An Improved WENO-Z Scheme for Hyperbolic Conservation Laws with New Global Smoothness Indicator
Abstract
:1. Introduction
2. Numerical Method
2.1. WENO-JS Scheme
2.2. WENO-Z Scheme
3. The New WENO-Z Scheme
3.1. Construction of Novel Global Smoothness Indicator
3.1.1. Accuracy
3.1.2. Weights of Less-Smooth Sub-Stencils
3.2. The Spectral Properties of New Scheme
4. Numerical Results
4.1. Linear Advection Problems
4.1.1. Accuracy Test
4.1.2. Linear Problem with Several Critical Points
4.2. One-Dimensional Euler Problems
4.2.1. SOD Problem
4.2.2. Lax Problem
4.2.3. Shu–Osher Problem
4.3. Two-Dimensional Euler Problems
4.3.1. Riemann Problem
4.3.2. Double Mach Reflection Problem
4.3.3. Rayleigh–Taylor Instability Problem
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Harten, A. High resolution schemes for hyperbolic conservation laws. J. Comput. Phys. 1983, 49, 357–393. [Google Scholar] [CrossRef]
- Toro, E.F.; Billett, S.J. Centred TVD schemes for hyperbolic conservation laws. IMA J. Numer. Anal. 2000, 20, 47–79. [Google Scholar] [CrossRef]
- Tang, S.J.; Li, M.J. Construction and application of several new symmetrical flux limiters for hyperbolic conservation law. Comput. Fluids 2020, 93, 104741. [Google Scholar] [CrossRef]
- Harten, A.; Osher, S.; Engquist, B.; Chakravarthy, S.R. Some results on uniformly high-order accurate essentially nonoscillatory schemes. Appl. Numer. Math. 1986, 2, 347–377. [Google Scholar] [CrossRef]
- Harten, A.; Engquist, B.; Osher, S.; Chakravarthy, S.R. Uniformly high order accurate essentially non-oscillatory schemes, III. J. Comput. Phys. 1987, 71, 231–303. [Google Scholar] [CrossRef]
- Shu, C.W.; Osher, S. Efficient implementation of essentially non-oscillatory shock-capturing schemes. J. Comput. Phys. 1988, 77, 439–471. [Google Scholar] [CrossRef]
- Liu, X.D.; Osher, S.; Chan, T. Weighted essentially non-oscillatory schemes. J. Comput. Phys. 1994, 115, 200–212. [Google Scholar] [CrossRef]
- Jiang, G.S.; Shu, C.W. Efficient implementation of weighted ENO schemes. J. Comput. Phys. 1996, 126, 202–228. [Google Scholar] [CrossRef]
- Borges, R.; Carmona, M.; Costa, B.; Don, W.S. An improved weighted essentially non-oscillatory scheme for hyperbolic conservation laws. J. Comput. Phys. 2008, 227, 3191–3211. [Google Scholar] [CrossRef]
- Tang, S.J.; Li, M.J. Novel functional weights for improving the third-order WENO schemes. Int. J. Numer. Meth. Fluids 2021, 93, 3131–3150. [Google Scholar] [CrossRef]
- Henrick, A.K.; Aslam, T.D.; Powers, J.M. Mapped weighted essentially non-oscillatory schemes: Achieving optimal order near critical points. J. Comput. Phys. 2005, 207, 542–567. [Google Scholar] [CrossRef]
- Guo, J.; Jung, J.H. Radial basis function ENO and WENO finite difference methods based on the optimization of shape parameters. J. Sci. Comput. 2017, 70, 551–575. [Google Scholar] [CrossRef]
- Guo, J.; Jung, J.H. A RBF-WENO finite volume method for hyperbolic conservation laws with the monotone polynomial interpolation method. Appl. Numer. Math. 2017, 112, 27–50. [Google Scholar] [CrossRef]
- Abedian, R. A finite difference Hermite RBF-WENO scheme for hyperbolic conservation laws. Int. J. Numer. Meth. Fluids 2022, 94, 583–607. [Google Scholar] [CrossRef]
- Abedian, R.; Dehghan, M. The formulation of finite difference RBFWENO schemes for hyperbolic conservation laws: An alternative technique. Adv. Appl. Math. Mech. 2023, 15, 1023–1055. [Google Scholar] [CrossRef]
- Zeng, F.J.; Shen, Y.Q.; Liu, S.P. A perturbational weighted essentially non-oscillatory scheme. Comput. Fluids 2018, 172, 196–208. [Google Scholar] [CrossRef]
- Castro, M.; Costa, B.; Don, W.S. High order weighted essentially non-oscillatory WENO-Z schemes for hyperbolic conservation laws. J. Comput. Phys. 2011, 230, 1766–1792. [Google Scholar] [CrossRef]
- Cheng, X.H.; Feng, J.H.; Zheng, S.P. A fourth order WENO scheme for hyperbolic conservation laws. Adv. Appl. Math. Mech. 2020, 12, 992–1007. [Google Scholar] [CrossRef]
- Xu, W.Z.; Wu, W.G. An improved third-order weighted essentially non-oscillatory scheme achieving optimal order near critical points. Comput. Fluids 2018, 162, 113–125. [Google Scholar] [CrossRef]
- Wang, Y.H.; Du, Y.L.; Zhao, K.L.; Li, Y. A low-dissipation third-order weighted essentially nonoscillatory scheme with a new reference smoothness indicator. Int. J. Numer. Meth. Fluids 2020, 92, 1212–1234. [Google Scholar] [CrossRef]
- Kim, C.H.; Ha, Y.; Yoon, J. Modified non-linear weights for fifth-order weighted essentially non-oscillatory schemes. J. Sci. Comput. 2016, 67, 299–323. [Google Scholar] [CrossRef]
- Rathan, S.; Gande, N.R.; Bhise, A.A. Simple smoothness indicator WENO-Z scheme for hyperbolic conservation laws. Appl. Numer. Math. 2020, 157, 255–275. [Google Scholar] [CrossRef]
- Liu, S.P.; Shen, Y.Q.; Zeng, F.J.; Ming, Y. A new weighting method for improving the WENO-Z scheme. Int. J. Numer. Meth. Fluids 2018, 87, 271–291. [Google Scholar] [CrossRef]
- Acker, F.; Borges, R.; Costa, B. An improved WENO-Z scheme. J. Comput. Phys. 2016, 313, 726–753. [Google Scholar] [CrossRef]
- Tang, S.J.; Feng, Y.J.; Li, M.J. Novel weighted essentially non-oscillatory schemes with adaptive weights. Appl. Math. Comput. 2022, 420, 126893. [Google Scholar] [CrossRef]
- Don, W.S.; Borges, R. Accuracy of the weighted essentially non-oscillatory conservative finite difference schemes. J. Comput. Phys. 2013, 250, 347–372. [Google Scholar] [CrossRef]
- Pirozzoli, S. On the spectral properties of shock-capturing scheme. J. Comput. Phys. 2006, 219, 489–497. [Google Scholar] [CrossRef]
Method | N | Error | Order | Error | Order | Error | Order | Time |
---|---|---|---|---|---|---|---|---|
WENO-Z1 | 40 | 6.4906 × 10−6 | --- | 7.3342 × 10−6 | --- | 1.0792 × 10−5 | --- | 0.09360 |
80 | 2.0181 × 10−7 | 5.01 | 2.2523 × 10−7 | 5.09 | 3.2397 × 10−7 | 5.06 | 0.31200 | |
160 | 6.3021 × 10−9 | 5.00 | 7.0126 × 10−9 | 5.03 | 9.9715 × 10−9 | 5.02 | 1.23241 | |
320 | 1.9695 × 10−10 | 5.00 | 2.1894 × 10−10 | 5.01 | 3.1007 × 10−10 | 5.01 | 5.44443 | |
640 | 6.1552 × 10−12 | 5.00 | 6.8396 × 10−12 | 5.00 | 9.6797 × 10−12 | 5.00 | 25.02256 | |
1280 | 1.9237 × 10−13 | 5.00 | 2.1371 × 10−13 | 5.00 | 3.0235 × 10−13 | 5.00 | 117.01635 | |
WENO-Z2 | 40 | 6.4581 × 10−6 | --- | 7.2051× 10−6 | --- | 1.0281 × 10−5 | --- | 0.10920 |
80 | 2.0168 × 10−7 | 5.00 | 2.2462 × 10−7 | 5.00 | 3.1934 × 10−7 | 5.01 | 0.24960 | |
160 | 6.3015 × 10−9 | 5.00 | 7.0101 × 10−9 | 5.00 | 9.9414 × 10−9 | 5.01 | 1.21681 | |
320 | 1.9694 × 10−10 | 5.00 | 2.1893 × 10−10 | 5.00 | 3.1006 × 10−10 | 5.00 | 5.55364 | |
640 | 6.1552 × 10−12 | 5.00 | 6.8396 × 10−12 | 5.00 | 9.6797 × 10−12 | 5.00 | 24.96016 | |
1280 | 1.9237 × 10−13 | 5.00 | 2.1371 × 10−13 | 5.00 | 3.0235 × 10−13 | 5.00 | 120.44837 | |
WENO-NZ1 | 40 | 6.4712× 10−6 | --- | 7.2545 × 10−6 | --- | 1.0476 × 10−5 | --- | 0.03120 |
80 | 2.0173 × 10−7 | 5.00 | 2.2486 × 10−7 | 5.01 | 3.2110 × 10−7 | 5.03 | 0.37440 | |
160 | 6.3017 × 10−9 | 5.00 | 7.0111 × 10−9 | 5.001 | 9.9534× 10−9 | 5.01 | 1.40401 | |
320 | 1.9694 × 10−10 | 5.00 | 2.1893 × 10−10 | 5.00 | 3.1006 × 10−10 | 5.00 | 6.30244 | |
640 | 6.1552 × 10−12 | 5.00 | 6.8396 × 10−12 | 5.00 | 9.6797 × 10−12 | 5.00 | 29.37499 | |
1280 | 1.9237 × 10−13 | 5.00 | 2.1371 × 10−13 | 5.00 | 3.0235 × 10−13 | 5.00 | 136.98448 | |
WENO-NZ2 | 40 | 6.4580× 10−6 | --- | 7.2028 × 10−6 | --- | 1.0281 × 10−5 | --- | 0.15600 |
80 | 2.0168 × 10−7 | 5.00 | 2.2462 × 10−7 | 5.00 | 3.1934 × 10−7 | 5.01 | 0.35880 | |
160 | 6.3015 × 10−9 | 5.00 | 7.0101 × 10−9 | 5.00 | 9.9414 × 10−9 | 5.01 | 1.41961 | |
320 | 1.9694 × 10−10 | 5.00 | 2.1893 × 10−10 | 5.00 | 3.1006 × 10−10 | 5.00 | 6.17764 | |
640 | 6.1552 × 10−12 | 5.00 | 6.8396 × 10−12 | 5.00 | 9.6797 × 10−12 | 5.00 | 29.46859 | |
1280 | 1.9237 × 10−13 | 5.00 | 2.1371 × 10−13 | 5.00 | 3.0235 × 10−13 | 5.00 | 138.91889 |
Method | N | Error | Order | Error | Order | Error | Order | Time |
---|---|---|---|---|---|---|---|---|
WENO-Z1 | 40 | 7.0429 × 10−5 | --- | 9.5195 × 10−5 | --- | 2.1744 × 10−4 | --- | 0.06240 |
80 | 2.4102 × 10−6 | 4.87 | 3.1785 × 10−6 | 4.90 | 6.6772 × 10−6 | 5.03 | 0.28080 | |
160 | 7.8990 × 10−8 | 4.93 | 1.0142 × 10−7 | 4.97 | 2.0989 × 10−7 | 4.99 | 1.12321 | |
320 | 2.5157 × 10−9 | 4.97 | 3.2185 × 10−9 | 4.98 | 7.7672 × 10−9 | 4.76 | 5.60044 | |
640 | 7.8219 × 10−11 | 5.00 | 1.0239 × 10−10 | 4.97 | 3.5698 × 10−10 | 4.44 | 25.47496 | |
1280 | 2.4235 × 10−12 | 5.01 | 3.2682 × 10−12 | 4.97 | 1.7250 × 10−11 | 4.37 | 118.74796 | |
WENO-Z2 | 40 | 6.6140 × 10−5 | --- | 9.2603 × 10−5 | --- | 2.2383 × 10−4 | --- | 0.09360 |
80 | 2.2447 × 10−6 | 4.88 | 3.0595 × 10−6 | 4.92 | 6.6812 × 10−6 | 5.07 | 0.37440 | |
160 | 7.2388 × 10−8 | 4.95 | 9.6470 × 10−8 | 4.99 | 2.0987 × 10−7 | 4.99 | 1.23241 | |
320 | 2.2821 × 10−9 | 4.99 | 3.0181 × 10−9 | 5.00 | 6.5525 × 10−9 | 5.00 | 5.46004 | |
640 | 7.1426 × 10−11 | 5.00 | 9.4316 × 10−11 | 5.00 | 2.0464 × 10−10 | 5.00 | 26.31737 | |
1280 | 2.2327 × 10−12 | 5.00 | 2.9471 × 10−12 | 5.00 | 6.3923 × 10−12 | 5.00 | 121.25958 | |
WENO-NZ1 | 40 | 7.1643 × 10−5 | --- | 9.5751 × 10−5 | --- | 2.1375 × 10−4 | --- | 0.12480 |
80 | 2.2953 × 10−6 | 4.96 | 3.0766 × 10−6 | 4.96 | 6.6998 × 10−6 | 5.00 | 0.48360 | |
160 | 7.2863 × 10−8 | 4.98 | 9.6755 × 10−8 | 4.99 | 2.0990 × 10−7 | 5.00 | 1.27921 | |
320 | 2.3087 × 10−9 | 4.98 | 3.0290 × 10−9 | 5.00 | 6.5526 × 10−9 | 5.00 | 6.22444 | |
640 | 7.2598 × 10−11 | 4.99 | 9.4765 × 10−11 | 5.00 | 2.0464 × 10−10 | 5.00 | 28.90699 | |
1280 | 2.2695 × 10−12 | 5.00 | 2.9652 × 10−12 | 5.00 | 6.3923 × 10−12 | 5.00 | 137.24968 | |
WENO-NZ2 | 40 | 7.3503 × 10−5 | --- | 9.6607 × 10−5 | --- | 2.1206 × 10−4 | --- | 0.07800 |
80 | 2.3293 × 10−6 | 4.98 | 3.0796 × 10−6 | 4.97 | 6.7004 × 10−6 | 4.98 | 0.35880 | |
160 | 7.3012 × 10−8 | 5.00 | 9.6541 × 10−8 | 5.00 | 2.0988 × 10−7 | 5.00 | 1.48201 | |
320 | 2.2852 × 10−9 | 5.00 | 3.0181 × 10−9 | 5.00 | 6.5526 × 10−9 | 5.00 | 6.31804 | |
640 | 7.1435 × 10−11 | 5.00 | 9.4313 × 10−11 | 5.00 | 2.0464 × 10−10 | 5.00 | 29.28139 | |
1280 | 2.2327 × 10−12 | 5.00 | 2.9471 × 10−12 | 5.00 | 6.3923 × 10−12 | 5.00 | 139.57409 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Han, S.; Li, M. An Improved WENO-Z Scheme for Hyperbolic Conservation Laws with New Global Smoothness Indicator. Mathematics 2023, 11, 4449. https://doi.org/10.3390/math11214449
Han S, Li M. An Improved WENO-Z Scheme for Hyperbolic Conservation Laws with New Global Smoothness Indicator. Mathematics. 2023; 11(21):4449. https://doi.org/10.3390/math11214449
Chicago/Turabian StyleHan, Shuang, and Mingjun Li. 2023. "An Improved WENO-Z Scheme for Hyperbolic Conservation Laws with New Global Smoothness Indicator" Mathematics 11, no. 21: 4449. https://doi.org/10.3390/math11214449
APA StyleHan, S., & Li, M. (2023). An Improved WENO-Z Scheme for Hyperbolic Conservation Laws with New Global Smoothness Indicator. Mathematics, 11(21), 4449. https://doi.org/10.3390/math11214449