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Abstract: The Internet of Things (IoT) refers to the network of interconnected physical devices
that are embedded with software, sensors, etc., allowing them to exchange and collect information.
Although IoT devices have several advantages and can improve people’s efficacy, they also pose a
security risk. The malicious actor frequently attempts to find a new way to utilize and exploit specific
resources, and an IoT device is an ideal candidate for such exploitation owing to the massive number
of active devices. Especially, Distributed Denial of Service (DDoS) attacks include the exploitation
of a considerable number of devices like IoT devices, which act as bots and transfer fraudulent
requests to the services, thereby obstructing them. There needs to be a robust system of detection
based on satisfactory methods for detecting and identifying whether these attacks have occurred or
not in a network. The most widely used technique for these purposes is artificial intelligence (AI),
which includes the usage of Deep Learning (DL) and Machine Learning (ML) to find cyberattacks.
The study presents a Piecewise Harris Hawks Optimizer with an Optimal Deep Learning Classifier
(PHHO-ODLC) for a secure IoT environment. The fundamental goal of the PHHO-ODLC algorithm
is to detect the existence of DDoS attacks in the IoT platform. The PHHO-ODLC method follows a
three-stage process. At the initial stage, the PHHO algorithm can be employed to choose relevant
features and thereby enhance the classification performance. Next, an attention-based bidirectional
long short-term memory (ABiLSTM) network can be applied to the DDoS attack classification process.
Finally, the hyperparameter selection of the ABiLSTM network is carried out by the use of a grey wolf
optimizer (GWO). A widespread simulation analysis was performed to exhibit the improved detection
accuracy of the PHHO-ODLC technique. The extensive outcomes demonstrated the significance of
the PHHO-ODLC technique regarding the DDoS attack detection technique in the IoT platform.

Keywords: cybersecurity; DDoS attacks; network security; Internet of Things; artificial intelligence;
metaheuristics
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1. Introduction

The Internet of Things (IoT) is an emerging network of physical things which are
connected to the internet [1]. With the help of accessible digital data, it assists in the
conversion of internet-connected devices from any position and at any time into a con-
nected ecosystem. The physical gadgets which range in size from compact to tremendous
equipment interrelate among them without human interference via the internet [2]. Various
supporting technologies are available, which include cloud computing, radio frequency
identification and wireless sensor networks that have developed as important components
of the IoT paradigm’s growth [3]. It has been utilized in many applications like healthcare,
personal wearable devices and environmental monitoring to improve the variety, veracity,
volume and velocity of information. For example, sensitive data like personal information
are managed by the connected system and these devices. Therefore, from manufacturing as
well as academia, there has been improved attention to increasing security solutions for IoT
devices [4]. Distributed Denial of Service (DDoS) threats are mainly developed to prevent
genuine clients from accessing a real service or website. The intended website or service
is attacked with requests which come from numerous sources and make it inaccessible to
legitimate consumers [5].

In numerous ways, the attack can be produced by fake traffic and pingback. These
kinds of attacks are more efficient when the server host of the target webpage is insufficient
to handle the expected traffic [6]. Owing to the capability of the present servers to control
massive amounts of traffic, an attack performed from a single origin is not feasible. So due
to evaluation and growth, DDoS attacks have remained a foremost attack throughout the
years [7]. To determine DDoS/DoS threats in IoT networks, classical IDS makes use of
effective techniques like machine learning (ML), statistical anomaly and signature-based
detection [8]. Moreover, the recognition of DDoS or DoS attacks in IoT systems poses a
major problem for classical Intrusion-Detection Systems (IDS). These types of networks
usually use methods like signature-based, ML-based and statistical anomaly [9]. The unique
features of IoT networks include the huge number of interconnected devices, heterogeneous
traffic patterns and varied communication protocols which contribute to the difficulty of
threading malicious actions.

The traditional IDS techniques are mainly developed for conventional networks and
fight to manage the unpredictable as well as dynamic nature of IoT surroundings [10].
The conventional methods are not more efficient in handling the progressive threats [11].
Advanced deep learning (DL) methods have been developed for abnormal behavior iden-
tification (ABN) and automatic intrusion detection (AID). Recently, ML and DL meth-
ods have been specially designed and applied for ABN and AID in networks and for
their prevention [12].

This study presents a Piecewise Harris Hawks Optimizer with an Optimal Deep Learn-
ing Classifier (PHHO-ODLC) for a secure IoT environment. The fundamental goal of the
PHHO-ODLC technique is to detect the existence of DDoS attacks in the IoT platform. The
PHHO-ODLC technique follows a three-stage process. At the initial stage, the PHHO algo-
rithm can be employed to choose relevant features and thereby enhance the classification
performance. Next, the attention-based bi-directional long short-term memory (ABiLSTM)
model can be applied to the DDoS attack classification process. Finally, the hyperparameter
selection of the ABiLSTM network is implemented by the use of a grey wolf optimizer
(GWO). A widespread simulation analysis was performed to show the improved detection
accuracy of the PHHO-ODLC technique.

2. Literature Survey

Sharifian et al. [13] designed a Binary Improved African Vulture Optimization Al-
gorithm (Sin-Cos BIAVOA) method. This technique utilizes a new Compound Transfer
method (Sin-Cos) to improve the exploration. The Gravitational-Fixed Radius NN (GFRNN)
is used as a classification algorithm to choose the optimum feature set in this technique.
Dora and Laskhmi [14] proposed a DDoS classification technique by incorporating opti-
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mized LSTM and CNN, which is referred to as CNN-O-LSTM. The optimal features can
be chosen by the Closest Position-Based GWO (CP-GWO) method. The CNN technique
is mainly designed to learn features. Lastly, optimized LSTM is utilized for the detec-
tion part, and it is investigated on standard datasets. In [15], a new DL technique was
introduced. The research presented the CNN technique, which established an effective
feature fusion mechanism. Moreover, a symmetric logarithmic loss method is also designed
based on the categorical cross-entropy. Additionally, the designed detection structure
has been implemented in the GPU-enabled TensorFlow and estimated by utilizing the
NSL-KDD datasets.

Matsa et al. [16] developed a Forward Feature Selection (FFS) technique, which is
applied in selecting the optimal features for DDoS attacks. The DL and highly advanced ML
method was utilized to execute a hybrid technique for combining DM algorithms of deep
neural networks and CNNs. Implementation was employed on FS given the need to detect
DDoS on the software-defined networks by utilizing the FFS procedure. Rihan et al. [17]
projected a method for identifying threats in IoT networks by employing ensemble FS
and DL techniques. Ensemble FS integrates filter methods, namely, L1based, Chi-square,
mutual information, variance threshold and ANOVA techniques. The wrapper process is
named Recursive Feature Elimination (RFE), which is useful in improving the FS. In [18], a
Hybrid Sample Selected RNN-ELM (hybrid SSRNN-ELM) method was provided. From
the original dataset, the selected features are removed by utilizing a Sequence Forward
Selector (SFS) and LR—Recursive Feature Extraction (LR-RFE). Next, RNN is utilized for
learning the features. Next, at the end layer, the ELM algorithm is applied. By using the
NSL-KDD dataset, this method is verified.

Setitra et al. [19] developed an improved DL technique with the combination of the
Extreme Gradient Boosting (XGBoost) and Autoencoder (AE) methods. Initially, the Shap-
ley Additive exPlanations (SHAP) FS procedure is implemented. On the preceding subsets,
the AE is trained. The latent symbol is employed as the input which is produced by the AE.
Similarly, Grid Search cross-validation (GSCV) is utilized to find out the hyperparameters.
Yousuf and Mir [20] projected a Detecting Attack by employing a Live Capture Neural
Network (DALCNN) with the model of RNN as well as executing a Software Defined Net-
work (SDN) by utilizing the OpenDayLight stage. Additionally, the three-tier architecture
is mainly designed to categorize and identify DDoS threats. This method organizes the
type of attack through ML/DL concepts and novel activation functions.

Padmashree and Krishnamoorthi [21] introduced an effective feature selection with the
feature fusion method for the recognition of intruders in IoT. From the preprocessed data,
the high-order statistical features are chosen according to the presented Decision tree-based
Pearson Correlation Recursive Feature Elimination (DT-PCRFE) method. Alzaqebah et al. [22]
present a modified bio-inspired algorithm, the Grey Wolf Optimization algorithm (GWO),
which improves the efficiency of the IDS in identifying normal and anomalous traffic in the
network. The major improvement covers the smart initialization stage, which fuses the filter
and wrapper techniques to ensure that the informative features will be included in an early
iteration. Toldinas et al. [23] present a new technique for network intrusion detection using
multi-stage DL image recognition. The network feature is converted into four-channel (Red,
Green, Blue and Alpha) images. Then, the image is used for classification for training and
testing the pre-trained DL model ResNet-50.

3. The Proposed Model

In this study, we have designed an automatic PHHO-ODLC algorithm for a secure
IoT environment. The fundamental goal of the PHHO-ODLC technique is to detect the
existence of DDoS attacks in the IoT platform. The PHHO-ODLC technique follows three-
stage processes such as PHHO PHHO-based FS, ABiLSTM-based DDoS attack detection
and GWO-based hyperparameter tuning. Figure 1 depicts the entire flow of the PHHO-
ODLC algorithm.
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3.1. Design of the PHHO Algorithm

Primarily, the PHHO algorithm can be employed to choose relevant features and
thereby enhance the classification performance. Heidari et al., in 2019, introduced a
gradient-free metaheuristic and population-based algorithm to HHO, which emulates
the pursuing behaviors of the hawk group to find an optimum solution [24]. The HHO
comprises three stages: the local development, global search and transition stages.

Global search stage

The Hawk individuals split up to enlarge the search space and improve the chances
of finding the target. Individuals in the population will perch on any place, and the two
selection tactics for the perch location are as follows:

X(t + 1) =
{

Xrand(t)− r1|Xrand(t)− 2r2X(t)|, q ≥ 0.5
(Xrabbit(t)− Xm(t))− r3(LB + r4(UB− LB)), q < 0.5

(1)
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In Equation (1), r1, r2, r3, r4 and q are the random number ranges within [0, 1], Xrabbit
represents the prey location, Xand shows an individual random location in the present hawk
group, UB and LB denote the upper and lower limitations of the search area, N indicates
the population number, Xm refers to the average location of the individual in the existing
hawk group and X(t) shows the individual location as follows:

Xm(t) =
1
N

N

∑
i=1

Xi(t) (2)

Transition stage

The individual hawk chooses the hunting strategy based on the changes in the escaping
energy of the prey. Now, the HHO technique transits from the search to exploitation phases
using the subsequent escaping energy equation.

E = 2E0

(
1− t

T

)
(3)

In Equation (3), the escaping energy at the initial state is E0 and is a randomly gen-
erated value within [−1, 1 ], T represents the overall iteration counter and t shows the
existing iteration counter.

Local development phase

Based on the escaping route of the prey, the hawk adopts a pursuit strategy. The HHO
technique exploits the subsequent four social behaviors for stimulating the roundup behav-
iors of hawks. The escaping possibility of prey is represented as r, where r ≥ 0.5 implies
failure and r < 0.5 implies success.

Soft roundup: if r ≥ 0.5 and |E|≥ 0.5 , then the prey has sufficient escaping energy
and the prey is energetic; hence, the hawk uses a soft strategy, as follows:

X(t + 1) = ∆X(t)− E|JXrabbit(t)− X(t)| (4)

X(t) = Xrabbit(t)− X(t) (5)

From the expression, the difference between the prey and the existing location of
individuals at iteration t is ∆X(t), and the random escaping strength of the prey is J, which
is a randomly generated value within [0, 2].

Hard round-up: if r ≥ 0.5 but |E|< 0.5, then the prey has low energy to escape and is
exhausted; hence, the individual hawk adopts a hard strategy as:

X(t + 1) = Xrabbit(t)− E|∆X(t)| (6)

Soft round-up with progressive quick dive: if r < 0.5 and |E|≥ 0.5 , then the target has
the possibility of effective escape and the prey is energetic, so the hawk individuals adopt a
gentle encirclement to perform the surprise attacks. The study introduced a Levy flight
(LF) to emulate the behaviors and escaping route of the target, and the updating location
strategy is given below:

Y = Xrabbit(t)− E|JXrabbit(t)− X(t)| (7)

Z = Y + S× LF(D) (8)

X(t + 1) =

{
Y, F(Y) < F(X(t))
Z, F(Z) < F(X(t))

(9)

where the random vector of size 1×D dimension is S, D shows the problem dimension, the
Levy flight function is LP() and the fitness function is F(). Hard round-up with progressive
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quick dive: if r < 0.5 and |E|< 0.5 , then the prey does not have sufficient energy to escape;
hence, a progressive quick-dive tough roundup approach is applied.

Y = Xrabbit(t)− E|JXrabbit(t)− Xm(t)| (10)

Z = Y + S× LF(D) (11)

X(t + 1) =

{
Y, F(Y) < F(X(t))
Z, F(Z) < F(X(t))

(12)

3.2. Piecewise Chaotic Map

A standard representative of a chaotic map is a piecewise chaotic map, which is
randomized and more ergodic. The piecewise chaotic map is introduced to increase the
initial population for increasing the probability of escaping from local optima and also
enhancing the population diversity of HHO. The mathematical equation is given below:

x(t + 1) =



x(t)
p

, 0 ≤ x(t) < p

x(t)− p
0.5− p

, p ≤ x(t) < 0.5

1− p− x(t)
0.5− p

, 0.5 ≤ x(t) < 1− p

1− x(t)
p

, 1− p ≤ x(t) < 1

(13)

In the PHHO technique, the FF is used to balance between the number of features
selected in the solution (minimum) and the classification outcome (maximum) attained by
the selected features. Equation (10) shows the FF for calculating the solution.

Fitness = αγR(D) + β
|R|
|C| (14)

In Equation (14), the parameters α and β correspond to the significance of the classifi-
cation quality and subset length. ∈ [1, 0] and β = 1− α.γR(D) shows the classifier error
rate. |R| shows the cardinality of the selected subset, and the total number of features in
the dataset is represented as |C|.

3.3. Structure of the ABiLSTM Model

The ABiLSTM model can be used for attack detection. The classical LSTM is only
capable of using prior context [25]. The Bi-LSTM is used to access long-range data to
better grab two-direction context dependency. At the same time, Bi-directional architecture
extracts the context data from both directions with forward and backward layers.

The hidden sequence and output of the forward layer are computed repeatedly by
the input in a sequential order from step 1 to step t, and the hidden sequence and output

of the backward layer are repeated from step t to 1.
→
ht and

←
h t indicate the output of

the forward and backward layers computed by the typical LSTM, correspondingly. The
Bi-LSTM layer produces an output vector, Y, where every component is evaluated by the
following equation:

yt = σ

(→
ht,
←
h t

)
(15)

where function σ is used for coupling the two
→
ht and

←
h t series. The last output of the

Bi-LSTM layer is formulated as Y = [y1, y2, . . . , yt], where the final component, yt, refers to
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the predicted well-log values for the next depth once the Bi-LSTM implements well-logging
prediction. Figure 2 represents the structure of ABiLSTM.
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In recent times, the attention model-based NN has illustrated success in a large number
of tasks. In Bi-LSTM with an attention model, the attention mechanism aligns with the
input cell state at the existing step through the implicit state of Bi-LSTM or to exploit the
final cell state of the Bi-LSTM, Next, the relationship between the outputs and the candidate
intermediate states is evaluated. The relevant data are highlighted, and the unrelated data
are suppressed to optimize the efficiency and accuracy of prediction in the learning method:

M = tanh(Y) (16)

α = so f tmax
(

wT
a M
)

(17)

A = YαT (18)

where Y refers to a matrix and shows the features taken by the Bi-LSTM networks in
the above-mentioned matrix Y = [y1, y2, . . . , yt ]. T indicates the transpose function. The
weight coefficient matrix of the attention layer can be represented as wa. α signifies the
attention weight for features Y.

3.4. Process Involved in GWO-Based Parameter Selection

The GWO approach is employed to tune the hyperparameter values of the ABiLSTM
model. GWO is a global random search approach presented by inspiring searching and
hunting behaviors of grey wolves [26]. There are four levels of GW population from
low to high: α, β, δ and ω wolves. Target hunting is performed strictly based on the
order of the wolf pack. The hunting procedure of GW can be separated into three parts,
namely, searching and attacking prey, encircling prey and hunting. GWs move closer and
encircle prey once they start searching for prey, and the performance is represented in
Equations (19) and (20) as:

D =
∣∣M · Xp(t)− X(t)

∣∣ (19)

X(t + 1) = Xp(t)− A · D (20)
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whereas t denotes the count of existing iterations, X(t) and X(t) imply the location vectors
of prey and GW x, (t + 1) is the novel place of GW and D denotes the distance between
GW and targets. M and A are co-ordination coefficient vectors which are determined by
Equations (21) and (22):

A = 2a · r1 − a (21)

M = 2 · r2 (22)

where a represents the convergence factor to be linearly reduced from two to zero in the
iteration method, and r1 and r2 denote the random numbers between zero and one.

In the control of optimum wolves, wolves recognize the place of prey and get closer
towards it. This performance is represented by Equations (23)–(26):

Dα = |M1 · Xα − X(t)|, X1 = Xα − A1 · Dα (23)

Dβ =
∣∣M2 · Xβ − X(t)

∣∣, X2 = Xβ − A2 · Dβ (24)

Dδ = |M3 · Xδ − X(t)|, X3 = Xδ − A3 · Dδ (25)

X(t + 1) =
X1 + X2 + X3

3
(26)

whereas α stands for the neighboring wolf to prey, β denotes the second nearby wolf
towards the target and δ implies the third adjoining wolf towards the target. The upgraded
average of α, β and δ wolves provides the novel GW place.

GW groups mostly hunt based on the information of α, β and δ wolves. During the
mathematical process, the values of the co-ordination coefficient vector can be deployed
for controlling if the GW is exploring for an attacking target. If |A|> 1, then GW in the
prey increases their searching possibility to place the prey efficiently. If |A|< 1, then GW
restricts the searching region to attack the target. The fitness selection is a primary factor
in the GWO technique. An encoded solution is employed to evaluate the outcome of the
solution candidate. At this point, the accuracy values are the major condition exploited to
design a FF.

Fitness = max(P) (27)

P =
TP

TP + FP
(28)

where TP and FP represent the true- and false-positive values.

4. Performance Evaluation

The DDoS attack detection results of the PHHO-ODLC technique are tested by ap-
plying the BoT-IoT dataset [27] in terms of two aspects: the binary dataset and multi-class
dataset. Table 1 shows the details of the binary database.

Table 1. Details on the binary database.

Binary Database

Classes No. of Samples

Attack 1579
Normal 477

Total No. of Instances 2056

Figure 3 illustrates the classifier analysis of the PHHO-ODLC algorithm on the binary
database. Figure 3a,b show the confusion matrices provided with the PHHO-ODLC system
at 80:20 of the TR Phase/TS Phase. The figure signified that the PHHO-ODLC algorithm
has recognized and classified two class labels. Also, Figure 3c exhibits the PR curve of the
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PHHO-ODLC algorithm. The outcome illustrated that the PHHO-ODLC methodology
has attained improved PR performance in two classes. However, Figure 3d shows the
ROC analysis of the PHHO-ODLC method. The outcome described that the PHHO-ODLC
algorithm resulted in an efficient outcome with high ROC values in different class labels.
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The attack detection outcomes of the PHHO-ODLC method are tested on the binary
dataset in Table 2 and Figure 4. The simulation value indicated that the PHHO-ODLC
algorithm appropriately recognizes the attacks and normal samples. On 80% of the TR
Phase, the PHHO-ODLC system provides an average accuy of 97.64%, precn of 97.01%,
recal of 97.64%, Fscore of 97.32% and AUCscore of 97.64%. Additionally, with 20% of the TS
Phase, the PHHO-ODLC approach offers an average accuy of 99.20%, precn of 98.90%, recal
of 99.20%, Fscore of 99.05% and AUCscore of 99.20%, correspondingly.
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Table 2. Attack detection outcome of the PHHO-ODLC algorithm on a binary database.

Classes Accuy Precn Recal Fscore AUCscore

TR Phase (80%)

Attack 98.51 99.05 98.51 98.78 97.64
Normal 96.77 94.97 96.77 95.86 97.64

Average 97.64 97.01 97.64 97.32 97.64

TS Phase (20%)

Attack 99.35 99.67 99.35 99.51 99.20
Normal 99.06 98.13 99.06 98.59 99.20

Average 99.20 98.90 99.20 99.05 99.20
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To calculate the performance of the PHHO-ODLC approach on the binary dataset,
TR and TS accuy curves are described, as demonstrated in Figure 5. The TR and TS accuy
curves exhibit the performance of the PHHO-ODLC method over numerous epochs. The
figure provided meaningful details about the learning task and generalization capabilities
of the PHHO-ODLC model. With a rise in the epoch count, it is observed that the TR and
TS accuy curves are enhanced. It is noted that the PHHO-ODLC system achieves enriched
testing accuracy that has the potential to recognize the patterns in the TR and TS data.



Mathematics 2023, 11, 4448 11 of 18Mathematics 2023, 11, x FOR PEER REVIEW 11 of 18 
 

 

 
Figure 5. 𝐴𝑐𝑐𝑢௬ curve of the PHHO-ODLC algorithm on a binary database. 

Figure 6 shows the overall TR and TS loss values of the PHHO-ODLC system on a 
binary dataset over epochs. The TR loss indicates the model loss is minimized over epochs. 
Mainly, the loss values obtained decreased as the model adapted the weight for diminish-
ing the predicted error on the TR and TS data. The loss curves exhibit the extent to which 
the model fits the training data. It is noted that the TR and TS loss is progressively mini-
mized and represents that the PHHO-ODLC system efficiently learns the patterns demon-
strated in the TR and TS data. It is also evidenced that the PHHO-ODLC methodology 
modifies the parameters for decreasing the difference between the actual and predicted 
training labels. 

 
Figure 6. Loss curve of the PHHO-ODLC algorithm on a binary database. 

Table 3 demonstrates the details of the multiclass dataset. 

Figure 5. Accuy curve of the PHHO-ODLC algorithm on a binary database.

Figure 6 shows the overall TR and TS loss values of the PHHO-ODLC system on
a binary dataset over epochs. The TR loss indicates the model loss is minimized over
epochs. Mainly, the loss values obtained decreased as the model adapted the weight for
diminishing the predicted error on the TR and TS data. The loss curves exhibit the extent
to which the model fits the training data. It is noted that the TR and TS loss is progressively
minimized and represents that the PHHO-ODLC system efficiently learns the patterns
demonstrated in the TR and TS data. It is also evidenced that the PHHO-ODLC methodol-
ogy modifies the parameters for decreasing the difference between the actual and predicted
training labels.
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Table 3 demonstrates the details of the multiclass dataset.
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Table 3. Details on the multiclass database.

Multiclass Database

Class No. of Instances

DDoS 500
DoS 500

Recon 500
Theft 79

Normal 477

Total No. of Samples 2056

Figure 7 demonstrates the classifier analysis of the PHHO-ODLC algorithm on the
multiclass database. Figure 7a,b represent the confusion matrix provided with the PHHO-
ODLC technique at 80:20 of the TR Phase/TS Phase. The outcome demonstrated that the
PHHO-ODLC algorithm has detection and is categorized on five class labels. Figure 7c
defines the PR curve of the PHHO-ODLC model. The figure indicates that the PHHO-
ODLC method has attained improved PR outcomes in five classes. Figure 7d reveals the
ROC analysis of the PHHO-ODLC system. The experimental outcome indicated that the
PHHO-ODLC method resulted in an effectual solution with improved ROC outcomes in
various class labels.
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The attack detection analysis of the PHHO-ODLC approach is tested on the multiclass
database in Table 4 and Figure 8. The observation data indicate that the PHHO-ODLC
method properly recognizes all five classes. On 80% of the TR Phase, the PHHO-ODLC
method provides an average accuy of 98.88%, precn of 96.80%, recal of 95.14%, Fscore of
95.91% and AUCscore of 97.21%. Additionally, with 20% of the TS Phase, the PHHO-ODLC
technique offers an average accuy of 98.83%, precn of 95.96%, recal of 93.66%, Fscore of 94.69%
and AUCscore of 96.45%, correspondingly.

Table 4. Attack detection outcome of the PHHO-ODLC algorithm on a multiclass database.

Class Accuy Precn Recal Fscore AUCscore

TR Phase (80%)

DDoS 98.48 97.69 95.97 96.82 97.62
DoS 98.48 95.40 98.16 96.76 98.37

Recon 99.21 98.30 98.54 98.42 98.98
Theft 99.21 94.92 84.85 89.60 92.33

Normal 99.03 97.71 98.21 97.96 98.75

Average 98.88 96.80 95.14 95.91 97.21

TS Phase (20%)

DDoS 99.51 99.03 99.03 99.03 99.35
DoS 97.82 96.64 95.83 96.23 97.23

Recon 99.51 97.83 100.00 98.90 99.69
Theft 99.03 90.91 76.92 83.33 88.34

Normal 98.30 95.40 96.51 95.95 97.64

Average 98.83 95.96 93.66 94.69 96.45
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To determine the performance of the PHHO-ODLC system on the multiclass dataset,
TR and TS accuy curves are defined, as shown in Figure 9. The TR and TS accuy curves
indicate the performance of the PHHO-ODLC approach over several epochs. The figure
offered meaningful details about the learning tasks and generalization capacity of the
PHHO-ODLC technique. With an improvement in the epoch count, it is noted that the TR
and TS accuy curves get enriched. It is evident that the PHHO-ODLC method attains better
testing accuracy and can recognize the patterns in the TR and TS data.
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Figure 10 illustrates the overall TR and TS loss values of the PHHO-ODLC method
on a multiclass dataset over epochs. The TR loss specifies the model loss decreases over
epochs. Generally, the loss values get reduced as the model adjusts the weight to reduce
the predictable error on the TR and TS data. The loss curves show the extent to which the
model fits the training data. It is observed that the TR and TS loss is gradually diminishing,
signifying that the PHHO-ODLC algorithm efficiently learns the patterns demonstrated
in the TR and TS data. It is also evidenced that the PHHO-ODLC technique adapts the
parameters to lessen the dissimilarity between the predicted and actual training labels.

Finally, a comprehensive outcome of the PHHO-ODLC system with other methods
is represented in Table 5 and Figure 11 [28]. The outcomes highlight the enhanced results
of the PHHO-ODLC technique. Based on accuy, the PHHO-ODLC technique gains an
increased accuy of 99.20%, while the H3SC-DLIDS, AE-MLP, IDS-IoT, XGBoost, RF and
DT models obtain decreased accuy values of 99.05%, 98.19%, 97.40%, 97.09%, 97.00%
and 95.21%, respectively. Also, based on precn, the PHHO-ODLC method achieves an
improved precn of 98.90%, whereas the H3SC-DLIDS, AE-MLP, IDS-IoT, XGBoost, RF
and DT methodologies obtain reduced precn values of 96.65%, 95.91%, 95.80%, 94.28%,
94.98% and 92.43%, individually. Finally, based on recal , the PHHO-ODLC approach gains
a raised recal of 99.20%, but the H3SC-DLIDS, AE-MLP, IDS-IoT, XGBoost, RF and DT
systems acquire minimized recal values of 95.67%, 93.31%, 94.90%, 92.13%, 93.69% and
92.51%, correspondingly.

These outcomes confirmed the better solution of the PHHO-ODLC technique on the
DDoS attack detection algorithm. The PHHO-ODLC method’s superiority in performance
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over other techniques can be justified through its novel approach to DDoS attack recog-
nition in IoT environments. In the initial stage, the usage of the PHHO enables highly
effective feature selection, ensuring that only the most relevant data attributes are used for
classification. This tailored feature set minimizes noise and augments the model’s precision,
a crucial benefit in distinguishing genuine threats from noise in IoT data. In the second
stage, the incorporation of the ABiLSTM network equips the PHHO-ODLC technique with
deep learning abilities, facilitating the analysis of sequential data patterns. This enables the
effective detection of complex attack patterns and further increases accuracy in DDoS attack
classification. Furthermore, the third stage, using the GWO for hyperparameter tuning,
ensures that the model is fine-tuned to its highest performance, improving its capability to
adapt to various IoT environments and attack scenarios. In summary, the PHHO-ODLC
technique excels due to its holistic method, including deep learning, feature selection and
hyperparameter optimization, which collectively improve its accuracy and resilience in
DDoS attack detection, setting it apart as a robust solution in the IoT security landscape.
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Table 5. Comparative outcome of the PHHO-ODLC system with other approaches.

Methods Accuy Precn Recal Fscore

PHHO-ODLC 99.20 98.90 99.20 99.05
H3SC-DLIDS 99.05 96.65 95.67 96.14

AE-MLP 98.19 95.91 93.31 95.13
IDS-IoT 97.40 95.80 94.90 95.53
XGBoost 97.09 94.28 92.13 95.05

RF 97.00 94.98 93.69 94.57
DT 95.21 92.43 92.51 93.26
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5. Conclusions

In this manuscript, we have developed an automatic PHHO-ODLC technique for a
secure IoT environment. The fundamental goal of the PHHO-ODLC method is to detect
the presence of DDoS attacks in the IoT platform. The PHHO-ODLC algorithm follows
three-stage processes such as PHHO-based FS, ABiLSTM-based DDoS attack detection and
GWO-based hyperparameter tuning. A detailed comparative result analysis indicated that
the proposed model achieves a better performance over other models, with a maximum
accuracy of 99.20%. The PHHO-ODLC technique provides a robust solution for detecting
DDoS attacks in the IoT environment, ensuring the security and integrity of interconnected
devices. Its real-world applications extend to safeguarding critical IoT systems, such as
smart cities, healthcare and industrial automation, from disruptive cyber threats. Future
research will explore the scalability of the PHHO-ODLC technique in dealing with large
IoT networks and a wide range of attack types. Moreover, the development of adaptive
mechanisms to respond to evolving DDoS attack strategies and the integration of anomaly
detection methods will be integral to further improving IoT security.
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