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Abstract: Polar codes, as the coding scheme for the control channel in fifth-generation mobile
communication technology (5G), have attracted widespread attention since their proposal. As a
mainstream decoding algorithm for polar codes, the successive cancellation list (SCL) decoder usu-
ally improves the error correction performance by increasing the list size, but this method suffers
from the problems of high decoding complexity. To address this problem, this paper proposes a
layered-search bit-flipping (LS-SCLF) decoding algorithm based on SCL decoding. Firstly, a new
flip-bit metric is proposed, which derives a formula to approximate the probability of an error oc-
curring in an information bit. This formula introduces a perturbation parameter to improve the
calculation accuracy. Secondly, a compromise scheme for determining the perturbation parameter
is proposed. The scheme uses Monte Carlo simulation to determine an optimized parameter for
the precise positioning of the first erroneous decoded bit under different decoding conditions. Fi-
nally, a layered search strategy is adopted to sequentially search the erroneous decoded bits from
the low order to high order, which can correct up to multiple bits at the same time. Simulation
results show that the proposed algorithm achieves improved error correction performance with a
slight increase in decoding complexity compared to the generalized SCL-Flip (GSCLF) decoding
algorithm. This algorithm also achieves a good balance between the error correction performance and
decoding complexity.

Keywords: 5G; polar codes; successive cancellation list decoder; bit-flipping algorithm

MSC: 94B35

1. Introduction

Polar codes are the first channel coding scheme that can be rigorously proven to
achieve channel capacity [1], with clear construction methods and low-complexity encod-
ing and decoding algorithms compared to LDPC codes [2] and turbo codes [3]. Therefore,
polar codes have been regarded as an important innovation in channel coding in recent
years and have great theoretical value and application potential in future wireless commu-
nications, thus attracting much attention from researchers. In 2016, polar codes have been
identified as the control channel coding scheme for the fifth-generation enhanced mobile
broadband (eMBB) scenario, marking the leap from theoretical research to practical appli-
cation. Meanwhile, after more than a decade of development, polar codes have achieved
many research achievements in deep space communications [4,5], underwater acoustic
communications [6–8], optical communications [9–12], and so on.
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Although polar codes have many advantages, they still face challenges in practice.
In particular, the error correction performance of polar codes for short and moderate
lengths under successive cancellation (SC) decoding is unsatisfactory due to insufficient
channel polarization. To break the bottleneck of SC decoding performance, successive
cancellation list (SCL) decoding [13] was proposed, which greatly improved the error
correction performance at finite lengths by retaining L (L is denoted as list size) decoding
paths at each information bit. Subsequently, cyclic redundancy check (CRC)-aided SCL
(CA-SCL) decoding [14] further improved the error correction performance by concatenat-
ing a CRC code at the end of the polar code to assist in making the final output among the L
candidate decoding paths. In early SCL decoding, increasing L was the most direct way to
improve the error correction performance. However, as L increases, this method faces two
problems: (1) If L is too large, the error correction performance gain becomes very small
and diminishes as L continues to increase. (2) It requires more hardware resources and
more decoding overhead. For this reason, many decoding algorithms have been studied
in terms of adaptive lists [15], path-splitting strategies [16–18], and fast decoding [19–21]
to compensate for the increase in decoding complexity. However, these decoders do not
address the problem of improving the error correction performance of CA-SCL decoding
with a limited list size.

Inspired by the bit-flipping algorithms [22–27] based on SC decoding, the idea of
bit-flipping was introduced in SCL decoding. The reference [28] first proposed a succes-
sive cancellation list bit-flipping (SCLF) decoding algorithm. This decoding algorithm
improves the critical set in [25] to identify the candidate flip-bit and flips one bit in each
extra decoding. Experimental results show that the SCLF decoding has better error correc-
tion performance than SCL decoding in the medium to high SNR regions. However, the
bit-flipping strategy used in this algorithm may lead to the appearance of two identical
candidate paths, interfering with the final decoding choice. Reference [29] proposed a
shift-pruning decoding algorithm, the essence of which is also to correct the erroneous
decoded bits by extra decoding. This algorithm can better balance the error correction
performance and decoding complexity, but it lacks flexibility in determining the shift posi-
tions of the flip-bit, which leads to its poor applicability. Reference [30] also proposed a
bit-flipping-based SCL (BF-SCL) decoder, which developed a new criterion for determining
the flipping priority of information bits and a specific bit-flipping strategy. However, the
proposed bit-flipping metric only considers the effect of information bits on erroneous
decoding, which limits the improvement in error correction performance and also intro-
duces a perturbation parameter that varies with the decoding conditions, causing complex
complexity. Reference [31] proposes the generalized SCL-Flip (GSCLF) decoding algorithm,
which uses the path metrics of the reserved and eliminated paths to devise a new method
for determining the flipping priority of information bits that can quickly locate the erro-
neous decoded bits. Compared to the decoding algorithms proposed in [28–30], the GSCLF
decoding is able to correct up to ω erroneous decoded bits caused by channel noise at the
same time, thus providing better error correction performance while maintaining a low
decoding complexity. These decoding algorithms improve the error correction performance
with a limited list size by correcting the erroneous decoded bits in extra decoding attempts.
They can achieve the same or better error correction performance as SCL decoders with
larger list sizes.

The flip-bit metric is essential for determining the flipping priority of the information
bits, which directly affects the error correction performance and the decoding complexity.
In this paper, we draw on the metric proposed in D-SCFlip decoding [27] to design a
new flip-bit metric to approximate the probability of the erroneous decision occurance
on an information bit. The metric introduces a perturbation parameter that is optimized
by simulations to improve the calculation accuracy. Unlike other methods, this metric
reflects the sequential nature of SCL decoding, and the metrics between the forward and
backward information bits are closely correlated, allowing good localization of erroneous
decoded bits. Based on this metric, we propose the layered-search bit-flipping (LS-SCLF)
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decoder, which searches for erroneous decoded bits sequentially from low order to high
order and can correct up to ω bits in one extra decoding attempt. Simulation results show
that the proposed decoding algorithm can achieve a good balance between error correction
performance and decoding complexity.

The remainder of the paper is organized as follows. Section 2 introduces the polar
codes, SCL decoder, CA-SCL decoder, and SCL-Flip decoder. Section 3 details the proposed
flip-bit metric and the the LS-SCLF decoding algorithm. Simulation results are provided in
Section 4, and the conclusions are drawn in Section 5.

2. Preliminaries
2.1. Polar Codes

In this paper, uj
i (i < j) denotes the vector {ui, ui+1, · · · , uj}. We denote by PC(N, K)

the polar code, where N is the code length and K is the length of information bits. It should
be noted that if a CRC code is concatenated at the end of a polar code to improve the error
detection capability of the polar code, then K = k + r, where k is the number of information
bits of the CRC code and r is the number of check bits of the CRC code. The rate is denoted
by R and is calculated as R = k/N.

Since N independent and identically distributed binary symmetric channels can form
N sub-channels with different channel capacities after polarization, we select the first K
sub-channels with the largest channel capacity to transmit information bits and denote
the index set of these reliable sub-channels by A. The remaining subchannels are used to
transmit frozen bits, which are usually set to 0 and known by both the transmitter and
receiver. The index set of frozen bits is denoted as Ac.

The encoding of polar codes is expressed as:

xN
1 = uN

1 ·GN (1)

where uN
1 denotes the data vector, and it consists of K information bits and N−K frozen bits.

xN
1 denotes the encoded vector and GN denotes the generator matrix. For any information

bit ui , i ∈ A , when successive cancellation decoding is used, its hard decision estimation
can be expressed as:

ûi = h(Li) =

{
ui i f i ∈ Ac

1−sign(Li)
2 i f i ∈ A

(2)

where Li is the LLR of ui, and it can be computed as:

Li = log

Pr
(

ui = 0|yN
1 , ûi−1

1

)
Pr
(

ui = 1|yN
1 , ûi−1

1

)
 (3)

where Pr
(

ui = 0|yN
1 , ûi−1

1

)
and Pr

(
ui = 1|yN

1 , ûi−1
1

)
denote the probabilities of ui = 0 and

ui = 1 under the condition
(

yN
1 , ûi−1

1

)
, respectively. yN

1 denotes the received vector of
the receiver.

2.2. SCL Decoder and CA-SCL Decoder

The framework of the SCL (CA-SCL) decoder is shown in Figure 1. Firstly, to improve
the error correction performance of SC decoding, the SCL decoder retains both sub-paths
after the path splitting at any information bit to increase the probability that the correct
path is obtained in the candidate paths. Secondly, if the number of candidate paths reaches
2L, they are ranked in ascending order by the path metric, and the L paths with the smallest
metric are reserved through path competition. Finally, the SCL decoder selects the path with
the smallest metric as the decoding result ûN

1 at the end of decoding. CA-SCL decoding is
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almost the same as SCL decoding, and the only difference is that CA-SCL decoding selects
the path that passes the CRC check as the decoding output.

N
y ˆ

N
uPath 

Splitting

Path 

Competition

CRC 

Check

Success
1st path

2Lth path

Canditate 

Paths

2nd path

1st path

Lth path

2nd path

Reserved 

Paths

Figure 1. Framework of the SCL (CA-SCL) decoder.

2.3. SCL-Flip Decoder

The SCL-Flip decoder originates from the CA-SCL decoder, with the difference that
when the CA-SCL decoder fails the CRC check, the SCL-Flip decoder performs extra
decoding attempts to correct the suspiciously erroneous decoded bits, and its framework
is shown in Figure 2. The extra decoding procedures for the SCL-Flip decoder are as
follows. Firstly, if the CA-SCL decoding (initial SCL decoding) fails the CRC check, the
metric calculator calculates the flip-bit metric, and the flip-bit sorter sorts and selects the
candidate flip-bit based on their metrics. Secondly, the SCL-Flip decoding performs extra
decoding and adds bit-flipping to the path competition. In other words, it makes the
opposite decision to CA-SCL decoding for the element in the candidate flip-bit; i.e., it keeps
the L decoded paths with the largest path metric (the L + 1th to 2Lth paths of the candidate
paths) while decoding the other bits as CA-SCL decoding. If the extra decoding fails the
CRC check, the above operation continues until the decoding is successful or the maximum
number of extra decoding attempts is reached.
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Figure 2. Framework of the SCL-Flip decoder.

In particular, for a better interpretation of the SCL-Flip decoding, we denote
εω = {i1, i2, · · · , iω} as a flip-bit set of any order ω, where ω ≥ 1, i1 < i2 < · · · < iω,
εω ⊂ I , I=A/A0, andA0 is the index set of the first log2L information bits. Without loss of

generality, SCLF(εω) is denoted as the decoding of εω by SCL-Flip decoder, and SCLF
(

ε
(t)
ω

)
is denoted as that SCLF(εω) has finished decoding the first t− 1 elements and to decode the
tth element, obviously, ε

(t)
ω = {i1, i2, · · · , it} ⊂ εω. In the remainder of this paper, SCLF(0)

is denoted as the initial SCL decoding. To clearly indicate the decoding step and distin-
guish each decoding path, for ∀j ∈ A, Lj

[
ε
(t)
ω

]
=
{

ûj
1,l [ε

(t)
ω ]|1 ≤ l ≤ L

}
and L̃j

[
ε
(t)
ω

]
={

ûj
1,l+L[ε

(t)
ω ]|1 ≤ l ≤ L

}
respectively denote the reserved paths list and eliminated paths

list of SCLF
(

ε
(t)
ω

)
at the step that decoding uj, where ûj

1,l [ε
(t)
ω ] =

{
ûj

1,l [ε
(t)
ω ]1, · · · , ûj

1,l [ε
(t)
ω ]j

}
stands for the lth decoding path and ûj

1,l+L[ε
(t)
ω ] =

{
ûj

1,l+L[ε
(t)
ω ]1, · · · , ûj

1,l+L[ε
(t)
ω ]k

}
stands

for the l + Lth decoding path with 1 ≤ l ≤ L. For ease of presentation, let ûj
1,l(+L)[ε

(t)
ω ]

be denoted as both paths simultaneously. For j > it, SCLF
(

ε
(t)
ω

)
decodes uj the same

way as SCLF(0). Similarly, Lj[0] =
{

ûj
1,l [0]|1 ≤ l ≤ L

}
and L̃j[0] =

{
ûj

1,l+L[0]|1 ≤ l ≤ L
}

correspond to the reserved paths list and eliminated paths list of SCLF(0) when decoding
uj, respectively. Specifically, for ∀j ∈ A0, L̃j

[
ε
(t)
ω

]
= ∅ and L̃j[0] = ∅.
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In addition, we denote PMj
l(+L) [ε

(t)
ω ] as the PM of ûj

1,l(+L)[ε
(t)
ω ]. For k < j, let ûj

1,l(+L)[ε
(t)
ω ]k1 ={

ûj
1,l(+L)[ε

(t)
ω ]1, · · · , ûj

1,l(+L)[ε
(t)
ω ]k

}
and the corresponding PM is denoted as PMj

l(+L)[ε
(t)
ω ]k.

Obviously, ûj
1,l(+L)[ε

(t)
ω ]k1 is the sub-vector of ûj

1,l(+L)[ε
(t)
ω ] and it consists of the first k elements

in ûj
1,l(+L)[ε

(t)
ω ]. For k = j, ûj

1,l(+L)[ε
(t)
ω ]k1 = ûj

1,l(+L)[ε
(t)
ω ], PMj

l(+L)[ε
(t)
ω ]k = PMj

l(+L)[ε
(t)
ω ].

For k > j, both ûj
1,l(+L)[ε

(t)
ω ]k1 and PMj

l(+L)[ε
(t)
ω ]k are null vectors. PMj

l(+L) [ε
(t)
ω ] can be

computed as:

PMj
l(+L)[ε

(t)
ω ] =

j

∑
k=1

log
(

1 + exp
(
−
(

1− 2ûj
1,l(+L)[ε

(t)
ω ]k

)
· Lj

1,l(+L)[ε
(t)
ω ]k

))
(4)

where Lj
1,l(+L)[ε

(t)
ω ]k is the LLR of ûj

1,l(+L)[ε
(t)
ω ]k and can be obtained by:

Lj
1,l(+L)[ε

(t)
ω ]k = log

Pr
(

uj
1,l(+L)[ε

(t)
ω ]k = 0|yN

1 , ûj
1,l(+L)[ε

(t)
ω ]k−1

1

)
Pr
(

uj
1,l(+L)[ε

(t)
ω ]k = 1|yN

1 , ûj
1,l(+L)[ε

(t)
ω ]k−1

1

)
 (5)

Assume that εω = {i1, i2, · · · , iω} is the trajectory that all its elements are indexes of
the erroneous decoded bits caused by channel noise. When the SCLF

(
ε
(t)
ω

)
decoding is ex-

ecuted to uit+1 (it < it+1 ≤ iω), 2L candidate paths are obtained through path splitting, and

these candidate paths are sorted by their metrics to satisfy PMit+1
1,1

[
ε
(t)
ω

]
< PMit+1

1,2

[
ε
(t)
ω

]
<

· · · < PMit+1
1,2L

[
ε
(t)
ω

]
. After path competition, we can obtain the reserved paths list; i.e.,

Lit+1 =
{

ûit+1
1,L+1

[
ε
(t)
ω

]
, ûit+1

1,L+2

[
ε
(t)
ω

]
, · · · , ûit+1

1,2L

[
ε
(t)
ω

]}
. Based on the definition of SCL-Flip

decoding, SCLF
(

ε
(t)
ω

)
and SCLF

(
ε
(t+1)
ω

)
satisfy the following relationship:uit+1

1 ∈ L̃it+1 [ε
(t)
ω ]

uit+1
1 ∈ Lit+1 [ε

(t+1)
ω ]

,

uit
1 ∈ L

it [ε
(t)
ω ]

uit
1 ∈ L

it [ε
(t+1)
ω ], uit

1 ∈ L̃
it [ε

(t+1)
ω ]

(6)

L
j[ε

(t)
ω ] = Lj[ε

(t+1)
ω ], j < it+1

Lj[ε
(t)
ω ] = L̃j[ε

(t+1)
ω ], j = it+1

(7)

PMj
l [ε

(t)
ω ] = PMj

l [ε
(t+1)
ω ], j < it+1

PMj
l [ε

(t)
ω ] = PMj

l+L[ε
(t+1)
ω ], j = it+1

(8)

Lj
1,l [ε

(t)
ω ] = Lj

1,l [ε
(t+1)
ω ], j < it+1

Lj
1,l [ε

(t)
ω ] = Lj

1,l+L[ε
(t+1)
ω ], j = it+1

(9)

In particular, for a trajectory ε1 = {i1} of order 1, the above relationship can be
written as: {

Lj[ε1] = Lj[0], j ≤ i1 − 1

Lj[ε1] = L̃j[0], j = i1
(10)

PMj
l [ε1] = PMj

l [0], j ≤ i1 − 1

PMj
l [ε1] = PMj

l+L[0], j = i1
(11)
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Lj
1,l [ε1] = Lj

1,l [0], j ≤ i1 − 1

Lj
1,l [ε1]j = Lj

1,l+L[0]j, j = i1
(12)

3. The LS-SCLF Decoder
3.1. Framework of the LS-SCLF-ω Decoder

Channel noise and error propagation are the two causes of erroneous decoding deci-
sions in SCL decoding. In particular, the first erroneous decoded bit is entirely caused by
the channel noise so that the error propagation does not affect the word-error rate (WER)
performance. In practice, especially under low signal-to-noise ratio (SNR) conditions, there
are often several erroneous decoding decisions that are caused by channel noise. Therefore,
the bit-flipping algorithm for the correction of the first erroneous decision alone does not
solve the case of multiple erroneous decoded bits caused by channel noise.

Based on the above analysis, this paper proposes the layered-search SCL-Flip de-
coder that can correct up to ω erroneous decoded bits simultaneously, i.e., the LS-SCLF-ω
decoder. The framework of LS-SCLF-ω is shown in Figure 3, which is almost the same as the
SCL-Flip decoder, it but has features in terms of the flip-bit metric and the
bit-flipping strategy.

N
y ˆ

N
u

Path 

Competition

CRC Check

 Improved Metric 

calculator

 Layered-search

sorter

Bit flippling

Path Spliting
Success

Fail

Extra 

decoding

1st(L+1th) path

Lth(2Lth) path

2nd(L+2th) path

Reserved 

Paths

1st path

Lth path

2nd path

Candidate Paths

Figure 3. Framework of the LS-SCLF-ω decoder.

3.2. The Proposed Flip-Bit Metric

For SCLF(0), we define the first erroneous decision occurring at information bit
ui(∀i ∈ I) as event Ei , i.e., ûi−1

1 = Li−1[0], ûi
1 = L̃i[0]. Let Pr(Ei) denote the probabil-

ity of Ei, then the mathematical definition of Pr(Ei) can be expressed as:

Pr(Ei)
de f
= Pr

(
ui−1

1 ∈ Li−1[0], ui
1 /∈ Li[0]|yN

1

)
(13)

For ∀i ⊂ A0, since there is no path competition, Pr(Ei) = 0. The calculation of Pr(Ei)
is an arduous task, due to the fact that all the previous bits must be correctly decoded. To
simplify the calculation, we approximate it with the following equation:

Pr(Ei) ≈ Pr
(

ui
1 ∈ L̃i[0]|yN

1

)
=

L

∑
l=1

Pr
(

ûi
1,l+L[0] = ui

1|yN
1

)
(14)

One can calculate Pr(Ei) by taking the definition of PMi
l [0] [32]:

PMi
l [0]

de f
= − log

(
Pr
(

ûi
1,l [0] = ui

1|yN
1

))
(15)

Based on (15), [30] derives the following equation:

Pr
(

ûi
1,l+L[0] = ui

1|yN
1

)
≈ exp(−(PMi

1,l+L[0]− ∑
j/∈A

(PMi
1,l+L[0]j − PMi

1,l+L[0]j−1)))

= ∏i
j=1,
j∈A

(1 + exp(−(1− 2ui
1,l+L[0]j)Li

1,l+L[0]j))
−1

(16)
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In [30], (16) is carried directly into (14), and a perturbation parameter is introduced to
calculate the flip-bit metric to determine the priority of the flip-bit. However, the method
only considers the effect of information bits and ignores the role of frozen bits for the
erroneous decoded bits. To solve this problem, this paper proposes a new metric. Let Λi
(i ∈ I) be denoted as the ratio that is the sum of the probability of the reserved paths to
that of the eliminated ones for ui and referred to as Probability Ratio (PB), i.e.,

Λi =
∑L

l=1 Pr
(

ûi
1,l [0] = ui

1|yN
1

)
∑L

l=1 Pr
(

ûi
1,l+L[0] = ui

1|yN
1

) (17)

Λi > 0 and a higher value of Λi indicates a higher probability of ui
1 ⊂ Li[0], while

a smaller value of indicates a higher probability of ui
1 ⊂ L̃i[0]. Since the decoding paths

in Li[0] can be treated as the input to the next bit in the SCLF(0) decoding, the PB of the
previously decoded bits affects the result of the following bits if the L decoding paths are
considered as a whole. Therefore, PB is to SCLF(0) decoding what LLR is to SC decoding.

For a flip-bit εω = {i1, i2, · · · , iω} ⊂ I , the probability that εω is the erroneous decoded
path is denoted as Pr(εω). Referring to (12)–(13) in [27], Pr(εω) can be computed as:

Pr(εω) = Pr
(

uiω
1 ∈ L

iω [εω ]|yN
1

)
= Pr

(
uiω−1

1 ∈ Liω−1
[
ε
(ω−1)
ω

]
, uiω

1 ∈ L̃
iω
[
ε
(ω−1)
ω

]
|yN

1

)
=pe

(
uiω

1 ∈ L̃
iω
[
ε
(ω−1)
ω

])
·∏iω−1

j=iω−1+1,
j∈I

(
1− pe

(
uj

1 ∈ L̃
j
[
ε
(ω−1)
ω

]))
· Pr
(

ε
(ω−1)
ω

) (18)

where

pe

(
uj

1 ∈ L̃
j
[
ε
(ω−1)
ω

])de f
= Pr

(
uj

1 ∈ L̃
j
[
ε
(ω−1)
ω

]
|uj−1

1 ∈ Lj−1
[
ε
(ω−1)
ω

]
, yN

1

)
(19)

By simple calculation, the above equation can be unfolded to the following expression:

Pr(εω) =∏ω

j=1 pe

(
u

ij
1 ∈ L̃

ij
[
ε
(j−1)
ω

])
·∏ j<iω ,

j∈I

(
1− pe

(
uj

1 ∈ L̃
j
[
ε
(ω−1)
ω

]))
(20)

Note that the second product of the right-hand side term of (20) is taken only over
indexes j ∈ I , since pe

(
uj

1 ∈ L̃j
[
ε
(ω−1)
ω

])
= 0 for j /∈ I . In addition, the calculation of

pe

(
uj

1 ∈ L̃j
[
ε
(ω−1)
ω

])
is also a complex task. This paper draws on (14) in [27] and proposes

a formula to approximate it:

pe

(
uj

1 ∈ L̃
[
ε
(ω−1)
ω

])
≈ 1

1 + exp
(
αΛ′ j

) , i ∈ I (21)

where α is the perturbation parameter and α > 0, Λ′ j denotes the value of Λj in the
logarithmic domain; i.e., Λ′ j = log Λj. Such a perturbation directly affects the results
of (21). In practice, α can be optimized by Monte Carlo simulation. On the basis of (20) and
(21), the proposed metric associated with flip-bit εω = {i1, i2, · · · , iω} is defined as:

Mα(εω) = ∏j∈εω

1
1 + exp

(
αΛ′ j

) ·∏ j<iω ,
j∈I

1
1 + exp

(
−αΛ′ j

) (22)



Mathematics 2023, 11, 4462 8 of 19

It is clear that for set εω−1 = {i1, i2, · · · , iω−1}, consisting of the first ω− 1 elements
of εω, the following relationship is satisfied between its metric Mα(εω−1) and Mα(εω):

Mα(εω) = Mα(εω−1) ·
1

1 + exp(αΛ′ iω )
·

j=iω−1

∏
j=iω−1+1,

j∈I

1
1 + exp

(
−αΛ′ j

) (23)

Equation (23) shows that Mα(εω−1) can be regarded as part of Mα(εω), which fully
reflects the sequential nature of SCL decoding. In particular, for a one-order flip-bit
ε1 = {i1}, the above metric can be rewritten as:

Mα(ε1) =
1

1 + exp
(
αΛ′ i1

) ·∏ j<i1,
j∈I

1
1 + exp

(
−αΛ′ j

) (24)

Based on the fact that 1
1+exp(x) =

exp(−x)
1+exp(−x) , (22) can be further rewritten as:

Mα(εω) = ∏j∈εω
exp

(
−αΛ′ j

)
·∏ j≤iω ,

j∈I

1
1 + exp

(
−αΛ′ j

) (25)

To improve the numerical stability, by taking the logarithm of (22), i.e., M′α(εω) =
− 1

α log(Mα(εω)), we obtain the equivalent logarithmic domain metric:

M′α(εω) = ∑j∈εω
Λ′ +

1
α ∑ j≤iω ,

j∈I
log
(
1 + exp

(
−αΛ′ j

))
(26)

Based on the above considerations, the priority of a flip-bit should be in descending
order of Mα or ascending order of M′α. In other words, the higher the value of Mα (or the
smaller the value of M′α), the higher the flipping priority of the corresponding flip-bit. For
convenience, the remainder of this paper will use Mα as the path metric.

3.3. Optimization of the Perturbation Parameter

The parameter α is a key factor for calculating the flip-bit metric. This subsection
investigates the optimization of α to give higher flipping priority to the channel-induced
erroneous decoded bits, thus achieving the goal of correcting the erroneous decoding
with a minimum number of additional decoding attempts. In contrast to the D-SCFlip
decoding [27], the factors that affect the α in the proposed decoding are not only N, R,
and SNR but also L. Therefore, the complexity of optimizing the perturbation parameter
should be very high, and it cannot even find a global optimal parameter. To improve the
practicality, this paper proposes a compromise method of optimizing the perturbation
parameter for the first erroneous decoded bit only.

We denote by iE1(iE1 ∈ I) the index where the first erroneous decision occurs in the
initial SCL decoding, and the corresponding information bit is denoted as uiE1

. Let Lα,E1

denote the list of all the one-order flip-bit, ordered according to decreasing values of their
metrics. We denote by rkα

(
iE1

)
the rank of uiE1

within Lα,E1 . The smaller the value of
rkα

(
iE1

)
, the higher the flipping priority of the information bit uiE1

, and thus we denote by
αopt the optimized perturbation parameter and define it as:

αopt = arg min
α

E
(
rkα

(
iE1

))
(27)

where E
(
rkα

(
iE1

))
denotes the expected value of random variable rkα

(
iE1

)
. Since it is very

difficult to solve E
(
rkα

(
iE1

))
directly, we will investigate the law between the expected

value of rkα

(
iE1

)
and α for different decoding conditions to obtain indirectly. The main

ideas are as follows. Firstly, let E
(
rkα

(
iE1

))
denote the expectation value of rkα

(
iE1

)
for a

given decoding condition and investigate the relationship between E
(
rkα

(
iE1

))
and α under
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different conditions of N, R, SNR, and L separately. Secondly, we analyze and summarize
the laws reflected in the above relationships. Finally, the data fitting and other methods are
used to derive the αopt.

To investigate the relationship between α and E
(
rkα

(
iE1

))
under different conditions,

we take the relationship between α and E
(
rkα

(
iE1

))
under various SNR values as an

example, and the process is as follows:

1. Fix parameters N, R, and L, and set the value of SNR.
2. Set the range and step size of α, and the number of Monte Carlo simulations.
3. Perform the Monte Carlo simulation for the current α and SNR values. If the initial

SCL decoding does not pass the CRC check, first construct the list Lα,E1 , then find the
rank of iE1 and note it as rkα

(
iE1

)
. Finally, calculate the average value of rkα

(
iE1

)
after

all experiments are completed and denoted as E
(
rkα

(
iE1

))
.

4. Update the α value and return to step (3). Continue to calculate E
(
rkα

(
iE1

))
for the

new α value until the traversal of α is complete. Plot the relationship between α and
E
(
rkα

(
iE1

))
, then derive the relationship between the two at that SNR value.

5. Update the SNR values and complete steps (1)–(4) again to obtain the relationship
between the α and E

(
rkα

(
iE1

))
for different SNR values.

Specifically, in this paper, to obtain the relationship between α and E
(
rkα

(
iE1

))
where

SNR is the variable, we first set the SNR = {0.5, 1.0, 1.5, 2.0, 2.5} dB and the fixed parame-
ters N = 512, R = 1/2, L = 8, α ∈ [0.1,10] (theoretically α ∈ [0.1,∞), but in our experiments
we set the range according to the specific situation as α ∈ [0.1,10]); the step size is 0.2, and
the number of Monte Carlo simulations is 105. Second, 105 independent CA-SCL decoding
experiments are performed for PC(512, 256 + 16) at α = 0.1 and SNR = 0.5 dB according
to step (3), and the corresponding E

(
rkα

(
iE1

))
value is obtained. Then, according to step

(4), the value of α is updated according to the step size and returned to step (3) to obtain a
new E

(
rkα

(
iE1

))
value, and so on; when the traversal of α is completed, the relationship

curve between α and E
(
rkα

(
iE1

))
at SNR = 0.5 dB can be obtained. Finally, according to

step (5), the SNR value is sequentially updated and the above experiment is repeated to
obtain the relationship between α and E

(
rkα

(
iE1

))
under various SNR values.

Following the above steps, we can also obtain the relationship between α and
E
(
rkα

(
iE1

))
when L, N, and R are the variables, respectively. For L as the variable, we

set L = {2, 8, 16, 32}; the fixed parameters N = 512, R = 1/2, SNR = 1.0 dB; and the
α ∈ [0.1,10]. For N as the variable, we set N = {256, 512, 1024}; the fixed parameters
R = 1/2, L = 8, SNR = 1.0 dBl; and the α ∈ [0.1,10]. Similarly, for R as the variable, we set
R = {1/3, 1/2, 2/3}; the fixed parameters N = 512, L = 8, SNR = 1.0 dB; and α ∈ [0.1,10].

3.4. The Detailed Description of the Proposed Decoding Algorithm

For ease of presentation, we denote Ll
f =

{
ε1, ε2, · · · , εTl

}
as the flip-bit list, in which

every element is of order l(l ≥ 1), and Tl is the number of elements in Ll
f . For ∀εt ∈ Ll

f , it

contains l elements and ordered in ascending order.Ml
f =

{
Mα(ε1), Mα(ε2), · · · , Mα

(
εTl

)}
is denoted as the metric list corresponding to Ll

f . For ∀Mα(εt) ∈ Ml
f , Mα(εt) is the metric

of εt where εt ∈ Ll
f .

The detailed algorithm of LS-SCLF-ω decoding is described in Algorithm 1, and the
main decoding procedure is as follows: if the initial SCL decoding fails, the Ml

f and

Ll
f are initialized by the function Init(.), and the bit-flipping is performed by SCLF(.) for

the elements in Ll
f one by one. Whenever incorrect decoding occurs, the L2

f andM2
f are

updated by the Update(.) function based on the current flip-bit. Once a successful decoding
occurs, the decoding ends, and the final path is output. If and only if all the extra decoding
attempts for the one-order flip-bit fail the CRC check, the decoder proceeds to the next
round of additional decoding and follows the above process until a successful decoding
occurs or the maximum number of extra decoding is reached. The following is the specific
description about the key functions in LS-SCLF-ω decoding:
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Algorithm 1: LS-SCLF-ω Decoder.

Input: yN
1 , ω,L,A, I ,{T1, T2, ..., Tω},L1

f = L
2
f = ... = Lω

f = ∅,M1
f =M

2
f = ... =Mω

f = ∅
Output: ûN

1
1 [ûN

1 , Λ′I ] = CA-SCL
(
yN

1 ,A
)

2 if CRC check(ûN
1,l) fails then

3 Init
(
L1

f ,M1
f , Λ′I , T1, I

)
4 flag=0
5 for l = 1 to ω do
6 for j = 1 to Tl do
7 [ũN

1 , Λ̃′I ] = SCLF
(

yN
1 ,A, ε j

)
8 if CRC check(ûN

1 ) fails and l ≤
√

Tl+1 then
9 Update

(
Ll+1

f ,Ml+1
f , Λ̃′I , Tl+1,A, ε j

)
10 else
11 ûN

1 = ũN
1

12 flag=1
13 Break
14 end
15 end
16 if f lag == 1 then
17 Break
18 end
19 end
20 else
21 Break
22 end
23 return ûN

1

• Init
(
L1

f ,M1
f , Λ′I , T1, I

)
(Λ′I = {Λ′ i|i ∈ I}): The initialization strategy is detailed in

Algorithm 2. The preliminary flip-bit list ξ is constructed as ξ = {Mα(ε)|ε = {i}, i ∈ I},
and (24) gives the calculation of Mα(ε). Then, the elements in ξ are sorted in descend-
ing order by the sort(.) function, with the largest Tl elements constructingM1

f and

the corresponding indexes constructing Ll
f .

• SCLF
(
yN

1 ,A, ε j
)
: ε j is the jth element in Ll

f , i.e., ε j = Ll
f (j). The SCLF(.) function flips

all the information bits corresponding to the ε j in turn in an extra decoding attempt.

• Update
(
Ll+1

f ,Ml+1
f , Λ̃′I , Tl+1,A, ε j

)
: The update algorithm is detailed in Algorithm 3.

If SCLF
(
yN

1 ,A, ε j
)

fails to pass the CRC check and l ≤
√

Tl+1; it first calculates the
Mα(ε′) of ε′ by (25), where ε′ = ε j ∪ k, k = ε j(end) + 1, ..., N, k ∈ A and ε j(end)
represents the last element of ε j. Then, the Insert(.) function inserts ε′ and Mα(ε′)

into the appropriate positions in Ll+1
f andMl+1

f , respectively, according to the value

of Mα(ε′). If the number of elements in Ll+1
f exceeds Tl+1, then only the first Tl+1

elements of Ll+1
f andMl+1

f are retained. Since Mα

(
ε j
)
> Mα(ε′), ε′ will be inserted

into a position behind ε j.

Algorithm 2: Init
(
L1

f ,M1
f , Λ′I , T1, I

)
.

1 ξ = {Mα(ε)|ε = {i}, i ∈ I}
2

[
L1

f ,M1
f

]
=sort(ξ, T1)

3 return
[
L1

f ,M1
f

]
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Algorithm 3: Update
(
Ll+1

f ,Ml+1
f , Λ̃′I , Tl+1,A, ε j

)
.

1 for k = ε j(end) + 1, ..., N and k ∈ I do
2 ε′ = ε j ∪ k,m = Mα(ε′)

3 Insert
(
Ll+1

f ,Ml+1
f , m, ε′, Tl+1

)
4 end

5 return
[
Ll+1

f ,Ml+1
f

]

4. Experiment Design and Simulation Analysis

In this section, two experiments are conducted to verify the performance of the
LS-SCLF-ω decoder. The first experiment is to optimize the perturbation parameter. We
use Monte Carlo simulation to derive the relationships between α and N, R, L, and SNR and
then summarize the applicable range or a certain value under the decoding conditions in
this paper. Based on the conclusion of the first experiment, the second experiment simulates
the LS-SCLF-ω decoding and compares it with related decoding methods in terms of error
correction performance and complexity to verify the advantages and disadvantages of the
proposed algorithm. It should be noted that all experiments in this paper are carried out
under the binary-input additive white Gaussian noise channel, and the information bits are
selected using the Gaussian approximation algorithm for specific SNR values.

4.1. Perturbation Parameter Optimization

In this subsection, the experiments on the relationship between α and E(rkα(iE1)) are
carried out under different SNR, L, N, and R conditions according to the strategy given in
Section 3.3 and the relationship curves are shown in Figure 4a–d, respectively. In Figure 4a,
all of the curves gradually decrease as α increases, and they reach their minimum value at
around α = 0.9, after which the curves stabilize. This suggests that the minimum value of
E(rkα(iE1)) is not impacted by the values of SNR, and that the first erroneous decoded bit
has the highest flipping priority at α = 0.9 under any SNR condition. In Figure 4b, all the
curves decrease with increasing α and reach a minimum value around α = 0.9, and they
gradually converge as α continues to increase. This indicates that the minimum value of
E(rkα(iE1)) is also not affected by the value of L, and the first erroneous decoded bit obtains
the highest flipping priority around α = 0.9 with any L. Moreover, the curves in Figure 4c,d
have approximately the same trend as those in Figure 4a,b, and with the exception of a
few curves, they all reach their minimum value at α = 0.9 with different N and R values.
Therefore, we conclude that the minimum value of E(rkα(iE1)) is independent of N, R, L,
and SNR; i.e., the minimum value of E(rkα(iE1)) does not change as the decoding conditions
change. Based on the above analysis, we can conclude that the E

(
rkα

(
iE1

))
achieves its

minimum value at α = 0.9, so αopt = 0.9.

Figure 4. Cont.
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Figure 4. The relationship between α and E(rkα(iE1 )) with various decoding conditions.

4.2. Simulation Results and Performance Analysis
4.2.1. Error Correction Performance Analysis

To verify the error correction performance of LS-SCLF-ω decoding, we simulate it for
different conditions and compare it with BF-SCL decoding [30], GSCLF-ω decoding [31],
and oracle-assisted SCL-ω(OA-SCL-ω) decoding, where the OA-SCL-ω decoding corre-
sponds to the genie-aided SCL decoding in [31]. In the paper, we choose ω = {1, 2, 3} to
perform experiments on each of the above decoders. The WER curves for the LS-SCLF-1
decoding, GSCLF-1 decoding, and BF-SCL decoding under different T, L, N, and R condi-
tions are shown in (a), (b), (c), and (d), respectively, in Figure 5. From Figure 5a, all the
WER curves of the above decoders decrease as T increases, and the WER performance of
the LS-SCLF-1 and GSCLF-1 decoders is better than that of the BF-SCL decoder. At T = 10,
the WER values of the LS-SCLF-1 decoder are slightly lower than those of the GSCLF-1
decoder. At T = 50, the WER values of the both decoders are basically the same and
very close to the WER values of the BF-SCL decoder. From Figure 5b, the WER curves of
all the decoders decrease as the L increases, and the WER performance of the LS-SCLF-1
and GSCLF-1 decoders is better than that of the BF-SCL decoder. For L = 8, The WER
curves of the LS-SCLF-1 and GSCLF-1 decoders are basically the same and very close to
the WER curve of the OA-SCL-1 decoder. For L = 16 and L = 32, the WER values of
the LS-SCLF-1 decoder are slightly lower than those of the GSCLF-1 decoder, especially
in the regions of 1.0 dB ≤ SNR ≤ 2.0 dB, where the difference between the two is more
obvious. As can be seen in Figure 5c, almost all the WER curves for these decoders roughly
intersect at SNR = 1.0 dB. In the regions of SNR ≤ 1.0 dB, the WER values increase as
the N increases and vice versa in the SNR > 1.0 dB regions. In addition, at N = 256 and
N = 512, the WER curves of the LS-SCLF-1 and GSCLF-1 decoders are basically the same
and slightly higher than that of the OA-SCL-1 decoder, while at N = 1024, the WER curve
of the LS-SCLF-1 decoder is slightly lower than that of the GSCLF-1 decoder in the regions
of 1.0 dB ≤ SNR ≤ 2.0 dB. As illustrated in Figure 5d, when R = 2/3, the WER values of
the LS-SCLF-1 decoder are slightly lower than those of the GSCLF-1 decoder, especially in
the regions of 1.0 dB ≤ SNR ≤ 2.0 dB, and the difference between the two is more obvious.
When R = 1/2 and R = 2/3, the WER values of the LS-SCLF-1 decoder are approximately
the same as those of the GSCLF-1 decoder, but in the regions around SNR = 1.0 dB, the
WER values of the LS-SCLF-1 decoder are lower than those of the GSCLF-1 decoder. In
summary, Figure 5 shows that the LS-SCLF-1 decoder can correct more decoding caused by
a single erroneous bit with the same number of extra decoding than the GSCLF-1 decoder,
further proving the effectiveness of the bit-flipping metric and perturbation parameter
optimization proposed in this paper. This also implies that the LS-SCLF decoder will also
perform better for correcting higher-order erroneous bits.

Figure 6a–c show the WER performance of LS-SCLF-2 decoding and GSCLF-2 de-
coding for various L, N, and R values. From Figure 6a, it can be seen that the WER
values of the LS-SCLF-2 decoder are lower than those of the GSCLF-2 decoder in the
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1.0 dB ≤ SNR ≤ 2.0 dB regions for both L = 4 and L = 8. From Figure 6b, it can be seen
that the WER curves of the LS-SCLF-2 decoder and the GSCLF-2 decoder are basically
the same at N = 1024 and N = 256, while the WER values of the LS-SCLF-2 decoder are
slightly lower than those of the GSCLF-2 decoder at N = 512. As can be seen in Figure 6c,
the WER curves of the LS-SCLF-2 decoder are lower than those of the GSCLF-2 decoder
under different R values, and the difference between them gradually increases with increas-
ing SNR. In summary, the overall error correction performance of the LS-SCLF-2 decoder
is higher than that of the GSCLF-2 decoder, and the advantage of the LS-SCLF-2 decoder is
more obvious in the region of 1.0 dB ≤ SNR ≤ 2.0 dB. Figure 7 shows the comparison of
the error correction performance of different decoders at ω = 3, where T1 = 50, T2 = 49,
T3 = 100. Analyzing Figure 7, we can come to a similar conclusion as in Figures 5 and 6;
i.e., the error correction performance of the LS-SCLF-3 decoder is slightly better than that
of the GSCLF-3 decoder under different decoding conditions.
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10 3
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10 1

100
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SNR (dB)

 LS-SCLF-1,  T  = 10
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Figure 5. WER curves for different decoders under various decoding conditions with ω = 1.

Figure 6. Cont.
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Figure 6. WER curves for different decoders under various decoding conditions with ω = 2.
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T1 = 50, T2 = 49, T3 = 100, L = 8 and R = 1/2 
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Figure 7. WER curves for different decoders under various decoding conditions with ω = 3.

4.2.2. Decoding Complexity Analysis

The complexity of bit-flipping-based SCL decoding is mainly composed of two parts:
the flipping priority determination complexity and the extra decoding complexity, where
the former is much smaller than the latter, especially with a large list size. Therefore,
this paper mainly considers the extra decoding complexity, which can be expressed as
Tavg · (LN log N) , where Tavg is denoted as the average number of extra decoding attempts.
It is clear that the average number of extra decoding attempts determines the complexity
of the decoding, and this subsection focuses on the average number of extra decoding
attempts. Figures 8–10 show the corresponding average extra decoding attempts for
Figures 5, 6, and 7, respectively.

From Figure 8a, at T = 10, the decoders BF-SCL, LS-SCLF-1, and GSCLF-1 exhibit an
equivalent average number of extra decoding attempts. At T = 50, the BF-SCL decoder
shows the largest number of extra decoding attempts, whereas the LS-SCLF-1 and GSCLF-1
decoders have similar average extra decoding attempts. As can be seen from Figure 8b,
under different L conditions, the average extra decoding attempt curves of the LS-SCLF-1
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decoder are all between those of the BF-SCL and GSCLF-1 decoders, indicating that the
extra decoding complexity of LS-SCLF-1 decoder is smaller than that of the GSCLF-1 de-
coder and larger than that of the BF-SCL decoder. In the regions of 1.5 dB ≤ SNR ≤ 2.0 dB,
the difference between the LS-SCLF-1 and GSCLF-1 decoders gradually increases, but with
L = 32, for example, the difference between them is no more than 3. From Figure 8c,
when N = 1024 and N = 512, the average extra decoding attempts of the LS-SCLF-1 and
GSCLF-1 decoders are approximately the same, and both of them are smaller than those of
the BF-SCL decoder. When N = 256, the average extra decoding attempts of LS-SCLF-1
decoder are slightly larger than those of the GSCLF-1 decoder, but both of them are higher
than the average extra decoding attempts of the BF-SCL decoder. As can be seen from
Figure 8d, the average extra decoding attempts of the BF-SCL decoder are higher than
those of the other two decoders under different R conditions. The LS-SCLF-1 decoder
also needs more extra decoding attempts than the GSCLF-1 decoder, and in the regions
of 1.5 dB ≤ SNR ≤ 2.0 dB, the difference between them slightly increases, but it does not
exceed 4. Based on the analysis of Figure 8, it can be concluded that overall, the BF-SCL de-
coder has the highest extra decoding complexity, while the LS-SCLF-1 decoder has slightly
higher extra decoding complexity than the GSCLF-1 decoder.
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As shown in Figure 9a, the average extra decoding attempts for the LS-SCLF-2 decoder
are marginally greater than for the GSCLF-2 decoder at varying L conditions. The discrep-
ancy between the two is more noticeable at L = 8, but it does not exceed 2 at the most.
As shown in Figure 9b, the average extra decoding attempts of the LS-SCLF-2 decoder
and the GSCLF-2 decoder are nearly equal under varying N conditions, and the six curves
converge around SNR = 1.5 dB. However, the difference between the average extra de-
coding attempts of the two decoder marginally rises in the 1.5 dB ≤ SNR ≤ 2.0 dB regions
in comparison with other regions. From Figure 9c, we can see that the extra decoding
attempts of both decoders rises considerably as R increases. For R values of one-third, the
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average extra decoding attempts for the LS-SCLF-2 decoder and the GSCLF-2 decoder are
almost identical, but for values greater than one-half, the average extra decoding attempts
of the LS-SCLF-2 decoder are marginally larger than those of the GSCLF-2 decoder. The
analysis in Figure 9 demonstrates that the decoding complexity of the LS-SCLF-2 decoder
is slightly greater than that of the GSCLF-2 decoder. In Figure 10, we can also observe
a similar phenomenon as in Figure 9; i.e., when ω = 3, the average number of extra
decoding attempts of the LS-SCLF decoder is higher than those of the GSCLF decoding
under different conditions, indicating that the LS-SCLF decoder has a higher average extra
decoding complexity compared to the GSCLF decoder. However, the difference is that the
gap between the average extra decoding attempts of the two decoders is much larger with
ω = 3; e.g., in Figure 10b, when N = 1024, the gap between them can reach more than 10
in the regions of 1.0 dB ≤ SNR ≤ 2.0 dB.
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Figure 10. Average extra decoding attempts of decoders under various decoding conditions with
ω = 3.

5. Conclusions

In this paper, we propose LS-SCLF-ω decoding. which can simultaneously correct ω
erroneous decoded bits. Firstly, a new flip-bit metric is proposed. The metric takes into
account the sequential nature of SCL decoding, i.e., the effect of the previous decoded
bits on the bits to be decoded is introduced into the calculation of the metric. Then, a
perturbation parameter is also introduced to make the metric as close as possible to the
error probability of the flip-bit. Finally, a bit-flipping strategy is proposed, which searches
and locates the erroneous decoded bits sequentially from lower to higher orders. Simulation
results show that the LS-SCLF-1 decoder has better performance than the BF-SCL decoder
in both error correction and decoding complexity. The LS-SCLF-ω decoder has better error
correction performance than the GSCLF-ω decoder, especially at the medium to high SNR
regions, but its decoding complexity is slightly higher. In a word, the proposed decoder can
achieve a good balance between the error correction performance and decoding complexity.

However, the perturbation parameter α involved in this paper needs to be optimized
through a large number of simulations. Meanwhile, the optimized parameter αopt = 0.9 is
not the optimal value under all conditions; for example, in Figure 4d, for PC(512, 342 + 16),
α = 0.7 is its optimal parameter value, while α = 0.9 is only a sub-optimal value under all
conditions considered in a comprehensive way, which is the reason why the complexity of
the proposed decoding algorithm is higher than that of the GSCLF decoder. To solve this
problem, we hope to improve the decoding algorithm in the following ways in future work.
(1) To reduce the excessive occupation of computing resources, the optimized parameter
can be stored in the system in advance. (2) The parameter optimization problem can be
solved from a theoretical point of view. The functional relationship between different
decoding conditions and the corresponding optimal parameter values is summarized so as
to avoid the instability caused by experimental statistics.
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