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Abstract: The fifth-order WENO-Z scheme proposed by Borges et al., using a linear combination
of low-order smoothness indicators, is designed to provide a low numerical dissipation to solve
hyperbolic conservation laws, while the power q in the framework of WENO-Z plays a key role in its
performance. In this paper, a novel global smoothness indicator with fifth-order accuracy, which is
based on several lower-order smoothness indicators on two-point sub-stencils, is presented, and a
new lower-dissipation WENO-Z scheme (WENO-NZ) is developed. The spectral properties of the
WENO-NZ scheme are studied through the ADR method and show that this new scheme can exhibit
better spectral results than WENO-Z no matter what the power value is. Accuracy tests confirm
that the accuracy of WENO-Z with q = 1 would degrade to the fourth order at first-order critical
points, while WENO-NZ can recover the optimal fifth-order convergence. Furthermore, numerical
experiments with one- and two-dimensional benchmark problems demonstrate that the proposed
WENO-NZ scheme can efficiently decrease the numerical dissipation and has a higher resolution
compared to the WENO-Z scheme.

Keywords: WENO-Z scheme; smoothness indicator; power parameter; fifth-order convergence; low
dissipation; high resolution

MSC: 65M06; 35L65

1. Introduction

As an important class of differential equation, the hyperbolic conservation equation has a
wide application in scientific and engineering fields. One of the characteristics of this equation
is that the solution may generate discontinuities even if its initial condition is smooth. For
capturing the discontinuities, many numerical schemes, such as total variation diminishing
schemes (TVD) [1–3], essentially non-oscillatory schemes (ENO) [4–6], weighted essentially
non-oscillatory schemes (WENO) [7–10], etc., have been developed in recent decades.
Among them, the WENO schemes have attracted great attention because they can not only
obtain high-order solutions in smooth regions but also efficiently avoid spurious oscillatory
near discontinuities.

The WENO scheme, first proposed by Liu et al. [7], provided one-order higher solu-
tions than the ones of the rth-order ENO scheme [4,5] by using a convex combination of r
candidate sub-stencils. Subsequently, Jiang and Shu [8] devised a new smoothness indicator
for the WENO scheme by utilizing the Lagrange form of interpolation polynomials and
proposed an efficient WENO-JS scheme. For the case r = 3, the resulting WENO-JS scheme
is about twice as fast as the fourth-order ENO scheme on computational efficiency. Most
importantly, this scheme can achieve optimal fifth-order accuracy. Henrick et al. [11] de-
rived a sufficient condition for the fifth-order convergence and conducted a further analysis
of the accuracy of WENO-JS. They found that the fifth-order WENO-JS scheme was only
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third-order accurate at first-order critical points. To increase the accuracy of the WENO
scheme, different types of finite difference WENO schemes by reconstructing flux functions
have been proposed [12–16], such as the RBF-WENO scheme, which was based on radial
basis functions (RBFs) and the nonlinear weights of WENO-JS, which was first proposed
by Guo and Jung in [12] and further developed by Abedian et al. [14,15]. On the other
hand, some scholars developed various techniques to calculate the weights to improve the
accuracy. For example, Henrick et al. [11] introduced a corrected mapping function to the
nonlinear weights of WENO-JS and presented a WENO-M scheme which could restore
the optimal convergence order even at critical points but was computationally expensive.
Unlike the idea of WENO-M, Borges et al. [9] designed a fifth-order global smoothness
indicator using the linear combination of low-order smoothness indicators and proposed
an innovative WENO-Z scheme with lower numerical dissipation. Meanwhile, this scheme
was able to obtain almost the same accurate numerical solution as WENO-M and reduced
computation by 25%.

Castro et al. [17] extended the WENO-Z scheme to arbitrary (2r − 1) th odd-order
accuracy by designing a general formula for the global smoothness indicator. However, it
should be noted that the numerical dissipation of WENO-Z is dependent upon the power
parameter q. For example, the scheme is less dissipative with q = 1 but will lose accuracy at
critical points, such as the fifth-order WENO-Z is only fourth-order accurate at first-order
critical points. In contrast, the scheme will decrease the correction of nonlinear weights and
is more dissipative with q = 2. Hence, Borges et al. [9] suggested the power q taken to be 1
to maintain the low dissipation property. Recently, some studies [18–23] reconstructed a
series of higher-order (even up to eighth-order) reference smoothness indicators to recover
the optimal convergence for the low-dissipation WENO-Z scheme (means q = 1). Although
numerical results confirmed that these modified schemes with higher-order smoothness
indicators can achieve the desired accuracy in smooth regions including critical points,
most of these works either used larger stencils or introduced user-tunable parameters,
which led to the increased computation time or limited the application.

On the other hand, Acker et al. [24] concluded the important role of increasing the
contribution of less-smooth candidate sub-stencils for increasing the resolution. They
added an extra term to WENO-Z weights to increase the relevance of less-smooth sub-
stencils and proposed a fifth-order WENO-Z+ scheme. In terms of the lrest progress, a new
fifth-order WENO-Z scheme was developed by Tang et al. [25] to perform lower dissipation
at discontinuities by constructing a selector that can identify the less-smooth sub-stencils.
Unfortunately, the presented WENO schemes in [24,25] were still fourth-order accurate
at critical points. Therefore, how to construct a low-dissipation WENO-Z scheme with
better performances, which has overall fifth-order accuracy including critical points and
a higher resolution near discontinuities, should be investigated thanks to its significant
computational benefit.

In this study, we divide the five-point global stencil of the WENO scheme into four
smaller two-point sub-stencils. By utilizing the local smoothness indicators of these sub-
stencils, we devise a novel fifth-order global smoothness indicator and develop a WENO-
NZ scheme. The numerical results demonstrate that the WENO-NZ scheme is less dis-
sipative and can restore the optimal convergence order whatever the value of power q.
Additionally, this scheme shows improved capability in capturing discontinuities and small
scales and exhibits higher resolution compared to the WENO-Z scheme.

The rest of the paper is structured as follows: In Section 2, a brief overview of the
fifth-order WENO-JS and WENO-Z schemes is discussed. In Section 3, an improved
WENO-Z scheme is developed by using a new fifth-order global smoothness indicator.
The performance comparison between WENO-Z and the proposed scheme for the one-
and two-dimensional Euler equations is given in Section 4. Finally, the conclusions are
presented in Section 5.
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2. Numerical Method

The one-dimensional scalar hyperbolic conservation laws can be written as

∂u
∂t

+
∂ f (u)

∂x
= 0, x ∈ [a, b], t > 0, (1)

here, u(x, t) is conservative variable, f (u) is flux. Consider the uniform grids xj = j∆x
(j = 0, · · · , N) and define the cell interfaces as xj+1/2 = xj + ∆x/2, ∆x is the uniform grid
spacing, the semi-discretization of Equation (1) can be given as

duj

dt
= −

(
∂ f
∂x

)
xj

, (2)

here, uj is a numerical approximation to u
(
xj, t

)
. The conservation property of Equation (2)

is obtained by implicitly defining f (u) = 1
∆x
∫ x+∆x/2

x−∆x/2 h(ξ)dξ, and have

duj

dt
= − 1

∆x

(
hj+1/2 − hj−1/2

)
, (3)

here, hj±1/2 = h
(

xj±1/2

)
. Then, Equation (3) can be further approximated as

duj

dt
≈ − 1

∆x

(
f̂ j+1/2 − f̂ j−1/2

)
, (4)

here, the numerical fluxes f̂ j±1/2 are higher order polynomial interpolations to hj±1/2 and
can be obtained by the WENO reconstruction.

In general, the flux f (u) is always split into two parts, f+ and f−, to ensure numerical
stability, such as

f (u) = f+(u) + f−(u), (5)

where d f+(u)
du ≥ 0 and d f−(u)

du ≤ 0. In this paper, the global Lax–Friedrichs splitting is used,
there are

f±(u) =
1
2
( f (u)± αu), (6)

where α = max
u
| f ′(u)|. Hence, f̂±j+1/2 can be computed as the positive and negative parts

of f (u), respectively, and have

f̂ j+1/2 = f̂+j+1/2 + f̂−j+1/2. (7)

In fact, f̂+j+1/2 and f̂−j+1/2 are symmetric with respect to xj+1/2 for the WENO scheme,

so we only describe how f̂+j+1/2 is approximated and the “+” will be dropped in the
following content for convenience.

According to the construction of the fifth-order WENO scheme, the numerical flux
f̂ j+1/2 can be given as

f̂ j+1/2 =
2

∑
k=0

ωk f̂k,j+1/2, (8)

where the numerical fluxes f̂k,j+1/2(k = 0, 1, 2) are given by

f̂0,j+1/2 = 1
3 f j−2 − 7

6 f j−1 +
11
6 f j,

f̂1,j+1/2 = − 1
6 f j−1 +

5
6 f j +

1
3 f j+1,

f̂2,j+1/2 = 1
3 f j +

5
6 f j+1 − 1

6 f j+2.

(9)
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Now, there are many different WENO construction techniques to compute the nonlin-
ear weights ωk, while the WENO-JS and WENO-Z are the most popular schemes.

2.1. WENO-JS Scheme

The well-known fifth-order WENO-JS scheme was proposed by Jiang and Shu [8],
whose nonlinear weights were defined as

ω JS
k =

αJS
k

2
∑

k=0
αJS

k

, αJS
k =

dk

(βk + ε)q , (10)

where dk are ideal weights that resulted in the fifth-order central upwind scheme, there
are d0 = 1/10, d1 = 6/10, and d2 = 3/10 respectively. The power q ≥ 1 is used to control
the weights of less-smooth sub-stencils. The larger the q is set, the smaller the weight is
obtained, but the scheme is more dissipative. Hence q = 2 is used for the WENO-JS scheme.
ε is a positive sensitivity parameter used to avoid division by 0 and ε = 10−40 is adopted in
this study. The local smoothness indicator βk is defined by

βk =
r−1

∑
l=1

∆x2l−1

xj+1/2∫
xj−1/2

(
dl

dxl f̂k(x)

)2

dx. (11)

For the fifth-order WENO scheme (r = 3), the βk can be further expressed as

β0 = 13
12
(

f j−2 − 2 f j−1 + f j
)2

+ 1
4
(

f j−2 − 4 f j−1 + 3 f j
)2,

β1 = 13
12
(

f j−1 − 2 f j + f j+1
)2

+ 1
4
(

f j+1 − f j−1
)2,

β2 = 13
12
(

f j − 2 f j+1 + f j+2
)2

+ 1
4
(
3 f j − 4 f j+1 + f j+2

)2.

(12)

The Taylor expansions of Equation (12) at xj can be given as

β0 = f ′2j ∆x2 +
(

13
12 f ′′ 2j − 2

3 f ′ j f ′′′ j
)

∆x4 −
(

13
6 f ′′ j f ′′′ j − 1

2 f ′ j f (4)j

)
∆x5 + O

(
∆x6),

β1 = f ′2j ∆x2 +
(

13
12 f ′′ 2j +

1
3 f ′ j f ′′′ j

)
∆x4 + O

(
∆x6),

β2 = f ′2j ∆x2 +
(

13
12 f ′′ 2j − 2

3 f ′ j f ′′′ j
)

∆x4 +
(

13
6 f ′′ j f ′′′ j − 1

2 f ′ j f (4)j

)
∆x5 + O

(
∆x6).

(13)

Substituting Equation (13) into Equation (10), there are ω JS
k = dk + O

(
∆x2), f ′ j 6= 0,

ω JS
k = dk + O(∆x), f ′ j = 0, f j

′′ 6= 0.
(14)

Henrick et al. [11] concluded a detailed analysis of the accuracy of the fifth-order
WENO scheme and derived a sufficient condition for the fifth-order convergence as follows

ωk − dk = O
(

∆x3
)

. (15)

Equation (15) is further weakened as ωk − dk = O
(
∆x2) by Don et al. in [26]. Although it

is not a necessary condition, it can be used as a simple criterion for designing nonlinear
weights. Obviously, the weights of WENO-JS cannot meet the sufficient condition of
Equation (15), especially at first-order critical points. It was reported that the WENO-JS
scheme was only third-order accurate at critical points [11].
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2.2. WENO-Z Scheme

Borges et al. [9] developed another fifth-order WENO scheme, called WENO-Z. They
defined the nonlinear weights as

ωZ
k =

αZ
k

∑2
k=0 αZ

k

, αZ
k = dk

(
1 +

(
τ5

βk + ε

)q)
, q = 1, 2. (16)

Here, τ5 is a global smoothness indicator given as

τ5 = |β0 − β2|, (17)

which with the following Taylor expansion

τ5 =

∣∣∣∣13
3

f ′′ j f ′′′ j − f ′ j f (4)j

∣∣∣∣∆x5. (18)

Substituting Equations (13) and (18) into Equation (16), then have ωZ
k = dk + O

(
∆x3q), f ′ j 6= 0,

ωZ
k = dk + O(∆xq), f ′ j = 0, f j

′′ 6= 0.
(19)

It can be found that the weights of WENO-Z with q = 1 do not meet the sufficient
condition (15) at first-order critical points. Furthermore, Borges et al., confirmed that the
WENO-Z scheme with q = 2 achieved fifth-order accuracy even at critical points. However,
an increase in q resulted in more numerical dissipation of WENO-Z. Therefore, the power
parameter q = 1 is suggested by Borges et al. and used by other scholars [18–25].

3. The New WENO-Z Scheme

Some works [20–23] demonstrated that constructing more higher-order smoothness
indicators was useful in recovering the desired order for the low-dissipation WENO-Z
scheme (means q = 1). Unlike these studies, we reconstructed a novel fifth-order global
smoothness indicator with lower dissipation for the WENO-Z scheme to overcome its
inherent limitations, such as its failure to balance the low-dissipation property and fifth-
order convergence.

3.1. Construction of Novel Global Smoothness Indicator

Within the framework for the original global smoothness indicator τ5 of WENO-Z, it
is found that a discontinuity would affect the interpolation on the range of 2∆x at least.
Suppose a discontinuity is at any position to the left (or right) side of the center point xj,
it would affect the interpolation on the three-point sub-stencil S0 (or S2). However, if a
discontinuity is just right at xj, it would affect the interpolation of the entire five-point
global stencil. To reduce the impact of the discontinuities on interpolation, we subdivided
the global stencil into four smaller sub-stencils {S00, S01, S12, S22}, each one only involving
two points, as shown in Figure 1. In fact, these sub-stencils are generally used to construct
the third-order WENO-Z scheme (r = 2).

Based on these new smaller sub-stencils, a discontinuity will affect the nearby 2∆x
range at most, that is, two two-point sub-stencils. Furthermore, only a two-point sub-stencil
where the discontinuity is located may be affected. From Equation (11), the smoothness
indicators on sub-stencils {S00, S01, S12, S22} can be computed as

β00 = ( fi−2 − fi−1)
2, β01 = ( fi−1 − fi)

2, β12 = ( fi − fi+1)
2, β22 = ( fi+1 − fi+2)

2, (20)

with the following Taylor expansions
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β00 = f ′2j ∆x2 − 3 f ′ j f ′′ j∆x3 +
(

9
4 f ′′ 2j +

7
3 f ′ j f ′′′ j

)
∆x4 −

(
7
2 f ′′ j f ′′′ j +

5
4 f ′ j f (4)j

)
∆x5 + O

(
∆x6),

β01 = f ′2j ∆x2 − f ′ j f ′′ j∆x3 +
(

1
4 f ′′ 2j +

1
3 f ′ j f ′′′ j

)
∆x4 −

(
1
6 f ′′ j f ′′′ j +

1
12 f ′ j f (4)j

)
∆x5 + O

(
∆x6),

β12 = f ′2j ∆x2 + f ′ j f ′′ j∆x3 +
(

1
4 f ′′ 2j +

1
3 f ′ j f ′′′ j

)
∆x4 +

(
1
6 f ′′ j f ′′′ j +

1
12 f ′ j f (4)j

)
∆x5 + O

(
∆x6),

β22 = f ′2j ∆x2 + 3 f ′ j f ′′ j∆x3 +
(

9
4 f ′′ 2j +

7
3 f ′ j f ′′′ j

)
∆x4 +

(
7
2 f ′′ j f ′′′ j +

5
4 f ′ j f (4)j

)
∆x5 + O

(
∆x6).

(21)
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Consider the WENO scheme will lose accuracy at first-order critical points, in order to
minimize the influence of the first-order derivative, meanwhile ensuring the global smooth-
ness indicator has high-order accuracy, the form of a new fifth-order global smoothness
indicator can be given as

τN5 = |β00 − 3β01 + 3β12 − β22|/6, (22)

the Taylor expansion of τN5 is as follows

τN5 =

∣∣∣∣ f j
′′ f j

′′′ +
1
3

f j
′ f (4)j

∣∣∣∣∆x5. (23)

3.1.1. Accuracy

Based on the nonlinear weights for the WENO-Z scheme, substituting τN5 instead of
τ5 into Equation (16) can obtain a new weight, as follows

ωNZ
k =

αNZ
k

∑2
k=0 αNZ

k

, αNZ
k = dk

(
1 +

(
τN5

βk + ε

)q)
, q = 1, 2. (24)
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Substituting Equation (24) into Equation (8) results in a new WENO scheme, which is
named WENO-NZ in this paper. Since τN5 has the same fifth-order accuracy as τ5, similar
to the accuracy analysis of WENO-Z, there are

ωNZ
k =

 dk + O
(
∆x3q), f ′ j 6= 0,

dk + O(∆xq), f ′ j = 0, f j
′′ 6= 0,

(25)

which indicates that the WENO-NZ scheme has the same theoretical convergence accuracy
as WENO-Z. A detailed analysis of the accuracy properties can be found in [9]. For simplic-
ity, the WENO-Z and WENO-NZ schemes with different powers (q = 1 or 2) are, respectively,
denoted as WENO-Z1, WENO-Z2, WENO-NZ1, and WENO-NZ2 in this paper.

3.1.2. Weights of Less-Smooth Sub-Stencils

In [9], numerical results made evident that the WENO-Z places higher weights on
less-smooth sub-stencils than WENO-JS, this is the reason why WENO-Z achieves less
dissipative results. The results in [24] also showed that it is important to increase the
weights of less-smooth sub-stencils. Therefore, here is a numerical example to analyze the
weights of less-smooth sub-stencils for the new WENO-NZ scheme.

Consider the linear case of Equation (1) as follows

u(x, t = 0) = f (x) =

{
− sin(πx)− 1

2 x3, −1 ≤ x < 0,

− sin(πx)− 1
2 x3 + 1, 0 ≤ x ≤ 1,

(26)

with the exact solution u(x, t) = u(x− t, 0). This numerical example contains a jump
discontinuity at x = 0, which is usually used to study the behavior of nonlinear weights in
the smooth and discontinuous regions for the WENO scheme. We compute this numerical
example to the final time t = 2.0 using N = 200 with periodic boundary, and the time step
is set as ∆t = ∆x/2. As shown in Figure 2a, the numerical results of WENO-NZ1 are the
closest to that of the exact solution, and WENO-Z2 generates the most dissipation near
discontinuities compared to others. Figure 2b gives the values of smoothness indicators
at the initial step t = 0, i.e., βk(k = 0, 1, 2), τ5, and τN5. We can see that τN5 is smaller than
τ5 whether in smooth or discontinuous regions, hence, the WENO-NZ scheme is more
accurate compared to WENO-Z.

Figure 3 further provides the distributions of nonlinear weights for WENO-Z1, WENO-
Z2, WENO-NZ1, and WENO-NZ2. As Figure 3 shows, at the point x = −0.02, where
the discontinuity occurs for the first time, the ω2 is smaller than ω0 and ω1, that is, the
nonlinear weight of the less-smooth sub-stencil is smaller than that of smooth ones. It can
be seen that the WENO-NZ assigns relatively larger weights to the less-smooth sub-stencils
compared to the corresponding WENO-Z scheme. It can also be seen that the nonlinear
weights of the WENO-NZ scheme are nearer to the ideal ones, resulting in the WENO-NZ
scheme being closer to the central upwind scheme. As a result, this new scheme is less
dissipative than the WENO-Z scheme.

3.2. The Spectral Properties of New Scheme

The spectral properties of the WENO-NZ scheme are studied using the ADR method
proposed by Pirozzoli in [27]. As shown in Figure 4, it can be found that the dispersion and
dissipation results of the WENO-NZ scheme are closer to the fifth-order upwind scheme
(UP5) compared to WENO-Z, and the dispersion and dissipation curves of WENO-NZ are
very similar to those of UP5. In addition, the spectral results of WENO-Z1 are better than
those of WENO-Z2, but the results of WENO-NZ2 are nearly equivalent to that of WENO-
NZ1, which implies that compared to WENO-Z, the WENO-NZ is a lower-dissipation
scheme regardless of power q.
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4. Numerical Results

In this section, a series of typical numerical examples involving discontinuities and
complex scale waves are computed to examine the accuracy, resolution, and low-dissipation
properties of the proposed WENO-NZ scheme. The third-order Runge–Kutta method [1] is
applied for time discretization with a CFL number of 0.5, as

u(1) = un + ∆tL[un],

u(2) = 3
4 un + 1

4

(
u(1) + ∆tL

[
u(1)

])
,

u(3) = 1
3 un + 2

3

(
u(2) + ∆tL

[
u(2)

])
,

(27)

where L is the spatial operator.

4.1. Linear Advection Problems

Consider the following linear advection problems{
∂u
∂t +

∂u
∂x = 0, x ∈ [a, b],

u(x, t = 0) = u0(x), periodic boundary,
(28)

with the exact solution u(x, t) = u0(x− t).

4.1.1. Accuracy Test

Case 1. The smooth initial condition is given as

u0(x) = sin(πx), −1 ≤ x ≤ 1. (29)

This solution is computed up to t = 2.0 using the grids N = 40, 80, 160, 320, 640, and
1280. The time step is set as ∆x5/4. In Table 1, the L1, L2, and L∞ errors, convergence orders,
and CPU times are exhibited for the WENO-Z and WENO-NZ schemes with different
powers, respectively. Here, the norm of errors is computed by

L1 = 1
N

N
∑

j=1

∣∣∣uj − (uexact)j

∣∣∣,
L2 =

√
1
N

N
∑

j=1

(
uj − (uexact)j

)2
,

L∞ = max
1≤j≤N

∣∣∣uj − (uexact)j

∣∣∣.
(30)

It can be seen that all schemes can achieve fifth-order accuracy, but the CPU time of
WENO-Z1 is the shortest compared to other schemes.

Case 2. The second initial condition for the accuracy test is given as

u0(x) = sin
(

πx− sin(πx)
π

)
, −1 ≤ x ≤ 1. (31)

This solution has two critical points. We compute the solution up to t = 2.0 using
the grids N = 40, 80, 160, 320, 640, and 1280 with ∆t = ∆x5/4. The L1, L2, and L∞ errors,
convergence orders, and CPU times for different schemes are exhibited in Table 2. It
can be found that the L∞ errors of WENO-Z2, WENO-NZ1, and WENO-NZ2 are one
order of magnitude lower than WENO-Z1. For ease of observation, Figure 5 gives the
line graphs of L∞ errors and orders. From Figure 5a, it can be seen that the L∞ errors of
WENO-Z2, WENO-NZ1, and WENO-NZ2 are almost the same and are smaller than those
of WENO-Z1. Moreover, it can also be seen from Figure 5b that the L∞ order of WENO-Z1
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is only fourth-order accurate with the increase in grid numbers, while other schemes can
achieve the desired fifth-order accuracy. Therefore, WENO-NZ proves to be a precise and
effective scheme.

Table 1. The errors, orders, and CPU times for linear advection problem with smooth initial condition
computed by different WENO schemes.

Method N L1 Error Order L2 Error Order L∞ Error Order Time

WENO-Z1

40 6.4906 × 10−6 --- 7.3342 × 10−6 --- 1.0792 × 10−5 --- 0.09360
80 2.0181 × 10−7 5.01 2.2523 × 10−7 5.09 3.2397 × 10−7 5.06 0.31200
160 6.3021 × 10−9 5.00 7.0126 × 10−9 5.03 9.9715 × 10−9 5.02 1.23241
320 1.9695 × 10−10 5.00 2.1894 × 10−10 5.01 3.1007 × 10−10 5.01 5.44443
640 6.1552 × 10−12 5.00 6.8396 × 10−12 5.00 9.6797 × 10−12 5.00 25.02256
1280 1.9237 × 10−13 5.00 2.1371 × 10−13 5.00 3.0235 × 10−13 5.00 117.01635

WENO-Z2

40 6.4581 × 10−6 --- 7.2051× 10−6 --- 1.0281 × 10−5 --- 0.10920
80 2.0168 × 10−7 5.00 2.2462 × 10−7 5.00 3.1934 × 10−7 5.01 0.24960
160 6.3015 × 10−9 5.00 7.0101 × 10−9 5.00 9.9414 × 10−9 5.01 1.21681
320 1.9694 × 10−10 5.00 2.1893 × 10−10 5.00 3.1006 × 10−10 5.00 5.55364
640 6.1552 × 10−12 5.00 6.8396 × 10−12 5.00 9.6797 × 10−12 5.00 24.96016
1280 1.9237 × 10−13 5.00 2.1371 × 10−13 5.00 3.0235 × 10−13 5.00 120.44837

WENO-NZ1

40 6.4712× 10−6 --- 7.2545 × 10−6 --- 1.0476 × 10−5 --- 0.03120
80 2.0173 × 10−7 5.00 2.2486 × 10−7 5.01 3.2110 × 10−7 5.03 0.37440
160 6.3017 × 10−9 5.00 7.0111 × 10−9 5.001 9.9534× 10−9 5.01 1.40401
320 1.9694 × 10−10 5.00 2.1893 × 10−10 5.00 3.1006 × 10−10 5.00 6.30244
640 6.1552 × 10−12 5.00 6.8396 × 10−12 5.00 9.6797 × 10−12 5.00 29.37499
1280 1.9237 × 10−13 5.00 2.1371 × 10−13 5.00 3.0235 × 10−13 5.00 136.98448

WENO-NZ2

40 6.4580× 10−6 --- 7.2028 × 10−6 --- 1.0281 × 10−5 --- 0.15600
80 2.0168 × 10−7 5.00 2.2462 × 10−7 5.00 3.1934 × 10−7 5.01 0.35880
160 6.3015 × 10−9 5.00 7.0101 × 10−9 5.00 9.9414 × 10−9 5.01 1.41961
320 1.9694 × 10−10 5.00 2.1893 × 10−10 5.00 3.1006 × 10−10 5.00 6.17764
640 6.1552 × 10−12 5.00 6.8396 × 10−12 5.00 9.6797 × 10−12 5.00 29.46859
1280 1.9237 × 10−13 5.00 2.1371 × 10−13 5.00 3.0235 × 10−13 5.00 138.91889
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Table 2. The errors, orders, and CPU times for the linear advection problem with two critical points
were computed by different WENO schemes.

Method N L1 Error Order L2 Error Order L∞ Error Order Time

WENO-Z1

40 7.0429 × 10−5 --- 9.5195 × 10−5 --- 2.1744 × 10−4 --- 0.06240
80 2.4102 × 10−6 4.87 3.1785 × 10−6 4.90 6.6772 × 10−6 5.03 0.28080
160 7.8990 × 10−8 4.93 1.0142 × 10−7 4.97 2.0989 × 10−7 4.99 1.12321
320 2.5157 × 10−9 4.97 3.2185 × 10−9 4.98 7.7672 × 10−9 4.76 5.60044
640 7.8219 × 10−11 5.00 1.0239 × 10−10 4.97 3.5698 × 10−10 4.44 25.47496
1280 2.4235 × 10−12 5.01 3.2682 × 10−12 4.97 1.7250 × 10−11 4.37 118.74796

WENO-Z2

40 6.6140 × 10−5 --- 9.2603 × 10−5 --- 2.2383 × 10−4 --- 0.09360
80 2.2447 × 10−6 4.88 3.0595 × 10−6 4.92 6.6812 × 10−6 5.07 0.37440
160 7.2388 × 10−8 4.95 9.6470 × 10−8 4.99 2.0987 × 10−7 4.99 1.23241
320 2.2821 × 10−9 4.99 3.0181 × 10−9 5.00 6.5525 × 10−9 5.00 5.46004
640 7.1426 × 10−11 5.00 9.4316 × 10−11 5.00 2.0464 × 10−10 5.00 26.31737
1280 2.2327 × 10−12 5.00 2.9471 × 10−12 5.00 6.3923 × 10−12 5.00 121.25958

WENO-NZ1

40 7.1643 × 10−5 --- 9.5751 × 10−5 --- 2.1375 × 10−4 --- 0.12480
80 2.2953 × 10−6 4.96 3.0766 × 10−6 4.96 6.6998 × 10−6 5.00 0.48360
160 7.2863 × 10−8 4.98 9.6755 × 10−8 4.99 2.0990 × 10−7 5.00 1.27921
320 2.3087 × 10−9 4.98 3.0290 × 10−9 5.00 6.5526 × 10−9 5.00 6.22444
640 7.2598 × 10−11 4.99 9.4765 × 10−11 5.00 2.0464 × 10−10 5.00 28.90699
1280 2.2695 × 10−12 5.00 2.9652 × 10−12 5.00 6.3923 × 10−12 5.00 137.24968

WENO-NZ2

40 7.3503 × 10−5 --- 9.6607 × 10−5 --- 2.1206 × 10−4 --- 0.07800
80 2.3293 × 10−6 4.98 3.0796 × 10−6 4.97 6.7004 × 10−6 4.98 0.35880
160 7.3012 × 10−8 5.00 9.6541 × 10−8 5.00 2.0988 × 10−7 5.00 1.48201
320 2.2852 × 10−9 5.00 3.0181 × 10−9 5.00 6.5526 × 10−9 5.00 6.31804
640 7.1435 × 10−11 5.00 9.4313 × 10−11 5.00 2.0464 × 10−10 5.00 29.28139
1280 2.2327 × 10−12 5.00 2.9471 × 10−12 5.00 6.3923 × 10−12 5.00 139.57409

4.1.2. Linear Problem with Several Critical Points

The initial condition is given as

u0(x) = e−(x−90)2/400
(

cos
(π

8
(x− 90)

)
+ cos

(π

4
(x− 90)

))
, 50 ≤ x ≤ 130. (32)

This solution involves several critical points and is often used to test the numerical
dissipation of WENO schemes. The solution is calculated by using N = 100 until the final
time t = 400 with ∆t = ∆x/2. As Figure 6 shows, the numerical results of WENO-NZ are
closer to the exact solution than WENO-Z, which again reveals that the WENO-NZ is a
lower-dissipation scheme. In addition, the numerical results of WENO-NZ2 are almost
comparable or even better than those of WENO-NZ1 at critical points, this is because the
weights of WENO-NZ1 cannot satisfy the fifth-order convergence sufficient condition at
critical points, but WENO-NZ2 can satisfy and also provide the lower dissipation.

4.2. One-Dimensional Euler Problems

The one-dimensional Euler equation can be written as

∂U
∂t

+
∂F(U)

∂x
= 0, (33)

with

U =

 ρ

ρu

E

, F(U) =

 ρu

ρu2 + p

u(E + p)

. (34)

Here,ρ, p, u, and E are the density, pressure, x-velocity, and total energy, respectively.
The total energy is given as E = p

γ−1 + 1
2 ρu2 with the ratio of specific heat γ = 1.4. In this
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subsection, the extrapolation boundary conditions are adopted and the “exact” solution is
computed using the fifth-order WENO-JS scheme with N = 2000.
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4.2.1. SOD Problem

The initial conditions of the sod problem are as follows

(, u, p) =

{
(1, 0, 1), 0 ≤ x < 0.5,

(0.125, 0, 0.1), 0.5 ≤ x ≤ 1.
(35)

This problem is run up to the final time t = 0.25 with N = 200, resulting in a shock
wave, a contact discontinuity, and an expansion wave. From Figure 7a, all the schemes
can both simulate the sod problem without oscillatory. The zoom-in results of contact
discontinuity for different schemes are displayed in Figure 7b. It can be found that the
WENO-NZ1 scheme can capture the contact discontinuities well and is slightly closer to
the “exact” solution than the others.
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4.2.2. Lax Problem

The initial conditions of the lax problem are as follows

(ρ, u, p) =

{
(0.445, 0.698, 0.3528), −5 ≤ x < 0,

(0.5, 0, 0.571), 0 ≤ x ≤ 5.
(36)

Figure 8 shows a comparison of different schemes with N = 200 at t = 1.3. From
Figure 8a, we can see that all schemes can pass through the sound velocity point smoothly.
However, it can be seen from Figure 8b that, in comparison to WENO-Z, the corresponding
WENO-NZ scheme provides lower numerical dissipation.
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(b) a zoom of discontinuity.

4.2.3. Shu–Osher Problem

The initial conditions of Shu–Osher shock-entropy wave interaction are as follows

(ρ, u, p) =

{
(3.857143, 2.629369, 10.33333), −5 ≤ x < −4,

(1 + 0.2si n(5 x), 0, 1.0), −4 ≤ x ≤ 5.
(37)

This problem involves the presence of shocklets and fine-scale structures, it is fre-
quently utilized to study the stability of capturing shocks. We solve this problem until
t = 1.8 using N = 200 and present the density results for different schemes in Figure 9.
Examining the high-frequency wave region as depicted in Figure 9b, it can be seen that the
WENO-NZ scheme performs a better job in approaching the “exact” solution compared
to WENO-Z. Especially, in the area [1.3, 2.3], the numerical dissipation of WENO-NZ2 is
even equivalent to WENO-NZ1. Based on the observations from Figures 7–9, it can be
concluded that the proposed WENO-NZ scheme effectively reduces numerical dissipation
and is capable of stable shock capture.

4.3. Two-Dimensional Euler Problems

The two-dimensional Euler equation can be written as

∂U
∂t

+
∂F(U)

∂x
+

∂G(U)

∂y
= 0, (38)
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with

U =


ρ
ρu
ρv
E

, F(U) =


ρu
ρu2 + p
ρuv
u(E + p)

, G(U) =


ρv
ρuv
ρv2 + p
v(E + p)

. (39)

Here, ρ, p, u, and v are the density, pressure, x- and y-velocity, respectively. The total
energy E is given as E = p

γ−1 + 1
2 ρ
(
u2 + v2) with the ratio of specific heat γ = 1.4, unless

otherwise indicated.
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4.3.1. Riemann Problem

The initial conditions of the two-dimensional Riemann problem are as follows

(ρ, u, v, p) =



(1.5, 0, 0, 1.5), 0.8 ≤ x ≤ 1, 0.8 ≤ y ≤ 1,

(0.5323, 1.206, 0, 0.3), 0 ≤ x < 0.8, 0.8 ≤ y ≤ 1,

(0.138, 1.206, 1.206, 0.029), 0 ≤ x < 0.8, 0 ≤ y < 0.8,

(0.5323, 0, 1.206, 0.3), 0.8 ≤ x ≤ 1, 0 ≤ y < 0.8.

(40)

With the computational domain [0, 1] × [0, 1], this problem involves some vortex
structures generated by Kelvin–Helmholtz instability and is often used to investigate
numerical dissipation. Figure 10 gives the density profiles computed by different schemes
at t = 0.3 with uniform meshes of 800 × 800 and zero-order extrapolation boundary
conditions. As depicted in the results, the WENO-NZ scheme captures reflected shock
waves more accurately and clearly than WENO-Z, which indicates that the numerical
dissipation of WENO-NZ is smaller than that of WENO-Z. Among these schemes, WENO-
NZ1 exhibits the richest vortex structures. However, it is important to note that when the
time is pushed forward to longer, WENO-NZ1 will break the symmetrical roll-up of the
Kelvin–Helmholtz instability because its numerical dissipation is too small. Fortunately,
WENO-NZ2 not only performs well but also can maintain symmetry to solve this problem.
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4.3.2. Double Mach Reflection Problem

The double Mach reflection problem depicts a right-moving Mach 10 shock wave
with an angle of 60◦ hitting a reflecting wall at x = 1/6, which lies at the bottom of the
computational domain [0, 4]× [0, 1]. This results in the formation of complex flow patterns,
including shock wave reflections and vortex structures (see Figure 11, which is computed
by the WENO-Z1 scheme using grids 960× 240 to t = 0.25). The initial conditions are as
follows

(ρ, u, v, p) =

{
(1.4, 0, 0, 1), y <

√
3(x− 1/6),

(8, 7.145, −4.125, 116.833), y ≥
√

3(x− 1/6).
(41)

The exact post shock condition is imposed from x = 0 to x = 1/6 and the reflective
boundary condition is used for the rest of the bottom. The boundary condition at the top
corresponds to the exact motion of a Mach 10 shock, while the left and right boundaries
are subject to inflow and outflow boundary conditions, respectively. Figure 12 shows the
density results near the Mach stem computed by different schemes with uniform meshes
of 960× 240. It can be seen that the WENO-NZ scheme depicts richer vortex structures
and has a higher resolution compared with the WENO-Z scheme. In addition, Figure 13
further shows the local density profiles computed by using denser meshes of 1600× 400, it
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can be also seen that the WENO-NZ scheme still performs better results than WENO-Z.
However, Figures 12 and 13 both show that WENO-NZ1 exhibits Gibbs oscillation due to its
numerical dissipation being too small, while WENO-NZ2 does not. Based on the numerical
results of the Riemann problem and double Mach reflection problem, it is not difficult to
find that the numerical dissipation is too small and would not be a good choice for some
two-dimensional problems involving small vortex structures, so we suggest taking the
power to be q = 2 for WENO-NZ to calculate these problems.
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4.3.3. Rayleigh–Taylor Instability Problem

The Rayleigh–Taylor instability problem describes the interface instability when a
heavy fluid accelerates into a light one, whose initial conditions are given as

(ρ, u, v, p) =

{ (
2, 0, −0.025

√
γp/ρco s(8πx), 2y + 1

)
, 0 ≤ y < 0.5,(

1, 0, −0.025
√

γp/ρco s(8πx), y + 1.5
)
, 0.5 ≤ y ≤ 1.

(42)

The computational domain is [0, 0.25]× [0, 1] and the ratio of specific heat is γ = 5/3.
The reflective boundary conditions are employed for the left and right boundaries. The
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boundary conditions on the top and bottom boundaries are given as (ρ, u, v, p) = (1, 0, 0, 2.5)
and (ρ, u, v, p) = (2, 0, 0, 1), respectively. Figure 14 gives the density results computed by
different schemes with meshes of 240× 960 until t = 1.95. It is apparent that all schemes
are able to maintain the symmetry of the growth of instability. Compared to WENO-Z, the
proposed WENO-NZ scheme displays more finer microstructures. Figure 15 further gives
the density results computed to t = 1.95 by using denser meshes of 400× 1600. Obviously,
the WENO-NZ scheme exhibits a greater richness of complex vortex structures and better
resolution than the WENO-Z scheme.
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5. Conclusions

In this study, we modified the global smoothness indicator of the fifth-order WENO-Z
scheme to improve its performance. First, the five-point global stencil was subdivided into
four smaller sub-stencils that are usually used to construct the third-order WENO-Z scheme.
Based on these lower-order smoothness indicators, a novel global smoothness indicator
with fifth-order accuracy was reconstructed, which resulted in the new WENO-NZ scheme.
The results from ADR analysis implied that the proposed scheme was a low-dissipation
scheme, whatever the value of power q. Accuracy tests showed that the WENO-NZ
scheme with either q = 1 or q = 2 could achieve fifth-order accuracy even at critical points.
Compared with the WENO-Z scheme, although the WENO-NZ had the same theoretical
convergence accuracy, the WENO-Z failed to balance the low-dissipation property and
fifth-order convergence. Moreover, a series of one- and two-dimensional benchmark
problems demonstrated the WENO-NZ scheme showed lower numerical dissipation and
better resolution than WENO-Z. However, for some two-dimensional problems involving
small vortex structures, the power q was best to be 2 for the WENO-NZ scheme since the
numerical dissipation was too small to suppress oscillation when q = 1.
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