, by the property

of {Ur | r ∈ Q[0,1]} we have U1−hjt
≤ U1−rjt , i.e., U′1−rjt

≤ (U1−hjt
)′. Furthermore, because

U1−hjt
≤ U1−hjt

, it is true that (U1−hjt
)′ ≤ U′1−hjt

. Hence xα ≤ Vrjt ≤ (U1−hjt
)′ ≤ Vhjt

. Let

Ohjt
= V◦hjt

, t = 1, 2, · · · , p. Then xα ≤ (U1−hjt
)′ ≤ Ohjt

. If zγ ∈ Ohjt
≤ Vhjt

, t = 1, 2, · · · p,

then f ∗jt (zγ) ≤ hjt . Hence

g∗jt(xα, zγ) = max{ f ∗jt (zγ)− f ∗jt (xα), 0} ≤ max{hjt − sjt , 0} < ε

2p
, t = 1, · · · , p.

Now, let

Vxα = Uxα ∧Uri1
∧ · · · ∧Urik

∧Ohj1
∧ · · · ∧Ohjp

. (3)

Since Uxα and An
js are not quasi-coincident for each js (s 6= 1, 2, · · · , p), when yβ ∈

Vxα , we have yβ ≤ (An
js)
′ and then f ∗js(yβ) = 0 (s 6= 1, 2, · · · , p). And, consequently,

g∗js(xα, yβ) = 0 (s 6= 1, 2, · · · , p). If k ≤ p, then

pm,n(xα, yβ) ≤ [
( ε

2k +
ε

2p )

2
]× k +

0 + ε
2p

2
× (p− k) =

ε

4
+

ε

4
< ε.

If k > p, then

pm,n(xα, yβ) ≤ [
( ε

2k +
ε

2p )

2
]× p +

ε

2k
× (k− p) =

ε

4
+

ε

4k
(2k− p) <

ε

4
+

ε

2
< ε.

In either case, xα ∈ Vxα ≤ Uε(xα). Therefore, (a) is proved.
Incidentally, to make the above proof more perfect, we add the following two points.

If fil (xα) = 1 for all il (l = 1, · · · , k), then gil (xα, yβ) = 0. Meanwhile, let us consider two
more special cases below.

(i) If there exists a nonempty set Λ = {jw1 , · · · , jwq} ⊆ {j1, · · · , jp} such that each
element jwi ∈ Λ satisfies 0 < f ∗jw(xα) < 1, then

Vxα = Uxα ∧Ojw1
∧ · · · ∧Ojwq

.

(ii) If f ∗jt (xα) = 1 for all jt (t = 1, · · · , p), then g∗js(xα, yβ) = 0. Let Vxα = Uxα . Then for
any yβ ∈ Uxα we have pm,n(xα, yβ) = 0, and thus yβ ∈ Uε(xα), i.e., xα ∈ Vxα ≤ Uε(xα).
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(b) Each member in δ is the union of some members in ∪δpm,n .

Let xα ∈ B ∈ δ. Because (X, δ) is regular, there exists an open set v belonging to σ
such that xα ∈ v ≤ v ≤ B. Therefore, it is easy to show that there is a natural member n
such that v ∈ σn ⊆ σ. For convenience, we denote v as An

i . Similarly, for xα ∈ An
i , there are

another natural member m and an open set Am
j belonging to σm such that

xα ∈ Am
j ≤ Am

j ≤ An
i ≤ An

i ≤ B.

Let Ai =
∨{Am | Am ∈ σm, Am ≤ An

i }. Clearly, xα ∈ Am
j ≤ Ai ≤ Ai ≤ An

i ≤ An
i ≤ B.

Therefore, by Theorem 22 there exists a corresponding family {Ur | r ∈ Q[0,1]} relative
to Ai and B such that xα ∈ Ur for all Ur (r ∈ Q[0,1]). And consequently fi(xα) = 0. If
yβ 6∈ B, then yβ 6∈ An

i . Thus fi(yβ) = 1, and then gi(xα, yβ) = max{ fi(yβ)− fi(xα), 0} = 1.
Therefore, we assert that pm,n(xα, yβ) ≥ 1

2 . In other words, as long as pm,n(xα, yβ) <
1
2 , it

must hold that yβ ∈ B. This implies that for each xα ∈ B there exists U 1
2
(xα) belonging to

δpm,n such that U 1
2
(xα) ≤ B. Thus B =

∨
xα∈B

U 1
2
(xα). That is to say, if B ∈ δ, then there is

D ⊆ ⋃
n,m∈ω

δpm,n such that B =
∨

D. Therefore, (b) is proved.

Step 5. Based on the discussions above, we renumber the countable set {pm,n | m =
1, 2, · · · , n = 1, 2, · · · } as {pn | n ∈ ω}. Let X = ∏

n∈ω,Xn=X
Xn. By Theorem 4, we define a

mapping p : M0 ×M0 → [0, 1] by

p(xα, yβ) = ∑
n∈ω

2−n pn(Jn(xα), Jn(yβ)),

where Jn : IX → IX is the n-th projection, and affirm that p is a Deng pseudo-metric on
IX and (X , δp) is the product space of {(X, δpn) | n ∈ ω}, where (X , δp) is generated
by Γp = {J−1

n (U) | U ∈ δpn , n ∈ ω} as a subbase. Now let us prove that (X, δ) can be
embedded into (X , δp).

Let xω = (x, x, · · · , x, · · · ) and denote xω
α as the fuzzy point whose support and value

are xω and α ∈ (0, 1), respectively. All these fuzzy points are denoted by M1 = {xω
α |

x ∈ X, α ∈ (0, 1)}. Let X = {xω | x ∈ X}. A mapping e : M1 → M0 is defined by
e(xω

α ) = xα. Obviously, e is a bijection and its inverse mapping e−1 embeds M0 into IX . Let
pe = p | M1 ×M1. Consequently, we regenerate a new mapping pe : M1 ×M1 → [0, 1].
It is easy to prove that pe is a Deng pseudo-metric on IX, and (X, δpe) is a subspace
of (X , δp). Because Γp is a subbase of (X , δp), Γp | X is certainly a subbase of (X, δpe).
Moreover, because of Step 4, Γp | X is exactly a base of (X, δpe). Hence (X, δ) and (X, δpe)
are homeomorphic. In fact, let pe1(xα, yβ) = pe(xω

α , yω
β ) for any xω

α , yω
β ∈ M1. Then (X, δ)

can be embedded into (X , δp) and the mapping pe1 is a Deng pseudo-metric on IX , which
metricizes the [0, 1]-topological space (X, δ). Consequently, δ = δpe1

. In summary, the proof
has been completed.

Theorem 24. A [0, 1]-topological space is Deng-metrizable if and only if it is T1 and
Deng pseudo-metrizable.

Proof. (Sufficiency). Let p be a Deng metric on IX and let yλ2 ≤
∧

r>0
Br(xλ1) (see Theorem

7 on Br). Then for any r > 0 we have yλ2 ≤ Br(xλ1) and then p(xλ1 , yλ2) ≤ r, so that
p(xλ1 , yλ2) = 0. By (D5) we can obtain x = y and λ1 ≥ λ2. Hence

∧
r>0

Br(xλ1) = xλ1 . In

addition, by Theorem 7 we can assert that Br(xλ1) (r > 0) is a closed set. Thus,
∧

r>0
Br(xλ1) =∧

r>0
Br(xλ1). Consequently, xλ1 = xλ1 , as desired.

(Necessity). If p(xλ1 , yλ2) = 0, then p(y1−λ2 , x1−λ1) = 0. For any r > 0, by (D3) we can
take a number 1− λr > 1− λ1 such that p(y1−λ2 , x1−λr ) < r, and then x1−λ1 < x1−λr ≤
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Ur(y1−λ2), i.e., xλ1 + Ur(y1−λ2) > 1. Consequently yλ2 ≤ xλ1 = xλ1 . Therefore, x = y and
λ1 ≥ λ2, so that p satisfies (D5).

Because of the conclusion D = C
⋂

Y
⋂

E in Theorem 8, Theorem 22 and Theorem 23,
we can obtain the main result in this paper as follow

Corollary 1. If a [0, 1]-topological space (X, δ) is T1 and regular, and δ has a σ-locally finite base,
then it is Deng-, Erceg-, Chen-, and Shi-metrizable.

8. Conclusions

In this paper, we study the metrization problem: whether there is a metric such
that a given [0, 1]-topology coincides with the metric topology. Eventually, we obtain a
desired result:

If a [0, 1]-topological space (X, δ) is T1 and regular, and δ has a σ-locally finite base, then it is
Deng-, Erceg-, Chen-, and Shi-metrizable.

Based on the result, we can conclude that Deng’s, Liang’s, and Yang’s metric results,
which appeared in the Introduction (refer to [13,24,30] for details), are all special cases of
our proposition. This is because if (X, δ) is CI I , then δ must have a σ-locally finite base,
but the converse is not true. Therefore, Corollary 1 proved by us is the most satisfactory
solution to the metrization problem in [0, 1]-topology so far.

In the future, we will consider whether or not our results can be generalized to L-
topology [9,15]. In addition, we will further investigate Erceg metric, Shi metric, Deng
metric, and Chen metric. Additionally, we will continue to research the kind of lattice-
valued topological spaces each of whose topologies has a σ-locally finite base. Beyond
that, we also intend to inquire into some questions on the fuzzifying metric topology
(see [16,33,39,45]).
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