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Abstract: The average treatment effect is an important concept in causal inference. However, it fails
to capture variation in response to treatment due to heterogeneity at many levels among patients
in the target population. To study the heterogeneity in the treatment effect, researchers proposed
the concepts of treatment benefit rate (TBR) and treatment harm rate (THR). Howerver, in practice,
missing data often occurs in treatment, endpoints, and covariates. In these cases, the conditions given
by them are not enough to identify treatment benefit rate. In this article, we address the problem
of identifying the treatment benefit rate and treatment harm rate when treatment or endpoints or
covariates are missing. Different types of missing data mechanisms are assumed, including several
situations of nonignorable missingness. We prove that the treatment benefit rate and treatment harm
rate are identifiable under very mild conditions, and then construct estimators based on methods of
the EM algorithm. The performance of the proposed inference procedure is evaluated via simulation
studies. Lastly, we illustrate our method by real data sets.

Keywords: nonignorable missing; treatment harm rates; treatment benefit rates; causal inference;
nonparametric estimation

MSC: 62G05

1. Introduction

The average treatment effect is widely used in the measurement of causal inference [1];
however, it is not the only measure. For example, in a typical randomized Phase III clinical
trial, there are patients who benefit from a negative trial and patients who do not benefit
from a positive trial. In this situation, the average treatment effect can not explain the casual
effect completely, since it ignores the heterogeneous responses to the treatment in the target
population. Some researchers made additional assumptions to address this heterogeneity.
One of the main assumptions is “Monotony” [2], which assumes that the treatment effect
for each individual will be no worse than the control effect. There are many scientific and
empirical reasons to doubt this assumption. Ref. [3] proposed several explanations for
the fact that some people respond to an inactive control group, but do not respond to an
experimental treatment, and note that for some people, a placebo has been shown to be
superior to active treatment.

For this reason, we focus on the measurement of treatment benefit rate (TBR) and
treatment harm rate (THR) in our paper. Ref. [4] tried to identify TBR and THR by making
the additional assumption that the two potential outcomes were independent, conditional
on observed covariates. Ref. [5] estimated the TBR and THR assuming the existence of
at least three covariates, which are mutually independent. Ref. [6] proposed a Bayesian-
tree-based latent variable model to seek subpopulations with distinct TBR. Under the
assumption that the potential outcomes are independent conditional on the observed
covariates and an unmeasured latent variable, ref. [7] showed the identification of the TBR
and THR in non-separable (generalized) linear mixed models for both continuous and
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binary outcomes. In our article, we follow the assumption in [4] to make the TBR and
THR identifiable.

However, although our experiment is based on the assumption of a randomized
experiment, we still need to face a problem in the process of identifying TBR and THR,
that is, there may be missing data in the pretreatment covariate, potential endpoint, or
treatment assignment. When one of the variables has missing data, TBR and THR cannot
be identified; we can only get the upper and lower bounds for parameters of interest, rather
than point estimates, and the upper and lower bounds are too wide to use. When the
missing data mechanism is ignorable, we can ignore observations with missing data and
identify TBR and THR directly. In many cases, however, missing data is not ignorable,
that is, the processing of missing data depends on some possibly missing variables. In this
case, TBR and THR cannot be identified without other assumptions. For example, in a
randomized clinical trial [8], the covariate is obtained from electrophysiological stimulation
(EPS) testing. Because the EPS testing is invasive and not a prerequisite for enrollment in
the study, 79.3% of patients in the implantable cardiac defibrillator arm have EPS records,
whereas only 2.4% of patients in the control arm have EPS records. Therefore, the missing
data problem for the covariate is very severe and nonignorable. Another example is the
Awakening and Breathing Controlled trial [9]. In this trial, because of the possibility of
the patients” death, there are nonignorable missing data in the cognitive score at 3 months
and 12 months. In a total of 187 patients, there were 111 missing values for the cognitive
score at 3 months and 136 missing values for the cognitive score at 12 months, and they are
nonignorable. Because of the missing data, we can not identify the TBR and THR directly.

There are many examples in the literature where the problem of missing data in
causal inference has been studied. Refs. [8,10] used sensitivity analysis in the nonignorable
missing covariates problem. Refs. [11-13] studied the identification problem when the
missingness of the outcomes was nonignorable. Refs. [14-16] discussed the identifiability
of causal effects when a key covariate is missing due to death. Refs. [17,18] also discussed
nonignorable missing covariates problems in survival analysis and regression models. In
our paper, we deal with the case that one of the treatments, covariate, and the endpoint have
missing data. We will give some basic assumptions and special conditions for pretreatment
covariates, potential endpoints, and treatment, under which we can identify the TBR and
THR. These assumptions and conditions have certain wide applicability.

The rest of this article is as follows. In Section 2, we introduce the notation and assump-
tion used throughout this article. In Section 3, we introduce several missing mechanisms of
covariate, endpoint, and treatment. In Section 4, we discuss the identifiability of TBR and
THR under these missing mechanisms. In Section 5, we estimate TBR and THR using the
EM algorithm in simulation studies when they can be identified. In Section 6, we analyze
datasets from clinical trials by our methods. Lastly, we put the proofs of theorems in the
Appendix A.

2. Notation and Assumption

Let Z denote the treatment assignment. Z = 1 means treatment, and Z = 0 means
control. We assume that there is only one covariate, and let X denote the pretreatment
covariate with K categories(K > 2). Suppose the K levels of X are x1, xp, ... xg. LetY
donate endpoints, and suppose Y is binary. Y = 1 means that the treatment or control
works. Y = 0 means that the treatment or control does not work. We assume Y (0) as the
potential endpoint under control and Y (1) as the potential endpoint under intervention.
Then, the observed endpoint Y can be writtenas Y = ZY(1) + (1 — Z)Y/(0). In our article,
we assume that one of X, Y, Z is missing. Let Rx denote the missing data indicator for
X and Rx(z) denote the potential missing data indicator for X, Ry denotes the missing
indicator for Y and Ry (z) denotes the potential missing data indicator for Y, Rz denotes the
missing indicator for Z. Because Z is the treatment, we do not write the potential variable of
Ryz. We can only observed one of the pairs {Y(1), Rx(1),Ry(1)} and {Y(0), Rx(0), Ry(0)}.
Rx = 1 means X is missing, Rx = 0 means X is observed. Ry = 1 means Y is missing,
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Ry = 0 means Y is observed. Rz = 1 means Z is missing. Rz = 0 means Z is observed.
For X, Y, Z, we assume that only one of them is missing at the same time, which means
that one of Ry, Ry, and Rz may be 1, and the other two variables are constant 0.

Ref. [4] defines TBR (treatment benefit rate) as the proportion of the relevant population
that benefits from the intervention as compared with the control for a given endpoint. THR
(treatment harm rate) is defined as the proportion that is harmed by the intervention as
compared with the control based on the same endpoint. Thus, we can use the following
equations to describe TBR and THR:

TBR = P(Y(0) =0,Y(1) =1),
THR = P(Y(0) = 1,Y(1) = 0).

When TBR is much larger than THR, we can say that this treatment is beneficial. On
the contrary, when THR is much larger than TBR, we can say that this treatment is harmful.

Let A1LB|C denote that variables A and B are conditionally independent, given vari-
able C. To identify TBR and THR, we need the following assumptions.

Assumption 1 (Complete randomization). Z1{Y(0),Y (1), Rx(1),Rx(0), Ry(1), Ry(0),
Rz, X}.

When the experiment is a completely randomized experiment, its data set is sub-
ject to this assumption. It means in a completely randomized experiment, the treatment
assignment Z is independent of {Y(0),Y (1), Rx(1), Rx(0), Ry(1),Ry(0), Rz, X}. This as-
sumption is very strong, and all the theory and methods discussed in this paper are
subject to this assumption. Under this assumption, we can get the following equation:
P(Y(z) =1)=P(Y =1]|Z =2z).

Assumption 2.

Y(0)LLy(1) | X

This assumption means that when the pretreatment covariate X is given, the potential
endpoints are independent of each other, that is, given the covariate X, Y(1) cannot predict
Y(0) and Y (0) cannot predict Y(1).

We aim to identify the TBR and THR through the observed data. If there are no missing
data, under the Assumptions 1 and 2, the TBR and THR can be split into the product of
two conditional probabilities based on the observed data. Let TBRy and THRy denote the
treatment benefit rate and treatment harm rate, given X. Then, we have:

TBR = E(TBR,) = E[P(Y(0) =0,Y(1) = 1|X)] = E[P(Y(0) = 0|X)P(Y(1) = 1|X)]
= E[P(Y=0|X,Z=0)P(Y =1|X,Z =1)],
THR = E(THR,)=E[P(Y(0)=1,Y(1) =0|X)] = E[P(Y(0) = 1|X)P(Y(1) = 0]X)]

= E[P(Y=1|X,Z=0)P(Y =0|X,Z =1)].

The above equations illustrate that the TBR and THR can be identified under
Assumptions 1 and 2 without missing data. However, when there are missing data in one
of the covariate, endpoint, or treatment variables, Assumptions 1 and 2 are not enough to
ensure the identification of the TBR and THR, and the above formula no longer works. In
this paper, we give sufficient conditions to identify the TBR and THR when one of X, Y, Z
have missing data.

Lastly, we introduce the following assumption.

Assumption 3. When X has missing data, P(Rx = 1|X,Y,Z) < 1. When Y has missing data,
P(Ry =1|X,Y,Z) < 1. When Z has missing data, P(R; = 1|X,Y,Z) < 1.
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We need this assumption to ensure that the missing variable is only partially missing.

3. Missing Data Mechanisms

In our article, we study the TBR and THR when one of X, Y, Z have missing data.
Before introducing the specific missing mechanisms, we will review the definition of
missing at random (MAR) and missing not at random (MNAR) first (Little and Rubin,
2002 [19]). Do denotes the complete data, D; denotes the observed data, and D, denotes
the missing data; therefore, we have Dy = (Dj, D;). Next, we introduce the two missing
mechanisms mentioned above.

Definition 1. The missing data mechanism is called missing at random (MAR), if Rx, Ry, or
Ry only depend on the observed data, that is, one of the following three formulas, Rx1.D,|Dy,
Ry lLD;|D3, or Rz11LDy| Dy, holds. Otherwise, if Rx, Ry, or Rz depend on Dy, the missing data
mechanism is called missing not at random (MNAR).

When the missing indicators only rely on the observed data (D), because the missing
mechanism does not depend on the missing data, the inference for parameters can be based
only on the observed data and we call it missing at random (MAR). When the missing is
not at random, it is nonignorable. In such a case, we cannot ignore the missing data.

In this article, we study the TBR and THR when one of X, Y, Z is under the condition
of MNAR. The missing mechanisms of X, Y, or Z are important because they influence the
identifiability and estimation of the TBR and THR. For each variable in X, Y, Z, we propose
three missing mechanisms.

First, we introduce three missing mechanisms of X.

(Rx1) Rx depends on X and Ry is independent of (Y, Z), given X, which means:
P(Rx=1/Z=2zX=xY=y)=P(Rx =1|X =x),
(Rx2) Rx depends on (X, Z) and Ry is independent of Y, given (X, Z), which means:
P(Rx=1/Z=2X=xY=y)=P(Rx=1|Z=2X=x), or
P{Rx(z) =1|X =x,Y(z) =y} = P{Rx(z) =1|Z =2z, X = x},
(Rx3) Rx depends on (X, Y) and Ry is independent of Z, given (X, Y), which means:
P(Rx=1/Z=2zX=xY=y)=PRx=1X=xY =y).

For the first missing mechanism of X, we assume that the missingness of X depends
only on X. For the second missing mechanism of X, we assume that the missingness of X
depends on (X, Z). For the third missing mechanism of X, we assume that the missingness
of X depends on (X, Y). All the missing mechanisms are nonignorable and these missing
mechanisms cannot be deduced from each other.

Similarly, we introduce the following several missing mechanisms of Y.

(Ry1) Ry depends on Y and Ry is independent of (X, Z), given Y, which means:
P(Ry=1|1Z=2zX=x,Y=y)=PRy=1|Y =y),
(Ry2) Ry depends on (Y, Z) and Ry is independent of X, given (Y, Z), which means:
P(Ry=1|Z=2zX=xY=y)=P(Ry=1|Z=2Y=y), or

P{Ry(z) =1|1X=x,Y(z) =y} = P{Rx(z) =1|1Z =z, Y =y},
(Ry3) Ry depends on (X, Y) and Ry is independent of Z, given (X, Y), which means:

P(Ry=1Z=2zX=x,Y=y)=P(Ry=1X=xY =y).
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Analogously, for the first missing mechanism of Y, we assume that the missingness
of Y depends only on Y. For the second missing mechanism of Y, we assume that the
missingness of Y depends on (Y, Z). For the third missing mechanism of Y, we assume that
the missingness of Y depends on (X, Y). All the missing mechanisms are also nonignorable.

Lastly, we are going to introduce the missing mechanism of Z.

(Rz1) Rz depends on Z and Ry is independent of (X, Y), given Z, which means:
P(Rz=11Z=2zX=x,Y=y)=P(Rz=1|Z =2),
(Rz2) R; depends on (Y, Z) and Ry is independent of X, which means:
P(Rz=11Z=2zX=x,Y=y)=P(Rz=1Z=2Y =y),
(Rz3) Rz depends on (X, Z) and Ry is independent of Z, which means:
P(Rz=11Z=2zX=x,Y=y)=PRz=1|X=x2=2z).

Above, we introduced three missing mechanisms of Z. For the first missing mechanism
of Z, we assume that the missingness of Z depends only on Z. For the second missing
mechanism of Z, we assume that the missingness of Z depends on (Y, Z). For the third
missing mechanism of Z, we assume that the missingness of Z depends on (X, Z).

The missing mechanisms mentioned above are all MNAR. The above-mentioned miss-
ing mechanisms for X, Y, Z all assume that the missing variable satisfies some conditional
independent relationship. In the next section, we consider whether TBR and THR can be
identified under these missing mechanisms.

4. Identifiability of TBR and THR

In this section, we discuss the identifiability of TBR and THR when one of X, Y, and
Z have missing data. In some mechanisms, we have to identify the joint distribution of
P(X,Y,Z,Rx), P(X,Y,Z,Ry), or P(X,Y,Z,Rz) to ensure the identifiability of the TBR
and THR. We assume the following theorems are under the Assumptions 1 and 2. Before
introducing the theorems, note that X has K levels, and Y and Z are both binaries.

Firstly, we give sufficient conditions under which we can identify the TBR and THR
when covariate X has missing data.

Theorem 1. For the missing of X:

(1)  Under the missing mechanism Rxy, the TBR and THR are identifiable when r(A;) =
r(A1) = K, where Ay and Ay are two matrices and the definitions of Ay and Aj are
mentioned below, and r(+) is the rank function.

(2)  Under the missing mechanism Rxo, the TBR and THR are identifiable when K = 2 and
XILY|(Rx =0,Z).

(3)  Under the missing mechanism Rz, the TBR and THR are identifiable when K = 2 and
XMZ|(Rx =0,Y).

When X has missing data, under different missing mechanisms, the identification
conditions are also different. Under the first missing mechanism, if we want to identify the
THR and THR, we need to assume that the rank of matrix A; and A is K. A1 and A; are
defined as follows.

Px0100  Pxy0i00 -+ Pxg0|00 Px000 Pxy0[00 ---  Pxg0]00 1

A = Px0110  Px0j10 -+ Pxg0|10 and A = Pxi010 Pxo0/10 ---  Pxg0]10 1 )
Px001  Px0i01 -+ Pxgo|01 Px001  Pxo0l01 -+ Pxgo|01 1
1

Px0111  Px0j11 --- Pxgo|11 Pxi011  Pxo0j11  ---  Pxgo|11
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where pyo,z = P(X = x;, Rx = 0]Y =y, Z = z). Note that A; is a matrix with 4 rows and
K columns, and Aj is a matrix with 4 rows and K + 1 columns. If the rank of A; and A;
is required to be equal to K, K must be less than or equal to 4. Under the second missing
mechanism, if the covariate and endpoint are not conditionally independent, given Rx = 0
and Z, and the covariate only has two levels, we can identify the TBR and THR. Under the
third missing mechanism, if the covariate and treatment are not conditionally independent,
given Rx = 0 and Y, and the covariate only has two levels, we can also identify the TBR
and THR.

Next, we give sufficient conditions under which we can identify the TBR and THR
when endpoints Y have missing data.

Theorem 2. For the missing of Y:

(1)  Under the missing mechanism Ry1, the TBR and THR are identifiable under the condition
r(By) = r(By) = 2, where By and By are two matrices and the definitions of By and By can
be found in the appendix, and r(-) is the rank function.

(2)  Under the missing mechanism Ry,, the TBR and THR are identifiable under the condition
r(Ba1) = r(Ba1) = r(Ban) = r(Bpy) = 2, where By, By, Bay, and By, are matrices, and
the definitions of Ba1, By1, B, and By, can be found in the appendix, and r(-) is the rank
function.

(3)  Under missing mechanism Rys, the TBR and THR are identifiable under the condition Y /L Z|
(Ry=0,X=x;)(i=12,...,K).

When Y has missing data, we cannot get a uniform identifiable condition. Under
different missing mechanisms, it requires different conditions to ensure the identification of
the TBR and THR. Under the first missing mechanism, if we want to identify the THR and
THR, we need to assume that the rank of the matrix By and Bj is 2. By and B are defined
as follows.

Poojx;0  P10]x,0 Poojx,0  P1ojx0 1
Poojx;1 P1ojx1 Poojx;1 Propg1 1

By = : : and By = : : ,
Poojxx0  P10|xx0 Poojxx0  P1ojxgo 1
Poojxxl  P10jxxl Poojxg1l  Projxg1 1

where pg|,,. = P(Y =y, Ry = 0|X = x;, Z = z). Under the second missing mechanism, if
we want to identify the THR and THR, we need to assume that the rank of matrix By, Byy,
By, and By, is 2. Byy, By1, By, and Boj are defined as follows.

[ Poojx0  Projxo | [ Poojx;0 Propo 1]
3212 ’ B21: ’
L Poojxx0  P10|xx0 ] L P0oojxx0  P10]xx0 1 ]
[ Poojy1 Proj1 | [ Poojxy1 Propg1 1]
Bzzz , B22= ,
L Poojxx1  P10|xx1 L Poojxxk1  P10|xk1 1

where p,o|x. = P(Y =y, Ry = 0|X = x;,Z = z). Under the last missing mechanism, we
can identify the TBR and THR if Y and Z are not conditionally independent, given Ry = 0
and X = x;.

Lastly, we give sufficient conditions under which we can identify the TBR and THR
when treatment Z has missing data.

Theorem 3. For the missing of Z:
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(1)  Under the missing mechanism Rz, the TBR and THR are identifiable under the condition
r(C1) = r(Cy) = 2, where Cy and Cy are two matrices, and the definitions of Cy and Cy can
be found in the appendix, and r(-) is the rank function.

(2)  Under the missing mechanism Rz, the TBR and THR are identifiable under the condition
r(Ca1) = r(Ca1) = r(Cx) = r(Cpa) = 2, where Cy1, Co1, Cap, and Cyp are matrices, and
the definitions of Co1, Cp1, Cap, and Cyy can be found in the appendix, and r(-) is the rank
function.

(3)  Under the missing mechanism Rzz, the TBR and THR are identifiable under the condition
ZIY|X = x; (i =1,2.. K).

When Z has missing data, we also cannot get a uniform identifiable condition. Under
different missing mechanisms, it requires different conditions to ensure the identification
of the TBR and THR. Under the first missing mechanism, if we want to identify the THR
and THR, we need to assume that the rank of matrix C; and C; is 2. C; and C; are defined
as follows.

Po0jx0  P10]x,0 Poojx,0  P1ojxo 1
Poojx1 P1ojx1 Poojx;1 P1ojx1 1
G=| Do jand G= L
Po0jx,0  P10]x,0 Poojx,0  Piojgo 1
P00zl P10jx1 Poojx1  P1ojg1 1

where p.g ., = P(Z = z,Rz = 0|X = x;, Y = y). Under the second missing mechanism, if
we want to identify the THR and THR, we need to assume that the rank of matrix Cp1, Co1,
Cyo, and Cys is 2. Cp1, Ca1, Ca, and Cyy are defined as follows.

[ Poojx;0 P1ojx,0 ] [ Poojxi0 Projxmo 1
Cy = ... , C21 e e ,
L Poojx,0  P10jx,0 L Poojx,0 Piojxo 1
[ Pooje1 Projw1 | [ Poojx1 Prow1 1]
Cypp = ... , Cyp = e ,
L Poojx,1 P10jx1 L Poojx,1 Projxy1 1

where p.g|,,, = P(Z =z, Rz = 0|X = x;,Y = y). Under the last missing mechanism, we
can identify the TBR and THR if Y and Z are not conditionally independent, given Ry =0
and X = x;.

The above three theorems give sufficient conditions under which the TBR and THR
can be identified. In the next two parts, we illustrate my conclusion through simulation
and actual data.

5. Computational Details and Simulation Study

In this part, we first introduce how to use the EM algorithm to estimate the TBR and
THR when covariate X has missing data and satisfies missing mechanism Rxp. When X
satisfies other missing mechanisms or there are missing data in the other two variables,
the estimation is similar. Next, we generate simulation data and then apply our method to
the simulation data to illustrate that our estimation works. We use statistical software R to
implement our numerical simulation.

5.1. Expectation Maximization Algorithms

We define Pyy.r = P(X =x,Y =y,Z =2 Rx =r)and Py, = P(Y =y,Z =z, Rx =
1), where “+” represents the marginal distribution over corresponding variable. Similarly,
let Ny, .r denote the observed frequency in the cell (x,y,z,7) of the contingency table, and
N4y denote the marginal frequency of the contingency table over the corresponding
variable X. When “+” is at another position, its meaning is the same.
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In practice, we can use the expectation maximization (EM) algorithm to find the MLEs.
In this subsection, we only describe the computational details for missing mechanism
Rx». For simplicity, we only describe the algorithms for binary X. The algorithms for
multi-categorical X can be written similarly. Under the missing mechanism Ryxp, we
have RxILY|(X,Z). Thus, the joint distribution of (X,Y,Z,Rx) can be written as P)
(X=xY=y,Z=2Rx=r)=P0(X=x)PD(Z=2zX =x)PD)(Y =y|X =x,2Z =
z)PU)(Rx = r|X = x,Z = z). Superscript j indicates the j-th iteration. Define:
p J((]|)yzl

pI(X=x|Y=y,Z=2Rx=1)

PO(X=xY=y,Z=2Rx=1)
Y- PI(X=x,Y=yZ=zRx=1)

The EM algorithm iterates between the following E-step and M-step:
(a) E-step: The sufficient statistics are imputed as N JE];ZQ = Nyyz0 and Ng)zl = Niyn pg)yzl ;
(b) M-step: The joint distribution is updated by PUt) (X = x,Y =y, Z =z, Rx = 1) =
NJ(C];%)—-F-F Na(cj)z+ N’(‘QZ* N)((Q—zr
i i NU) i

) () )
N++++ Nx+++ x+z+ Nx+z+

After the algorithm converges, we assume that the convergent probability is P. Ac-
cording to the formula in the second section, we can estimate the TBR and THR as follows.

A

TBR = P(Y=0X=1,Z=0)P(Y=1X=1Z=1)P(X=1)
+ P(Y=0X=0,Z=0)P(Y=1X=0,Z=1)P(X=0),
THR = P(Y=1X=1,Z=0P(Y=0X=1,Z=1)P(X =1)
+ P(Y=1X=0,Z=0)P(Y=0/X=0,Z=1)P(X =0).
Lastly, we calculate the standard errors of the above estimator by repeating the pro-

cesses 1000 times.

5.2. Simulation Study

In this section, we evaluate the finite sample performances of the likelihood-based
estimator for the missing mechanisms Rx; and Ry, via simulation studies. In order
to mimic the real data analyzed in the next section, we assume that Z is completely
randomized and Z1LX. We generated Z ~ Bernoulli(0.5) and X ~ Bernoulli(0.5). Py,
P(Y = y|Z = z,X = x) is defined, and Y is generated according to the conditional
distribution (Py)99, P1j10, P1jo1, P1j11)- We set the parameters of the two missing mechanisms

as follows.

(Rx2):
(Pl‘OO/PHOl’PlHO/Pl‘ll) == (04,05,08,04),
P(Rx =0/X=1,Z=1)=0.7P(Rx =0/X =0,Z =1) = 04,
P(Rx =0|X =1,Z = 0) = 0.5,P(Rx = 0|X = 0,Z = 0) = 0.6.
(Rys):

(P1joo, Prjo1 Prjor P1j1) = (04,0.5,0.5,0.6),
P(Ry =0/X=1,Y=1)=04P(Ry =0/X =0,Y =1) = 0.3,
P(Ry =0|X=1,Y=1)=04P(Ry=0/X=0,Y=1)=03.
We use the EM algorithm to find the MLEs of the parameters and calculate the corre-
sponding THR and TBR. The sample sizes of the simulation study are 500, 1000, and 1500,

respectively, and we repeat the simulation 1000 times. The means and the standard errors
of the estimates of the TBR and THR are given in Tables 1 and 2.



Mathematics 2023, 11, 4459 9of 18

Table 1. TBR and THR mean(sd) by 10,000 repetitions (under the missing mechanism Ry»).

Sample Size n

True Value

500 1000 1500
TBR = 0.41 0.4071 (0.0282) 0.4082 (0.0204) 0.4086 (0.0156)
THR =0.11 0.1138 (0.0146) 0.1135 (0.0104) 0.1134 (0.0081)

Table 2. TBR and THR mean(sd) by 10,000 repetitions (under the missing mechanism Ry3).

Sample Size n

True Value

500 1000 1500
TBR = 0.30 0.2900 (0.0228) 0.2900 (0.0155) 0.2905 (0.0135)
THR =0.21 0.2132 (0.1976) 0.2130 (0.01333) 0.2125 (0.0115)

We can see from the simulation results that the values of TBR and THR can be estimated
consistently, which means that the TBR and THR are identifiable. With the increase of
sample size, the standard deviation decreases gradually.

6. Application

In this part, we illustrate the correctness of our method with three real data examples.

6.1. Application to the Second Multicenter Automatic Defibrillator Intervention Trial

In this section, we re-analyzed a randomized clinical trial using the newly proposed
methods under the missing mechanism Rx,. We first briefly review the background of
the illustrative clinical trial, and more details of the data can be found in the previous
paper ([8]). In this example, Z is the treatment assignment variable, with Z = 1 denoting
the treatment (implantable cardiac defibrillator) and Z = 0 denoting the control. The
endpoint Y is the death indicator, with Y = 1 denoting dead and Y = 0 denoting alive.
Let X denote the inducible indicator, with X = 1 denoting inducible and X = 0 denoting
noninducible. The covariate X is obtained from the electro-physiological stimulation (EPS)
testing. Because the EPS testing is invasive and not a pre-requisite for enrollment in the
study, 79.3% of patients in the implantable cardiac defibrillator arm have EPS records,
whereas only 24% of patients in the control arm have EPS records. Therefore, the problem
of missing data for the covariate X is very severe. The observed data can be summarized as
the following counts (nyzrx)i N()o(]() = 4, N0010 = 311, N]O()Q = 6, NlOlO = 190, N0100 = 0,
No11o = 62, N1100 = 2, N1110 = 20, Ny 001 = 382, Ny 101 = 95, Nyo11 = 136, and N, 111 = 23.
We assume that the missing mechanism of X is Rx». Firstly, we use the EM algorithm to
calculate the maximum likelihood estimation of the parameters and then calculate the TBR
and THR. Then, the sampling is repeated 1500 times to calculate the standard deviation of
TBR and THR. The estimated TBR and THR are 0.1121 (0.0121) and 0.1697 (0.0175). The
numbers in brackets indicate the standard deviation.

6.2. Application to the Mechanical Treatment Trial for Crisis Patients

In this section, we will re-analyze a randomized clinical trial using the newly proposed
methods under missing mechanism Ry;. We first briefly review the background of the
trial ([9]). In this example, critically ill patients randomly received mechanical ventilation
1:1 within each study site to manage with a paired sedation plus ventilator weaning protocol
involving the daily interruption of sedative through spontaneous awakening trials (SATs)
and spontaneous breathing trials (SBTs) or sedation per usual care (UC) and SBTs. Z is
the treatment assignment variable, with Z = 1 denoting the treatment (SAT and SBT)
and Z = 0 denoting the control (UC and SBT). The endpoint Y is the cognitive score,
with Y = 1 denoting “higher cognitive ability” and Y = 0 denoting “lower cognitive
ability”. Let X denote age, with X = 1 denoting “the people older than 33 years old” and
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X = 0 denoting “the people younger than 33 years old”. In randomized studies involving
severely ill patients, functional endpoints are often unobserved due to missed clinic visits,
premature withdrawal, or death. The observed data can be summarized as the following
counts (Nxyzr,): Noooo = 9, Nowoo = 9, Nigoo = 7, Ni1oo = 0, Nooio = 12, No11o = 16,
NlOlO =10, NlllO =6, N0+01 =24, N1+01 = 45, N0+11 =23, and N1+11 = 26. We assume
that the missing mechanism of Y is Ryj. Similarly, we use the EM algorithm to calculate
the maximum likelihood estimation of the parameters and then calculate the TBR and
THR. Then, we use the bootstrap method to repeat sampling 1500 times to calculate the
standard deviation of the TBR and THR. The estimated TBR and THR are 0.270 (0.043) and
0.230 (0.039). The numbers in brackets indicate the standard deviation.

6.3. Application to the Job Search Intervention Study

In this section, we will analyze a randomized trial using the proposed methods
under missing mechanism Ryz;. Firstly, we will introduce the background of the data.
The Job Search Intervention Study (JOBS II) was a randomized field experiment that
investigated the efficacy of a job training intervention on unemployed workers ([20]).
There are 899 unemployed workers in the “jobs” dataset. All the workers were randomly
assigned to two groups, the control group (people received a booklet describing job-
search process) and the treatment group (people participated in job skills workshops);
the binary endpoint represents whether the respondents had become employed. Z is the
treatment assignment variable, with Z = 1 denoting the treatment (people participated in
job skills workshops) and Z = 0 denoting the control (people received a booklet describing
job search process). Y denotes the endpoint; Y = 1 denotes that the worker became
employed finally, that is, the treatment worked; and Y = 0 denotes that the worker was
still unemployed. Additionally, X denotes sex, with X = 0 for female and X = 1 for
male. The observed data can be summarized as the following counts (Nyy;): N111 = 211,
NOll =182, NlOl =99, Nwo = 38, Nll() = 134, NOlO =79, NOOO =48, N001 = 108. Based
on this data, we assume P(Rz = 1|Z = 1) = 0.3, P(Rz = 1|Z = 0) = 0.2 and manually
generate missing data. The generated data can be summarized as the following counts
(Nxyzr,): Noo+1 = 47, No1+1 = 63, Nig11 = 41, Ni1y1 = 95, Noooo = 35, Nowoo = 68,
NlOOO = 24, N1100 = 102, NOOlO = 74, NO]lO = 130, NlOlO = 72, NlllO = 148. Simﬂarly, we
use the EM algorithm to calculate the maximum likelihood estimation of the parameters
and then calculate the TBR and THR. We use the bootstrap method to repeat the sampling
1500 times to calculate the standard deviation of the TBR and THR. The estimated TBR
and THR are 0.2090 (0.0160) and 0.1870 (0.0163). The number in brackets indicates the
standard deviation.

7. Discussion

In the field of causal inference, the average causal effect is an important measure, but
this measure is also flawed. Its flaw is that it ignores the heterogeneous responses to the
treatment in the target population. Therefore, in this article, we study the TBR and THR
proposed by [4]. In addition, in randomized experiments, the existence of missing data
is a common phenomenon [21], so we assume that there are missing data in one of the
covariate, endpoint, or treatment. We give sufficient conditions to make the TBR and THR
identifiable in the presence of missing data. We illustrate our method through simulated
data, and then apply our method to several actual data.

There are several issues beyond the scope of this paper. First, in Assumption 2, we
assume that given a covariate X, the two potential variables Yj and Y; are conditionally
independent. This assumption also appeared in [4]. However, we can only observe one
of the two potential variables, and the other one cannot be observed, which means that
Assumption 2 cannot be verified by the data. Thus, it is better to propose a more appropriate
assumption to ensure that TBR and THR can be identified.

Second, in our article, we assume that the covariate X in Assumption 1 is a binary
one-dimensional variable. However, in practice, X may be a continuous variable or high-
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dimensional variable, and there may also be unobservable variables in X. In this case,
even if there are no missing data, it is very difficult to identify the TBR and THR because
the observations in each subgroup may be very sparse in a limited sample. If there are
still missing data, we need to propose new conditions so that the TBR and THR can be
identified.

Third, we discussed the situation where only one of the covariate, endpoint, and
treatment variables may be MNAR. In many applications, both the covariate and the
endpoint may be MNAR at the same time. In this case, the identification and estimation of
the TBR and THR will be more complicated.

Although the problems mentioned above are beyond the scope of this article, we will
continue our research in this area.
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Appendix A. Proofs of Theorems
Note that:

TBR = Ex[Pr(Y(0) = 0,Y(1) = 1|X)] = Ex[Pr(Y = 0|X,Z = 0)Pr(Y = 1|X,Z = 1)]

THR = Ex[Pr(Y(0) = 1,Y(1) = 0|X)] = Ex[Pr(Y =1|X,Z = 0)Pr(Y = 0|X, Z = 1)]

From the above formula, we can see that as long as we identify P(Y|X, Z) and P(X),
we can identify the TBR and THR. As such, in the following proof, the primary task is to
prove that P(Y|X, Z) and P(X) are identifiable. In our proof, we regard uppercase letters
as random variables and lowercase letters as the values of random variables.

Proof of Theorem 1. We will use the following notation in proof 1:
Pxrylyz = P(X = x,Rx = r:|Y = v,Z= z), Prox = P(Rx = rx|X = x), Pryjxz = P(Rx =
X =x,27=z2), Prolxy = P(Rx =r|X =xY =1y)

(1): Because (Y, Z) LLRx|X, we have P(X, Y, Z, Rx) = P(Y, Z)P(X|Y, Z)P(Rx|X, Y, Z)
=P(Y,Z)P(X|Y,Z)P(Rx|X). Divide both sides by P(Y, Z)P(Rx|X) and consider the miss-
ing mechanism, and we can get:

P(X,Rx =0|Y,Z)
P(Rx = 0/X)

= P(X|Y,Z),

and

K K
P(X = xi/RX = 0|Y/Z)
lzl P(RX = 0|X = Xl') z; ( l| )

To identify P(X) and P(Y|X, Z), we have to identify P(X, Y, Z, Rx) first, and calculate
the marginal distribution of X and the conditional distribution of Y after, given X, Z. In the
equation mentioned above, P(Y, Z) is identifiable, so we have to prove that P(X|Y,Z) and
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P(Rx = 1|X, Z) are also identifiable. Write the above formula in the form of matrix, and
then we can get the following equations:
1

Px10/00  Pxy0000 -+ Pxx0]00 Pﬂl\n 1
Px0110 Pxy0110 -+ Pxg0|10 Pomy | — | L
Px001  Px001 -+ Pxg0|01 ... 1
Pxi0111  Pxoj11 .-+ Pxgo|i1 po‘iK 1

To identify P(X|Y,Z), the above equation should have only one solution. Notice

that the equation is a linear equation and has K unknowns; they are #, p(j ,... and
X1 X

ﬁ. Suppose the coefficient matrix and augmented matrix of this equation are A; and A,
x2

respectively, which means:

Px10/00  Px,0/00 --- Pxg0|00 Px000 Px0/00 -+ Pxgojoo 1
Ay = Px1010 Px,0(10 --- Pxg0|10 and A = Px010 Pxo0 -+ Pxgojto 1
Px0001  Pxy0/01 --- Pxg0|01 Px001  Pxoor -+ Pxgojor 1
Pxi011  Pxy0[11  --- Pxgo|11 Px0/11  Px011  --+  Pxg0[11 1

According to the theory of linear equations, when the rank of the coefficient matrix,
the rank of the augmented matrix, and the number of unknowns are the same(r(A) =
r(A) = K), the equation has a unique solution. After identifying P(Rx|X), according to the
above formula, P(X|Y, Z) can also be identified, and then the entire joint distribution can
be identified. As such, the TBR and THR can also be identified.

(2): Because Y1LR,|(X,Z), we have P(Y|X,Z) = P(Y|X,Z,Rx = 0). Notice that
P(Y|X,Z,Rx = 0) isidentifiable; thus, P(Y|X, Z) is identifiable. In addition, for P(X), notice
that P(X,Y,Z,Rx) = P(Y,Z)P(X|Y,Z)P(Rx|X,Y,Z) = P(Y,Z)P(X|Y,Z)P(Rx|X,Z).
Divide both sides by P(Y,Z)P(Rx|X,Y,Z) and consider the missing mechanism, and
we can get:

P(X,Rx =0|Y, Z)
P(Rx = 0|X, Z)

= P(X|Y, Z),

and

P(X=x,Rx=0]Y,Z) &
i

K
Psz’ Y/Z :1
i:zl P(Rx =0|X = x;,Z) ;1 ( ilY,2)

To identify P(X), we have to identify P(X,Y, Z, Rx) and calculate its marginal distri-
bution with respect to X. In the equation mentioned above, P(Y, Z) is identifiable, and so
we have to prove that P(X|Y,Z) and P(Rx = 0|X, Z) are identifiable. According to the
above equations, we can get:

1

Po|x 0

1
{leooo Pxy0[00 - px;<0|00] Poley0 :[1]
Px0/10 Px0[10 -+ Pxg0[10 1

1

Pojxg0

1

Pojx;1

1
{Px10|01 Pxy001 - PxKO|01} Po1 :{1}
Pxon1 Pxofit --- Prgojil 1

1
Po|xg1
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To identify P(X | Y, Z), the above equations should have only one solution. Notice that
both of these equations have K unknowns, and the rank of coefficient matrix is less than or
equal to 2, so to have a unique solution we need K < 2. In addition, we have mentioned
before that K > 2, so there is a unique solution if K = 2.

When K = 2, if the solution to the equation is unique, the coefficient matrix must
be invertible. < p,,0/00Px,0(10 7 Px20/00Px;0(10 A0 P,001P 2,011 7 Py0[11Pxp0(01- & X 1LY
(Rx =0,Z).

(3): Because of the missing mechanism Ry Z|(X,Y), we can spilt the joint distri-
bution: P(X,Y,Z,Rx) = P(Y,Z)P(X|Y,Z)P(Rx|X,Y,Z) = P(Y,Z)P(X|Y,Z)P(Rx|X,Y).
Divide both sides by P(Y, Z)P(Rx|X,Y), and we can get:

P(X,Rx =0|Y,Z)

=P(X|Y,Z
P(Rx = 0|X,Y) (X 2)
and
K P(X=x;,Rx=0[Y,2) &
4 =Y P(X=xY,Z) =1.
Z.:Zl P(Rx =0|X,Y) 1; ( il 2)

To identify P(Y|X, Z) and P(X), we should identify P(X,Y, Z, Rx) first. Similarly,
write the above equation in the form of matrix, and we can get the following equations:

- 1 -

Po\xlo
1
{leooo Pxy0j00 - PxK0|00] Py _[1]
Px0001  Px001 -+ Pxgolo1 1
1
L Polxgo
- -
pO\xll
1
{leow Pxy0/10 --- prO|10] Pog1 :[1]
Pxi011  Px011 -+ Pxgo|11 1
1
L Polxgr

To identify P(X,Y, Z, Rx), the above equations should have only one solution. Notice
that both of these equations have K unknowns, and the rank of the equation coefficient
matrix is less than or equal to 2. In order to have a unique solution, we need the condition
that K is less than or equal to 2. We have mentioned that K > 2, so there is a unique solution
if, and only if, K is equal to 2.

When K = 2, the solution to the equation is unique. < The coefficient matrix is
invertible. < Py 0j00Py,0/01 7 Pr,0/00Px;001 and Py 010Pr 0111 7 Prj0111Pr,0010 are true. <
XUZ|(Rx =0,Y). O

Proof of Theorem 2. We will use the following notation in proofs 2:
Pyry|xz = P(Y = v, Ry = 7’y|X =x,Z=7z), Pryly = P(Ry = T’y|Y = ]/)/ Prylyz= = P(Ry =
rlY =y,Z=2),py 5y =P(Ry =1|[X =x,Y =y)

(1) We can spilt the joint distribution: P(X,Y,Z,Ry) = P(X,Z)P(Y|X,Z)P(Ry|X,Y, Z).
Divide both sides by P(X, Z)P(Ry|X, Y, Z), because of the missing mechanism Ry [ (X, Z)|Y,
and we can get:

P(Y,Ry = 0|X, Z)
P(Ry = 0[Y)

=P(Y|X,2Z),

and

P(Y =y, Ry = 0|X, Z)
fd P Y = X,Z = 1.
P(Ry = 0[Y) y;m (¥ =yX.2)

&7

y=0,1
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P(X,Z) is identifiable, and to identify P(X,Y,Z, Ry), we need to prove that P(Y|X, Z)
and P(Ry = 0|Y) are identifiable. Write the above formula in the form of matrix, and we
can get:

Poojx;0  P10]x,0 1
Poojx;1 P10|x1 l 1 ] 1
Pojo _
“e “e L - e 7
Pon 1

Poo|xx0  P10]xx0
Poojxxk1  P10|xk1

—_

To identify the unknown parameters, the equations should only have one solution.
Thus, the rank of coefficient matrix and augmented matrix is 2. Suppose the coefficient
matrix and augmented matrix of this equation are B; and By, respectively, which means:

Poojx,0  P10|x,0 Poojx;0  P10jx0 1
Poojx;1 P10jx;1 Poojx;1 P1ojg1 1
B1 = and B_l =
Poojxx0  P10|xx0 Poojx0  P1ojxgo 1
L Poojxxl  P10jxxl | | Poojxxl P1ojxgr 1]

According to the theory of linear equations, when the rank of the coefficient matrix, the
rank of the augmented matrix, and the number of unknowns are the same (r(B;) = r(B;) = 2),
the equation has a unique solution.

(2) We can spilt the joint distribution: P(X,Y,Z,Ry) = P(X,Z)P(Y|X,Z)P(Ry|X,Y, Z).
Divide both sides by P(X, Z)P(Ry|X,Y, Z) and consider the missing mechanism Ry 1L X|
(Y, Z), and we can get:

P(Y,Ry =0|X, 2)
P(Ry = 0]Y,Z)

=P(Y|X,2),

and

P(Y=y,Ry =0|X,2)

)3

y=0,1

=) P(y=y|X,Z)=1
y=0,1

Because P(X,Z) is identifiable, to identify P(X,Y, Z, Ry), we need to prove that
P(Y|X,Z) and P(Ry = 1|Y, Z) are identifiable. Write the above equations in the form of a
matrix, and we can get:

[ Poojxi0 Propo | [ -1 T 1
= | (A1)
L Poojxxo  Piojxgo J L Poito 1]
[ Poojxi1 Propat | [ -1 T 1
N e (A2)
L Poojxg1  Piojxgr J b Pont 1]

To identify the unknown parameters, the equations should only have one solution.
Thus, the rank of coefficient matrices and augmented matrices is 2. Suppose the coefficient
matrix and augmented matrix of this equation are By, Bpy, and By, By, respectively,
which means:

Poojx;0  P10x,0 ) Poojx;0  P1ojx0 1
By = e , By = Ce ’
Poojxx0  P10|xx0 Poojxx0  P10|xx0 1
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Poojx;1 P10 1 ) Poojx;1 P1ojx1 1
By = , By = ,

Poojx1  P10jxkl Poojxg1  P1ojxg1l 1
According to the theory of linear equation, when the rank of the coefficient matri-
ces, the rank of the augmented matrices, and the number of unknowns are the same
(r(Ba1) = r(Ba1) = r(Baa) = r(Bpz) = 2), the equations have a unique solution.
(3) We can split the joint distribution: P(X,Y,Z,Ry) = P(X,Z)P(Y|X,Z)P(Ry|X,Y).
Divide both sides by P(X, Z)P(Ry|X,Y) and consider the missing mechanism Ry |l Z|
(X,Y), and we can get:

P(Y,Ry = 0|X, Z)

=P(Y|X,2),

and

P =y Ry =01X.Z) _ v py_yx,2) = 1.

S PRy =0XY=y) &,

P(X, Z) is identifiable, and to identify P(X, Y, Z, Ry), we need to prove that P(Ry = 0|X,Y)
and P(Y|X, Z) are identifiable. Similarly, we can get following equations:

- A
[ Poojx0 Pojo } oo | { ! } (A3)
Poojx;1 P10jxq1 Pojx1
.
[ Poojx,0  P10]x,0 } Poigo | { 1 } (Ad)
Poolxe1  P10jx1 Pojx,1

To identify the unknown parameters, the equations should only have one solution; it
is equivalent to:
’ Poo|x;0  P10|x;0 £0i=1,2..k
Poojx;1  P1ojx;1
Poojx,0  P10|x;1
~ YAZ‘(RY =0,X= Xi)(i =1,2. k)

=

In sum, if the condition Y/LZ|(Ry = 0,X = x;)(i = 1,2...k) is satisfied, we can
identify joint distribution P(X,Y, Z, Ry), and then we can identify the TBR and THR
naturally. O

Proof of Theorem 3. We will use the following notations in the proof:
Pzr,xy = P(Z =2z Rz = rZ‘X =xY = y)/ Prz = P(RZ = rZ|Z = Z)/ Prjxz = P(RZ =
rX=x2=z),p.,.=PRz =r:|Y =y, Z=2).

(1): the missing mechanism is (X, Y)1LRz|Z, thus

P(X,Y,Z,Rz) = P(X,Y)P(Z|X,Y)P(Rz|X,Y,Z) = P(X,Y)P(Z|X,Y)P(Rz|Z).
Divide both sides by P(X,Y)P(Rz|Z), and we can get:

P(Z,Rz = 0|X,Y)
P(Rz =0[2)

= P(Z|X,Y),
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and

P(Z=zR; =0|X,Y)
P(R; =0|Z =z)

X

z=0,1

= Y P(Z=zX,Y)=1
z=0,1

To identify P(X) and P(Y|X, Z), we have to identify P(X,Y, Z, Ry) first, and then cal-
culate the marginal distribution with respect to X and calculate the conditional distribution

of Z after, given X, Y. In the equation mentioned above, P(X, Y) is identifiable, so we have
to prove that P(Z|X,Y) and P(Rz = 0|X, Z) are identifiable. Similarly, we can get:

Poojx;0  P10]x,0 17
Poojlx;1 P10jx1 1
. 1 .
[p?]: p (A5)
Poj1
Poojx0 P10]x,0 1
L Poojxi1 P1ojx1 | L 1]

To identify the unknown parameters, the equations should only have one solution.
Thus, the rank of coefficient matrix and augmented matrix is 2. Suppose the coefficient
matrix and augmented matrix of this equation are C; and Cy, respectively, which means:

Poojx;0  P10|x,0 Poo|x;0  P10]x10 1
Poojx;1 P10jx1 Poojx;1 P1ojxq1 1
Cl = and Cl =
Poojx,0  P10]x,0 Poojx,0  P10|x0 1
| Poojx1 P10jx1 L Poojx1 P10jx1 1 ]

According to the theory of linear equation, when the rank of the coefficient matrix, the
rank of the augmented matrix and the number of unknowns are the same (r(C1) = r(Cy) = 2),,
the equation has a unique solution.

(2): Because Rz L X|(Y,Z), we can spilt the joint distribution into P(X,Y,Z,Rz) =
P(X,Y)P(Z|X,Y)P(Rz|Y,Z). Divide both sides by P(X,Y)P(Rz|X,Y, Z) and consider the
missing mechanism, and we can get:

P(Z,R; =0/X,Y)
= P(Z|X,Y
P(Rz =0]Y,Z) (21X, Y),

and

P(Z =z, Ry =0|X,Y)
P(R; =0]Y,Z =z)

=) P(Z=z[X,Y)=1

z=0,1 z=0,1

P(Z,Rz = 0|X,Y) is identifiable, and we need to prove that P(Z|X,Y) and P(Rz =
0|Y, Z) are also identifiable. Similarly, we can get the following equations:

Po0jx,0  P10[x,0 1 1
... )= .. (A6)
Poojx0  P10|x0 Pojor 1

Poojx;1 - P10fx1 1 1
o ﬂf = .- (A7)
Poojx, 1 P10jx1 Poj1 1
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To identify the unknown parameters, the equations should only have one solution.
Thus, the rank of coefficient matrices and augmented matrices is 2. Suppose the coefficient
matrix and augmented matrix of this equation are Cp1, Cp, and Cp;, Cpp respectively,
which means:

I Poo|x;0  P10]x;0 1 [ Poo|x10  P10|x;0 17
Cy = R , C_21 = . p
L Poojx,0  P10[x0 L Poojx0  Projmo 1
I Poojx;1 P1ojx1 1 B [ Poojx;1 P1ojx1 17
Cy = e , Cyp = R ,
L Poojxe1 P10jx1 L Poojx1 Projya 1

According to the theory of linear equations, when the rank of the coefficient matrix,
the rank of the augmented matrix, and the number of unknowns are the same(r(Cy1) =
r(Ca1) = r(Cap) = r(Cp) = 2), the equation has a unique solution.

(3): Because Y1LR;|(X,Z), P(Y|X,Z) = P(Y|X,Z,R; = 1) and P(Y|X,Z,R; = 1)
are, thus, identifiable, and then P(Y|X, Z) is identifiable. In addition, for P(X), similarly,
P(X,Y,Z,Rz) = P(X,Y)P(Z|X,Y)P(Rz|X,Y, Z) = P(X,Y)P(Z|X,Y)P(Rz|X, Z). Divide
both sides by P(X,Y)P(Rz|X,Z), and we can get:

P(Z,Rz = 0|X,Y)
= P(Z|X,Y
P(Rz = 0|X,Z) (Z|X,Y),

and

P(Z =z, Ry =0|X,Y)
P(R; =0|X,Z = z)

=) P(Z=zXY)=1

z=0,1 z=0,1

To identify P(X) and P(Y|X, Z), we have to identify P(X,Y, Z, Ry) first. In the equa-
tion mentioned above, P(X,Y) is identifiable, so we have to prove that P(Z|X,Y) and
P(Rz = 0|X, Z) are identifiable. Similarly, we can get:

1
[ Poojx,0  P10]x,0 } Pl | { }
- 7
Poolx;1 P10|x;1 | o1 |
- -
[ Poojx,0  P10/x,0 } P | { }
Poojxi1 P10|x1 | Po |

To identify the unknown parameters, the equations should only have one solution; it

is equivalent to:

[ Poo|x;0
Poo|x;1
Poo|x;0
Poox;0

P10|x;0
P10|x;1

P1o|x;1
P10jx;1
& ZUY|(Rz=0,X=1x;) (i=1,2...k)

] £0 i=12..k

In sum, if the condition Z/LY|(Rz = 0,X = x;) (i = 1,2...k) is satisfied, we can
identify the joint distribution P(X, Y, Z, Rz), and then we can identify the TBR and THR
naturally. O
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