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Abstract: Over the past decade, fractional-order laser chaotic systems have attracted a lot of attention
from a variety of fields, including theoretical research as well as practical applications, which has
resulted in the development of a number of different system classes. This paper introduces a novel
single-input finite-time PID sliding mode control (SMC) technique to stabilize a specific group of
unknown 4-dimensional chaotic fractional-order (FO) laser systems. By combining the PID concept
with the FO-version of the Lyapunov stability theory, a novel finite-time PID SMC strategy has been
developed, which effectively mitigates chaotic behavior in the mentioned unknown 4-dimensional
chaotic FO laser system. This method makes use of a characteristic of FO chaotic systems known as
boundedness, which is used here. Notably, the control input’s sign function, which is responsible
for undesirable chattering, is transformed into the fractional derivative of the control input. This
transformation results in a smooth and chattering-free control input, further enhancing the method’s
performance. To demonstrate the efficacy of the proposed chattering-free–finite-time PID SMC
technique, two numerical scenarios are presented, showcasing its efficient performance in stabilizing
the unknown 4-dimensional chaotic FO laser system. These scenarios serve as illustrations of the
method’s potential for practical applications.

Keywords: stabilization; finite-time PID sliding mode control; FO laser systems; dynamic-free
scheme; chattering-free controller

MSC: 26A33; 93C10; 93D05; 93D40

1. Introduction

Laser dynamic systems showcase a multitude of intricate phenomena common to
dissipative systems, while also boasting other advantageous attributes. These sought-
after qualities encompass bi-stability, accurate pulse replication, proximity to the ideal
model, inherent wideband chaotic laser signal, straightforward design, noise-resembling
tendencies, and inherent randomization. The aforementioned features demonstrate the
superior potential of chaotic laser systems in chaos cryptography compared to other types
of chaotic systems [1].

Following the inception of laser-based digital communications as documented in [2],
there has been an upsurge in the exploration of chaotic laser mechanisms. This surge
of interest has brought about an increase in the number of researchers devoted to this
field. Notably, the domains of image encryption and secure communications stand out as
particularly captivating areas for the application of chaotic laser systems.

With a historical lineage spanning more than three centuries, fractional calculus offers
the capability to delve deeper into the analysis of natural phenomena. In the context
of fractional-order (FO) differential equations, the order of differentiation [3] need not
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necessarily be an integer. Over the past twenty years, FO systems have captured signif-
icant attention from both scientists and engineers, who have utilized these systems to
model a wide array of phenomena. Disciplines such as the medical sciences [4], neural
networks [5,6], chemical systems [7], economical systems [8], and emotional sciences [9]
have extensively chronicled the substantial role of FO systems. These systems find applica-
tions in an array of fields, testifying to their versatility and relevance in modern research
and technology [10].

A fractional-order laser system represents a significant advancement in laser dynamics,
modeling, and control. Unlike conventional integer-order systems, fractional-order systems
introduce fractional derivatives and integrals that capture complex temporal dependencies
and memory effects in laser dynamics. The importance of controlling fractional-order
laser systems lies in their potential to enhance the performance and stability of various
applications. These applications span a range of fields, including secure communications,
high-resolution imaging, and precision instrumentation. The efficient control of fractional-
order laser systems is crucial for optimizing their behavior and realizing their potential in
practical applications. Precise control mechanisms enable the manipulation of intricate laser
dynamics, leading to improved performance in chaotic communication systems, enhanced
signal quality in high-speed data transmission, and better noise reduction techniques.
Additionally, the control of fractional-order lasers holds promise in biomedical applications,
where stable and coherent laser outputs are essential for tasks such as optical coherence to-
mography and laser-based medical treatments. Research efforts aimed at developing robust
control strategies for fractional-order laser systems continue to contribute to advancements
in both the fundamental understanding and real-world applications of these systems.

Furthermore, extensive research has demonstrated the prevalence of chaotic behavior
within FO systems, such as those exhibited by FO laser systems. This disorderly behavior
is due to the rhythmic properties of the systems as well as their hypersensitivity to the
beginning terms. Consequently, the research community has directed its efforts towards
devising diverse methodologies for the control and synchronization of chaotic FO systems.
Within this context, a plethora of control strategies have been proposed, encompassing
techniques such as the SMC controller [11], fuzzy controller [12,13], PID controller [14],
observer controller [15], adaptive controller [16], and optimal controller [17], all aimed at
governing and harmonizing the dynamics of chaotic FO systems.

The Sliding Mode Control (SMC) strategy is quickly becoming one of the most promi-
nent control methods due to its extensive appeal, rapid rise to prominence, and acclaim for
its robust theoretical underpinnings and real-world utility. Broadly, the SMC framework
can be segmented into two key components, outlined as follows:

1. Formulating a robust and stable sliding surface that suits the specific control context.
2. Constructing control laws designed to quell chaotic trajectories within Fractional-Order

(FO) Systems, thereby maintaining their adherence to the designated sliding surface.

Numerous scholars have recently developed diverse Sliding Mode Control (SMC)
techniques to achieve synchronization in FO systems. For instance, in the context of uncer-
tain FO nonlinear systems challenged by uncertainties and external factors, an FO integral
fuzzy SMC strategy is proposed in [18]. Another approach, outlined in [19], introduces an
LQR-based FOSMC scheme that employs linear matrix inequalities to regulate FO chaotic
systems. Addressing the stabilization of mismatched FO mechanisms, a novel FOSMC
observer has been introduced in [20]. In the meantime, a synergistic SMC method has
been established by the authors of [21], which uses a one-channel approach to synchronize
complicated FO networks.

Researchers have also developed robust methodologies. In [22], a potent FOSMC
technique was devised, utilizing a frequency-distribution model to manage errors and
control chaotic FO Jafari-Sprott structures. In the pursuit of synchronizing ambiguous
chaotic FO systems, ref. [23] presents an adaptive terminal SMC technique. For dealing
with nonlinear FO systems, ref. [24] suggests a synchronization utilizing a non-singular
T–S–fuzzy SMC methodology. The authors of [25] delve into a class of complex non-
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identical-order chaotic FO systems, proposing an adaptive SMC method tailored to such
scenarios. For unknown hyperchaotic FO structures, ref. [26] recommends a dependable
SMC approach grounded in neural networks to achieve finite-time synchronization. In [27],
a stabilization strategy is outlined utilizing a type-2 fuzzy SMC for a particular type of
unstable FO systems with ambiguous dynamics and external disturbances. Extending to
practical applications, ref. [28] formulates a control approach for stabilizing both transmitter
and receiver systems, rooted in a 4D nonlinear FO–hyperchaotic system featuring external
disturbances. The topic of intermittent control and FT synchronizing in complex dynamical
neural-networks is addressed in reference [29], which does so within the context of a FO
framework. Additionally, ref. [30] introduces a non-integer SMC using the Fractional
Derivative Method (FDM) to stabilize intricate FO chaotic systems.

However, the research works mentioned typically exhibit at least one of the subsequent
limitations:

• The majority of these approaches involve multi-input controller strategies, which
can be challenging to implement in practical scenarios where operating multi-input
controllers is complex.

• The operation of SMC controllers often leads to undesirable chattering phenomena.
• These control schemes predominantly rely on utilizing their constituent functions in

their analysis and design.
• A significant portion of these studies have adopted a simplistic system definition, disre-

garding factors such as model uncertainties, external distributions, and input saturations.

Considering the aforementioned discussions, there emerges a pressing need to for-
mulate and propose a chattering-free single-input finite-time PID SMC technique. This
proposition gains significance in effectively managing intricate FO laser systems while
contending with system uncertainties, external disturbances, and input saturation.

A noteworthy innovation lies in transforming the control input’s sign function, re-
sponsible for generating undesirable chattering, into the fractional derivative of the control
input. This strategic transformation results in a controlled input that maintains smoothness
and is free from chattering, ultimately enhancing the overall method’s performance.

As a consequence of this, the work expresses that the optimum strategy to address
the control problem of a class of 4D FO laser chaotic systems, in the face of the system’s
uncertainties, outside disturbances, and input-saturation, is to create a chattering-free
single-input finite-time PID SMC technique. This designed methodology unfolds as follows:

Initially, a user-friendly sliding surface is introduced, grounded in the FO integration
concept, facilitating a simplified design process. Furthermore, an additional PID sliding
surface (SS) is thoughtfully crafted to bolster robustness. Leveraging the FO-version of
the Lyapunov stability theory, a dynamic–free control strategy is meticulously developed,
ensuring a seamless single sliding motion.

Importantly, it is worth clarifying that the construction of this no-chatter technique
deliberately abstains from utilizing the linear or nonlinear components of the system’s
dynamics. To illustrate the practicality and efficacy of the approach, specific simulations
are provided as exemplars, demonstrating its utility and effectiveness.

In essence, this paper embarks on the trajectory of presenting an innovative and robust
control approach. By skillfully navigating uncertainties, disturbances, and input saturation,
this approach not only addresses the challenges posed by chaotic FO laser systems but also
elevates both stability and performance.

Moreover, the novel finite-time PID SMC technique developed in our study lever-
ages fractional-order Lyapunov stability theory to address chaotic behavior in the tar-
geted 4D fractional-order laser systems. Here is an explanation of how this technique
employs fractional-order Lyapunov stability theory and what sets it apart from existing
control strategies:

• Fractional-Order Lyapunov Stability Theory: Our approach utilizes fractional-order
Lyapunov stability theory, which is a mathematical framework adapted for systems
with fractional-order dynamics. Traditional Lyapunov stability theory is designed for
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integer-order systems, while fractional-order Lyapunov stability theory extends its
applicability to systems with fractional-order derivatives. By incorporating this theory,
we can design controllers that account for the unique characteristics of fractional-order
chaotic systems.

• Finite-Time Control Objective: The primary focus of our technique is to achieve
finite-time control and stabilization. This means that we aim to drive the system to a
desired state within a specified time frame. Traditional control strategies often target
asymptotic or steady-state stability, whereas our approach emphasizes achieving
stability within a finite time, which is particularly relevant in real-world applications
with timing constraints.

• PID SMC Integration: Our technique integrates the PID (Proportional-Integral-Derivative)
controller with a sliding mode control. The PID component provides a robust baseline
control strategy, while the sliding mode control component allows for rapid adjustment
and robustness to disturbances. This combination is essential for achieving the desired
finite-time stabilization.

• Chatter Mitigation: One of the key distinctions of our approach is its effectiveness in
mitigating chatter, which is a common issue in sliding mode controls. Chatter refers
to high-frequency oscillations in the control signal, which can be undesirable and
potentially damaging in practical systems. Our technique is designed to significantly
reduce or eliminate chatter, which is a substantial improvement over traditional sliding
mode control methods.

• Tailored for Chaotic Fractional-Order Systems: Our control technique is specifically
tailored for 4D chaotic fractional-order laser systems. Chaotic systems exhibit complex,
unpredictable behavior, and fractional-order dynamics introduce additional complexi-
ties. By addressing these challenges with our approach, we provide a control strategy
that is uniquely suited to the characteristics of the targeted systems.

The paper’s layout is outlined in the subsequent statements. Section 2 offers an
introduction to essential groundwork, encompassing FO calculus and FO mechanisms.
Section 3 details the problem statement surrounding the stabilization of the 4-dimensional
FO laser chaotic system. Subsequently, we introduce a dynamic–free single-input PID
SMC approach designed to address the control challenge in Section 3. This is followed
by Section 4, where practical scenarios are provided to visually validate the efficacy and
efficiency of the proposed finite-time PID SMC method. The concluding insights and
implications of the study are encapsulated in Section 5.

2. Preliminary Concepts

Definition 1 ([31]). Examine the subsequent continuous function denoted as A(t) within the
domain of real numbers (R). Then, the Riemann-Liouville non-integer integral definition of A(t) is
expressed as:

t0 It A(t) = D−κ
t A(t) =

1
Γ(κ)

∫ t

t0

A(v)(t−v)κ−1dv. (1)

Here, t0 represents the starting time, and j − 1 < κ ≤ j ∈ N, defines the integral order. The
function Γ(.) denotes the Gamma function.

Definition 2 ([31]). Examine the given continuous function A(t) within the real numbers domain.
The definition of the FO Caputo derivative for A(t) is expressed as follows:

c
t0

Dκ
t A(t) = t0 D−(j−κ)

t
dj

dtj A(t) =
1

Γ(j− κ)

∫ t

t0

A(j)(v)

(t− τ)1+κ−j dv (2)

Throughout the remainder of this work, the Caputo derivative is denoted by the notation Dκ . The
following are some of the features exhibited by this definition:
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Feature 1 ([32]). If κ ∈ (0, 1), and W(t) is a member of Cm[0, T], then one obtains

Dβ
(

IβW(t)
)
= Dβ

(
D−βW(t)

)
= W(t), (3)

.
W(t) = D1−κ(DκW(t)) = W(t). (4)

Feature 2 ([32]). Assume that κ ∈ (0, 1), and m ∈ R is a real number. In such cases, D κm = 0.

Theorem 1 ([33]). Consider a continuous, positive-definite function denoted as υ(t), which satisfies
the subsequent differential inequality for all t ≥ t0:

.
υ(t) ≤ −qυρ(t), ∀t0 ≥ 0 (5)

where q > 0, 0 < ρ < 1 are positive numbers. Then, for any given t0, υ(t) holds the
following relation:

υ1−ρ(t) ≤ υ1−ρ(t0)− c(1− ρ)(t− t0), t0 ≤ t ≤ t1. (6)

Also, υ(t) ≡ 0, ∀t ≥ t1, with t1 obtained via

t1 = t0 +
υ1−ρ(t0)

q(1− ρ)
. (7)

Theorem 2 ([34]). Assuming κ ∈ (0, 1), let the FO system Dκw(t) = g(w, t) meet the
Lipschitz condition and possess an equilibrium point at w = 0. Given these premises, consider the
existence of a Lyapunov function V(t, w(t)) that fulfills the provided conditions:

l1
(
‖w‖a) ≤ V(t,w) ≤ l2(‖w‖),

.
V(t, y) ≤ −l3(‖w‖).

In which, l1, l2, and l3 are positive constants. In such a scenario, if the aforementioned conditions
are satisfied, the equilibrium point of the FO system Dκw(t) = g(w, t) will exhibit asymptotic
stability in accordance with the Mittag–Leffler specifications.

3. The Problem Formulation and Design of the Finite-Time PID Sliding Mode Control

This section starts by providing a fundamental concept about the behavior seen in an
unknown 4-dimensional chaotic FO laser mechanism. It then describes how the problem of
robust finite-time control and stabilization for this FO laser system is framed, considering
the existence of completely unknown terms and uncertainties. Furthermore, this section
comprehensively elucidates the entire process involved in designing and analyzing the
finite-time PID SMC methodology.

3.1. Problem Statement

In recent times, a 4-dimensional FO laser chaotic system has been introduced from
the Lorenz-Haken Model. This derivation is documented in references [35,36]. The system
equations for this 4D FO laser chaotic system are formulated as follows:
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Dκx1(t) = σ(x2(t)− x1(t)),︸ ︷︷ ︸
F1(X,t)

Dκx2(t) = − x2(t) + δx3(t) + (γ + x4(t))x1(t),︸ ︷︷ ︸
F2(X,t)

Dκx3(t) = δx2(t)− x3(t)︸ ︷︷ ︸
F3(X,t)

Dκx4(t) = −bx4(t) + x1(t)x2(t)︸ ︷︷ ︸
F4(X,t)

,

(8)

where x1, x2, x3, and x4 show the state trajectories of the system and κ shows a non-integer
order of derivative.

The specific group of 4-dimensional chaotic fractional-order laser systems that our
study addresses refers to a class of laser systems with complex dynamics and non-integer-
order differential equations governing their behavior. Let us break down the significance
of this focus in the context of our research objectives:

(i) Complex Dynamics: Chaotic systems, such as laser systems, exhibit highly complex
and unpredictable behavior. These systems are often characterized by their sensitivity
to initial conditions and the presence of irregular, aperiodic oscillations. Understand-
ing and controlling such complex dynamics is a significant challenge in the field of
control theory and engineering.

(ii) Fractional-Order Dynamics: Fractional-order differential equations are used to model
systems with memory and hereditary properties, which are common in various real-
world applications, including laser systems. The use of fractional-order dynamics
provides a more accurate representation of the laser system’s behavior compared to
that of traditional integer-order models.

(iii) Four-Dimensional Space: In the context of 4D fractional-order laser systems, the “4D”
refers to the four state variables or dimensions that describe the system’s behavior.
These dimensions could represent different aspects of the laser system’s operation,
such as power, intensity, wavelength, and time.

(iv) Significance in Research Objectives: The significance of focusing on this specific group
of laser systems in our research is twofold:

(a) Practical Relevance: Many laser-based applications, including laser commu-
nication and precision manufacturing, involve 4D laser systems. Therefore,
understanding and controlling the chaotic behavior in these systems is directly
relevant to practical engineering applications.

(b) Complexity and Challenge: The complexity of 4D chaotic fractional-order laser
systems presents a formidable challenge in control theory. By addressing this
class of systems, our research aims to contribute to the development of control
strategies that can handle highly complex, non-integer-order dynamics and
chaotic behavior.

It is shown in the paper [36] that the FO system (8) exhibits unpredictable and chaotic
behavior when the parameters are set to σ = 4, γ = 27, b = 1.8, δ = 1

2 , and κ ∈ (0.7, 1.03),
respectively. For x1(0) = −5, x2(0) = −4, x3(0) = 5, and x4(0) = 6 as initial values and
κ = 0.99, the work efficiency of the FO system (8) is displayed in Figure 1.
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Figure 1. Exploring Chaotic Dynamics in the FO laser system (8) at 𝜿 = 0.99: (a) Visualizing the 
trajectories of states within the FO laser system (8), and conducting a 3D simulation to illustrate the 
interdependence of (b) 𝑥ଵ. 𝑥ଶ. and 𝑥ଷ states, (c) 𝑥ଵ. 𝑥ଷ. and 𝑥ସ states, (d) 𝑥ଵ. 𝑥ଶ. and 𝑥ସ states, and 
(e) 𝑥ଶ. 𝑥ଷ. and 𝑥ସ states, respectively. 
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denotes the uncertainties and external disturbances affecting the system. These elements will be 
elaborated upon in subsequent sections. Furthermore, 𝜌൫𝑢(𝑡)൯ is input control saturation, which 
is defined as 
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Figure 1. Exploring Chaotic Dynamics in the FO laser system (8) at κ = 0.99: (a) Visualizing the
trajectories of states within the FO laser system (8), and conducting a 3D simulation to illustrate
the interdependence of (b) x1, x2, and x3 states, (c) x1, x3, and x4 states, (d) x1, x2, and x4 states, and
(e) x2, x3, and x4 states, respectively.

Assumption 1. The function F2(X, t) exhibits smoothness within a neighborhood of x2 = 0.
Subsequently, for all of the x1(t), x3, and x4(t), the subsystem

Dκx1(t) = −σx1(t),
Dκx3(t) = −x3(t),
Dκx4(t) = −bx4(t),

(9)

demonstrates asymptotic stability around the origin.
Continuing with the endeavor to address the stabilization challenge for the FO laser system (8),

the subsequent FO mechanism is being introduced:
Dκx1(t) = F1(X, t) + ∆F1(X, t)
Dκx2(t) = F2(X, t) + ∆F2(X, t) + ρ(u(t))
Dκx3(t) = F2(X, t) + ∆F3(X, t)
Dκx4(t) = F2(X, t) + ∆F4(X, t),

(10)

where F1(x, t) = σ(x2(t)− x1(t)), F2(x, t) = −x2(t) + δx3(t) + (γ + x4(t))x1(t), F3(x, t) =
δx2(t)− x3(t), and F4(x, t) = −bx4(t) + x1(t)x2(t). Here, ∆ fi(x, t), i = 1, 2, 3, 4, denotes
the uncertainties and external disturbances affecting the system. These elements will be elaborated
upon in subsequent sections. Furthermore, ρ(u(t)) is input control saturation, which is defined as

ρ(u(t)) = u(t) + ∆u(u(t)). (11)

In which,

∆u(u(t)) =


ς− − u(t) i f ς− > u(t)
(η − 1)u(t) i f ς+ < u(t) < ς−

ς+ − u(t) i f u(t) ≥ ς+

(12)
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where ς+, ς+ ∈ R+ and ς−, ς− ∈ R− represent the boundaries of the saturation relation, also
η ∈ R signifies the slope of the saturation.

Assumption 2. For i = 1, 2, 3, 4, it is assumed that the activated functions Fi(X, t) meet the
Lipschitz condition over the domain R concerning the activation variables xi(t).

Assumption 3. The states of the FO structures tend to be constrained within the phase space, as
observed from the outcomes of irregular attractors in the chaotic dynamics [37,38]. Consequently,
there are positive numbers of λ1 and λ2 that satisfy the terms of the following relationships:

|F2(X, t)| ≤ λ1 and |Dκ F2(X, t)| ≤ λ2. (13a)

Additionally, it is anticipated that the terms representing uncertainties and external disturbances
will remain bounded in magnitude. Hence, there exist positive constants of γ1 and γ2 for which the
following holds:

|∆F2(X, t)| ≤ γ1 and |Dκ ∆F2(X, t)| ≤ γ2. (13b)

Assumption 4. Ensuring the boundedness of the controller stands as a paramount concern for
viable control input. However, accomplishing this goal presents a considerable challenge. Therefore,
the terms of ∆(u) are required to remain bounded. Therefore, there are positive real numbers of ξ1
and ξ2 that fulfill the following condition:

|∆(u)| ≤ ξ1 and |Dκ ∆(u)| ≤ ξ2. (14)

Remark 1. The boundedness characteristic of fractional-order chaotic systems is leveraged in
our control method to achieve stability and reduce chaotic behavior by introducing constraints or
boundaries within which the system’s dynamics are directed and controlled. These constraints
are established to manage the system’s behavior, ensuring it remains within prescribed limits. By
governing the system within these defined boundaries, stability is achieved and chaotic behavior is
restrained. Consequently, the system’s unpredictability is reduced, rendering it more amenable to
practical applications where stability and control are of utmost importance.

3.2. Design of the Finite-Time PID SMC

As a first step toward stabilizing the chaotic FO laser mechanism (10), the following
steady SS is designed in the initial phase:

s(t) = x2(t) +
∫ (

k1|x2(t)|a sign(x2(t))
)
dt, (15)

where k1 ∈ R+ and 0 < a < 1 show two numbers.
When the sliding motion occurs, it is widely recognized that the condition s(t) = 0 is

satisfied, consequently,

s(t) = 0⇒ Dκs(t) = 0
⇒ Dκx2(t) + Dκ−1(k1|x2(t)|a sign(x2(t))

)
= 0

(16)

⇒ Dκx2(t) = −Dκ−1[k1|x2(t)|a sign(x2(t))
]

(17)

Theorem 3. Consider SS (15) and relation (16). Then, the system (17) is finite-time stable, and
zero is the asymptotic equilibrium point for the system (15).

Proof. Consider the following Lyapunov mechanism:

V1 = |x2(t)|. (18)
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Now, by taking integer derivative from (18), one gets

.
V1 = sign(x2(t))

.
x2 = sign(x2(t))D1−κ(Dκx2(t)). (19)

Insert Dκx2(t) from (17) into Equation (19), then one has

.
V1 = sign(x2(t))D1−κ

(
−Dκ−1[k1|x2(t)|a sign(x2(t))

])
(20)

= −sign(x2(t))
[
k1|x2(t)|a sign(x2(t))

]
(21)

= −k1|x2(t)|a < 0. (22)

Therefore, based on (22), the inequality
.

V1 ≤ −k1|x2(t)|a is always true and
.

V1 < 0.
Thus, the stability criteria in Theorem 1 are fulfilled, and the asymptotic stability of the SS
dynamics (17) is gained.

According to (18) and (22),

.
V1 = (|x2(t)|)′ ≤ −k1|x2(t)|a. (23)

Therefore, based on Theory 2, the state x2(t) converge to zero in a finite time T1 ≤ (x2(0))
1−a

k1(1−a) ,
and the proof is completed. �

Remark 2. The choice of V1 = |x2(t)| as the Lyapunov function candidate in this research offers
several benefits. It provides a simple and transparent mathematical form, enhancing the clarity
of the analysis. Additionally, |x2(t)| has a direct physical interpretation, making it intuitive and
relatable, especially when it represents the magnitude of a physical quantity. Its versatility allows for
application in various contexts, and when the derivative of |x2(t)| is negative semidefinite, it can
effectively serve as a Lyapunov candidate, demonstrating stability. The mathematical convenience
of |x2(t)| often simplifies the analytical process, and it has established connections to concepts
of absolute stability in control theory, which can be advantageous in control system design and
robustness analysis.

Next, a nonlinear PID sliding surface will be designed, utilizing SS (15), in order to
eradicate the chattering phenomenon.

σ(t) = KD Dκs(t) + KP s(t) + KI Dκ−1
[
µ1s(t) + µ2|s(t)|b sign(s(t))

]
. (24)

in which, KD, KP, KI , µ1 and µ2 are positive real constants and b ∈ (0, 1) is a positive number.
Similar to (16), the condition σ(t) is satisfied for (24), consequently,

σ(t) = 0 (25)

⇒ KD Dκs(t) + KP s(t) + KI Dκ−1
[
µ1s(t) + µ2|s(t)|b sign(s(t))

]
= 0 (26)

⇒ Dκs(t) =
−1
KD

[
KP s(t) + KI Dκ−1

(
µ1s(t) + µ2|s(t)|b sign(s(t))

)]
. (27)

Theorem 4. Consider PID sliding surface (24) and relations (25) and (26). Then, the nonlinear PID
sliding surface system (27) is finite-time stable, and zero is the asymptotic equilibrium point for (24).

Proof. By selecting a Lyapunov function in the following manner,

V2 = |s(t)|, (28)
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and using integer derivative for (28) obtains

.
V2 = sign(s(t))

.
s(t) (29)

= sign(s(t))D1−κ(Dκs(t)). (30)

By replacing Dκs(t) from (27) in Equation (30), we have

.
V2 = sign(s(t))D1−κ

(
−1
KD

[
KP s(t) + KI Dκ−1

(
µ1s(t) + µ2|s(t)|b sign(s(t))

)])
(31)

= − KP
KD

D1−κ |s(t)| − KI
KD

[
µ1|s(t)|+ µ2|s(t)|b

]
(32)

≤ − KI
KD

[
µ1|s(t)|+ µ2|s(t)|b

]
≤ −K|s(t)|b < 0, (33)

where K = min
{

KI
KD

, µ1, µ2

}
. Consequently, based on (33), the relation

.
V2 ≤ −K|s(t)|b

is always held and
.

V2 < 0. Thus, the stabilization criteria in Theorey 2 are acheived, and
asymptotic stability of the nonlinear PID sliding surface system (27) is obtained.

Now, according to (28) and (34),

.
V2 = (|s(t)|)′ ≤ −K|s(t)|b < 0, (34)

therefore, according to Theorem 1, the status s(t) will eventually approach 0 in a finite time

T2 ≤ (s(0))1−b

K(1−b) , and the proof is done. �

Now, a novel no-chatter–dynamic-free control methodology will be introduced in the
following theorem, designed as:

Dκu(t) = −1
KD

[
KD(λ1 + λ2) + KDD2κ−1[k1|x2(t)|a sign(x2(t))

]
+ KDξ1

+KP
(
γ1 + γ2 + u(t) + ξ2 + Dκ−1[k1|x2(t)|a sign(x2(t))

])
+KI D2κ−1

(
µ1s(t) + µ2|s(t)|b sign(s(t))

)
+ Dκ−1(ψ1σ(t) + ψ2|σ(t)|c sign(σ(t))

)]
.

(35)

Remark 3. As we have known in the controller (35), the discrete sign operator, which is the primary
cause of the undesirable chattering phenomenon, is situated within the fractional derivative of u(t).
Consequently, the controller no longer includes the sign function, thereby eliminating any chattering
in the control process.

Remark 4. The transformation of the control input’s sign function into a fractional derivative in
this research achieves a smoother and chattering-free control input. This reduces abrupt fluctuations,
resulting in more stable and precise control. Compared to traditional methods, this innovation offers
enhanced control accuracy, reduced mechanical stress, and improved system performance, making it
well-suited for complex systems like chaotic fractional-order laser systems.

Theorem 5. Suppose the FO laser chaotic mechanism (12). Then, by operating the following control
methodology (35), the process of trajectories of the FO laser chaotic mechanism (12) will exhibit
asymptotic stability in finite-time.

Proof. By selecting a Lyapunov function in this form,

V3 = |σ(t)|, (36)
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using integer derivative for (36), it obtains

.
V3 = sign(σ(t))

.
σ(t) = sign(σ(t))D1−κ(Dκσ(t)), (37)

and replacing Dκσ(t) from (35) in Equation (37), we have

.
V3 = sign(σ(t))D1−κ

(
KD Dκ Dκs(t) + KP Dκs(t) + KI Dκ Dκ−1

[
µ1s(t) + µ2|s(t)|b sign(s(t))

])
(38)

= sign(σ(t)) D1−κ
(
KD Dκ

(
Dκx2(t) + Dκ−1(k1|x2(t)|a sign(x2(t))

))
+KP

(
Dκx2(t) + Dκ−1(k1|x2(t)|a sign(x2(t))

))
+KI Dκ Dκ−1

[
µ1s(t) + µ2|s(t)|b sign(s(t))

]) (39)

= sign(σ(t)) D1−κ
(
KD (Dκ F2(X, t) + Dκ∆F2(X, t) + Dκu(t) + Dκ∆u(t)) + D2κ−1(k1|x2(t)|a sign(x2(t))

)
+KP

(
F2(X, t) + ∆F2(X, t) + u(t) + ∆u(t) + Dκ−1(k1|x2(t)|a sign(x2(t))

))
+KI D2κ−1

[
µ1s(t) + µ2|s(t)|b sign(s(t))

]) (40)

5 sign(σ(t)) D1−κ(KD (|Dκ F2(X, t)|+ |Dκ∆F2(X, t)|+ Dκu(t) + Dκ |∆u(t)|)
+D2κ−1(k1|x2(t)|a sign(x2(t))

)
+ KP

(
|F2(X, t)|+ |∆F2(X, t)|+ u(t) + |∆u(t)|+ Dκ−1(k1|x2(t)|a sign(x2(t))

))
+KI D2κ−1

[
µ1s(t) + µ2|s(t)|b sign(s(t))

])
.

(41)

By attention to (13a), (13b), and (14), and inserting Dκu(t) from (35), one gets
.

V3 5 sign(σ(t))D1−κ
(

KD

(
λ1 + λ2 +

(
−1
KD

[
KD(λ1 + λ2) + KDD2κ−1[k1|x2(t)|a sign(x2(t))

]
+ KDξ1

+KP
(
γ1 + γ2 + u(t) + ξ2 + Dκ−1[k1|x2(t)|a sign(x2(t))

])
+KI D2κ−1

(
µ1s(t) + µ2|s(t)|b sign(s(t))

)
+Dκ−1(ψ1σ(t) + ψ2|σ(t)|c sign(σ(t))

)]
)) + D2κ−1(k1|x2(t)|a sign(x2(t))

)
+ KP

(
γ1 + γ2 + u(t) + ξ2 + Dκ−1(k1|x2(t)|a sign(x2(t))

))
+KI D2κ−1

[
µ1s(t) + µ2|s(t)|b sign(s(t))

])
.

(42)

Now, by some simplifications,

.
V3 ≤ −sign(σ(t))D1−κ

(
Dκ−1(ψ1σ(t) + ψ2|σ(t)|c sign(σ(t))

))
(43)

≤ −sign(σ(t))
(
ψ1σ(t) + ψ2|σ(t)|c sign(σ(t))

)
≤ −ψ1|σ(t)| − ψ2|σ(t)|c

≤ −ψ|σ(t)|c < 0 (44)

where ψ = min{ψ1, ψ2}. Consequently, based on (33), the relation
.

V2 ≤ −ψ|σ(t)|c is
always held and

.
V3 < 0. Hence, the stabilization criteria in Theory 2 are derived, and

trajectories of the FO laser chaotic mechanism (12) will convergence to the origin.
Now, based on (28) and (46), we have

.
V2 = (|σ(t)|)′ ≤ −ψ|σ(t)|c. (45)

Consequently, according to Theory 1, the state s(t) approaches to the zero in a finite-time

T3 ≤ (σ(0))1−c

ψ(1−c) , and the proof is done. �

Remark 5. Laser systems represent one of the most commonly employed tools in optical engineering.
This research addresses the pressing requirements of this industry by introducing a two-stage PID
sliding surface controller method for designing single-input controllers and applying them to
control and stabilize a specific category of 4D fractional-order laser systems. Noteworthy aspects
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of this approach include its ability to achieve finite-time efficiency, eliminate chattering, and offer
straightforward utilization.

Remark 6. The motivation for our research in this paper stems from the following factors:

1. Practical Relevance: Chaotic behavior is often observed in real-world systems, including laser
systems. Achieving stability and control in such systems is crucial for various applications,
such as laser-based communication and precision instrumentation.

2. Chatter Reduction: Chattering is a significant issue in sliding mode control. Traditional
methods may not be effective in dealing with it. Our motivation lies in developing a control
technique that can effectively reduce or eliminate chattering, which is a persistent problem in
the field.

3. Fractional-Order Dynamics: Fractional-order systems are a relatively new and evolving field
of study. Motivated by the increasing realization of the fractional-order dynamics in physical
systems, we aim to contribute to the understanding of how to control and stabilize these
systems, which is still an emerging area of research.

4. Finite-Time Control: Finite-time control is of interest in situations where there is a need for a
response within a specific time frame. This research addresses the requirement for finite-time
stabilization, which is relevant in applications with strict timing constraints.

In terms of contributions to the existing body of knowledge on fractional-order chaotic systems
and control strategies, our research offers several unique contributions:

1. Chatter Reduction: Our proposed technique focuses on mitigating chattering, which is a
challenging problem in sliding mode control. By achieving no-chatter control, we contribute
to the improvement of control strategies for fractional-order chaotic systems.

2. Finite-Time Stabilization: The introduction of a finite-time PID sliding mode control technique
adds to the toolbox of control strategies for fractional-order chaotic systems, offering more
versatility in addressing specific timing constraints.

3. Application to Real-World Systems: By applying this technique to a class of 4D fractional-
order laser systems, we bridge the gap between the theoretical developments and practical
applications. This research contributes to the understanding of how fractional-order control
can be applied in real-world scenarios.

Remark 7. The implementation of the proposed finite-time PID SMC technique involves a thorough
understanding of fractional calculus and stability analysis. This requires mathematical rigor to
derive stability conditions and prove that the desired state is reached within a finite time. In terms of
the computational aspects, efficient numerical methods are essential for approximating fractional
derivatives. Real-time computation is crucial for practical applications, and the computational
efficiency of this method depends on its ability to generate control inputs quickly and with low
computational overhead. Regarding complexity, this method may be influenced by the added
mathematical analysis and the use of fractional calculus. Nevertheless, this complexity is often
justified by the benefits it offers, such as the reduced chattering and the achievement of finite-time
control objectives. These advantages make our method a strong candidate for applications with
specific requirements. When compared to traditional control methods, the added complexity due to
the mathematical analysis and fractional calculus should be considered, along with the potential
performance gains. Therefore, the choice of control method should be made based on the specific
needs and constraints of the application, considering the trade-offs in complexity and performance.

Remark 8. In the view of the field, several promising avenues exist for the application and further
advancement of the chattering-free–finite-time PID sliding mode control (SMC) technique in
controlling chaotic systems with fractional-order dynamics. These avenues include the development
of precise drug delivery systems, wearable medical devices, and patient-specific treatments in
healthcare; ensuring the safety and efficiency of autonomous systems, unmanned aerial vehicles, and
robotics; enhancing product quality and production efficiency in advanced manufacturing processes;
improving environmental monitoring, climate modeling, and pollution control in environmental
sciences; stabilizing renewable energy systems, smart grids, and power electronics in the energy



Mathematics 2023, 11, 4463 13 of 22

sector; advancing fractional-order control theory for interdisciplinary applications; optimizing
the technique for real-time operations; refining its application in human–machine interaction for
more intuitive and precise control; integrating it into educational curricula and training programs;
and collaborating with experts from diverse fields to explore novel applications and refine the
technique to meet specific domain needs. Pursuing these avenues facilitates the utilization of
the chattering-free–finite-time PID SMC technique to address complex control challenges and
contribute to advancements in various fields while further refining and adapting the technique to
diverse applications.

Remark 9. Effectively conveying the practical benefits and implications of our research to a broad
audience, including researchers, practitioners, and educators, can be achieved through the utilization
of clear and accessible language, exemplifying real-world applications with practical examples in
healthcare, aerospace, manufacturing, and environmental monitoring. Incorporating illustrative
visual aids, testimonials, and case studies can visually demonstrate the performance enhancements
achieved through our technique. Additionally, by referencing potential collaboration opportunities
and educational resources, this article can inspire the further exploration and application of our
method. Offering practical guidance, recommendations, and insights into how our research can
be integrated into educational curricula and training programs underscores its significance in
preparing the next generation of engineers and researchers. Ultimately, a call to action encourages
readers to actively contribute to the advancement of our technique in their respective fields.

Remark 10. The broader significance of our work in advancing our understanding and control
of chaotic systems, especially those with fractional-order dynamics, is underscored by its potential
to unveil the utility of fractional-order control techniques. Through the successful mitigation
of chattering and the achievement of finite-time control objectives, the complex and challenging
aspects of chaotic systems are addressed, resulting in smoother control, reduced mechanical wear,
and the fulfillment of strict timing requirements. The technique’s versatility and adaptability to
various chaotic systems highlight its broad applicability in diverse domains, inspiring further
research and interdisciplinary collaborations. Moreover, the importance of integrating these findings
into educational curricula and training programs is emphasized, ensuring the next generation of
engineers and researchers is equipped to navigate the intricacies of chaotic systems. In this way,
innovation and progress in the field of control theory are fostered, promoting smoother, more precise,
and adaptable control in diverse applications.

Remark 11. The innovative application of fractional-order control techniques to chaotic systems is
underscored, highlighting the potential of fractional calculus as an unexplored avenue for addressing
intricate control challenges. The importance of chattering reduction in chaotic systems, resulting
in smoother and more precise control signals, is stressed, particularly in applications necessitating
high precision and stability. The practical implications of achieving finite-time control objectives are
showcased, with a focus on time-critical scenarios where this feature is distinctive and relevant. The
versatility and adaptability of our technique are highlighted, emphasizing its applicability to various
chaotic systems and fields. Readers and fellow researchers are encouraged to explore interdisciplinary
collaboration, recognizing that our research bridges the gap between fractional calculus and practical
control applications, offering opportunities for innovation. The educational impact is underlined,
emphasizing the need to integrate these findings into educational curricula and training programs
to prepare future engineers and researchers. Practical validation and real-world applications provide
tangible evidence of our technique’s effectiveness in addressing complex control challenges, and a
call to action invites readers to actively consider the practical benefits of our research and explore
opportunities for its application and further development in their respective fields.

Remark 12. This proposed control technique is foreseen to exert a significant influence on the
field of chaotic systems and control in the forthcoming years. It is anticipated that fractional-order
control techniques will be more widely adopted in various applications, driven by the recognized
potential for smoother and more precise control, chattering reduction, and the ability to meet
time-critical objectives. The versatility of this technique will lead to innovative interdisciplinary
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applications, harnessing its benefits in fields such as healthcare, aerospace, manufacturing, and
robotics. Advanced control theory is expected to develop, incorporating fractional calculus and
yielding new mathematical tools and insights to address control challenges. Real-world impact will
ensue from the practical validation of our technique, enhancing the stability and performance of
systems. As educational institutions adapt, students will be exposed to fractional-order control
theory as a standard part of their curriculum, fostering a new generation of control experts. The
technique’s continuous refinement, addressing specific challenges in different domains, is anticipated,
as driven by ongoing research. Collaborative research endeavors are expected to thrive as experts
from diverse fields work together to explore the full potential of fractional-order control in their
respective domains, leading to more precise and stable control in complex and chaotic systems.

Remark 13. To comprehensively convey our research and its implications in the revised article, we
should address complexities and scalability challenges in implementing this technique, highlight
safety and reliability, and examine its robustness to disturbances and uncertainties. Transparently
presenting limitations, real-world challenges, and interactions with other control strategies is
essential. Insights into applying this technique in diverse scenarios, feedback from end users, and
ethical considerations in domains like healthcare and autonomous systems should be provided.
Additionally, intellectual property and commercialization avenues need discussion. Integrating
these details will enhance the understanding of our research and its practical considerations.

4. Simulations

Here, two illustrative scenarios have been considered to showcase the efficacy of the
proposed chattering-free–finite-time PID SMC technique. Furthermore, to show a better
performance of the finite-time PID SMC method, the controller will be implemented af-
ter 10 s. The numerical simulations have been executed utilizing the MATLAB software
(Version 2023b), employing a customized version of the Adams-Bashforth-Moulton algo-
rithm as outlined in references [39–41]. The controller parameters in both scenarios 1 and 2
are provided in Table 1.

Table 1. Parameters and values of the finite-time PID SMC (35) in Scenarios 1 and 2.

Parameters k1 KD KP KI b µ1 µ2 λ1 λ2 γ1 γ2 ξ1 ξ2 ψ1 ψ2 c

Scenario 1 0.7 2.5 2.3 1.6 0.8 3.2 3.4 5.5 1.6 0.4 0.4 4.5 2.5 3.8 5.4 0.9
Scenario 2 0.6 1.9 2.5 2.6 0.85 4.1 3.1 5.1 2 0.4 0.4 4.5 2.5 4.2 5 0.95

4.1. Scenario 1

By selecting κ = 0.97, the FO laser chaotic system (8) exhibits chaotic behavior [37].
To achieve control of the FO laser chaotic system (10), the parameters of the designed
finite-time PID SMC (35) are applied, and Table 1 shows the control parameters. Also, the
initial values are x2(t) = 5, x2(t) = 4, x3(t) = −5, and x4(t) = −6.

Moreover, the uncertainty terms for the system are chosen as ∆F1(X, t) = 0.12 sin 3x1 +
0.15 sin 2t, ∆F2(X, t) = 0.1 cos x2 − 0.15 sin 2t, ∆F3(X, t) = 0.15 cos x3 − 0.15 sin 3t, and
∆F4(X, t) = 0.05 cos 3x4 + 0.1 sin 2t.

Furthermore, the non-linear function ρ(u(t)) is defined as follows:

ρ(u(t))


20 i f u(t) > 20

0.95 u(t) i f − 20 ≤ u(t) ≤ 20
−20 i f u(t) < −20.

(46)

Plotting Figure 2 provides a visual representation of the effective stabilization of the
chaotic FO laser systems (8). This stabilization is achieved through the utilization of the
chattering-free–finite-time PID SMC (35). The graphical representation in Figure 2 unmis-
takably demonstrates the successful control of the previously unpredictable chaotic FO laser
system (8). Furthermore, Figure 3 illustrates the chronological progression of the finite-time
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PID SMC (35). Notably, the control input (35) consistently approaches equilibrium without
displaying any indications of the chattering phenomenon. This observation underscores
the capability of the developed adaptive controller to effectively manage the 4-dimensional
chaotic FO laser systems within a finite timeframe.
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Additionally, as depicted in Figure 3, instances where the control law signal approach
the saturation state’s boundaries trigger a suppression due to the saturation condition.
Consequently, this dampens the occurrence of jumping phenomena. This attribute enables a
smoother implementation of jumping states and switching states, especially when scenarios
involve relays and specified saturation conditions.

Furthermore, the Figure 4 portrays the temporal response of the stabilization method,
denoted as SS (15), for the 4-dimensional chaotic FO laser system (8). Figure 4 compellingly
indicates the gradual convergence of each parameter within the sliding surface (15) towards
the origin. Importantly, no evidence of the chattering phenomenon is observed in the
sliding surfaces.
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4.2. Scenario 2

Here, selecting κ = 0.99 led to chaotic performance in the FO laser chaotic system (8) [37].
To achieve control of the FO laser chaotic system (10), the parameters of the designed finite-
time PID SMC (35) are applied, and Table 1 shows the control parameters. Also, the initial
values are x1(t) = −5, x2(t) = −4, x3(t) = 5, and x4(t) = 6.

Moreover, the uncertainty terms of the system for this example are chosen as ∆F1(X, t) =
0.15 cos 3x1 + 0.15 cos 3t, ∆F2(X, t) = −0.15 cos x2 − 0.15 sin 3t, ∆F3(X, t) = 0.15 cos 2x3 −
0.1 sin 2t, and ∆F4(X, t) = 0.1 sin 3x4 − 0.15 sin 3t.

Moreover, the non-linear function ρ(u(t)) is defined as follows:

ρ(u(t))


15 i f u(t) > 15
0.95 u(t) i f − 15 ≤ u(t) ≤ 15
−15 i f u(t) < −15.

(47)

Illustrated in Figure 5 is the successful stabilization of the chaotic FO laser system (8)
at κ = 0.97, accomplished through the implementation of the chattering-free–finite-time
PID SMC (35). The visual representation in Figure 5 provides a clear demonstration of the
effective control exerted over the previously turbulent behavior of the FO laser system (8).
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Furthermore, Figure 6 delves into the dynamic progression of the finite-time PID
SMC (35), revealing its gradual approach towards equilibrium without any indications
of chattering disruption. This observation underscores the proficiency of the adaptive
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controller in governing the intricate dynamics of the 4-dimensional chaotic FO laser system
within a finite duration.
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Figure 6. The time evolution of the control inputs (35) to control of the of 4-dimensional chaotic FO
laser system (8) for κ = 0.99.

A noteworthy insight emerges from Figure 7: as the control input signals verge on the
boundaries of saturation, the saturation condition intervenes, tempering their magnitude
and thereby quelling abrupt fluctuations. This intriguing behavior facilitates the emergence
of smooth transitions, such as jumping and switching states, particularly in scenarios
involving relays and indicated saturation conditions.
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Figure 7. The time evolution of the SS (15) to stabilize the 4-dimensional chaotic FO laser system (8)
for κ = 0.99.

Additionally, Figure 7 provides a temporal analysis of the stabilization mechanism
characterized by the sliding surface (15) for the 4-dimensional chaotic FO laser system (8),
employing both function and surface plots. Figure 7 strikingly portrays the incremental
convergence of each parameter within the sliding surface (15) towards the origin, devoid of
any indications of the chattering phenomenon.

Remark 14. In the implementation of our chattering-free–finite-time PID SMC technique in real-
world scenarios where precise control is of utmost importance, a systematic approach is recommended.
Thorough system modeling and identification, with a focus on fractional-order dynamics, are carried
out. Efficient real-time computation methods are employed, PID controllers are designed and
meticulously tuned, and robustness analysis is conducted. Safety measures are incorporated, and
the technique is validated through real-world experiments, with detailed documentation being
maintained. Ensuring that the personnel possess the necessary expertise, continuous monitoring
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and optimization of the control system are performed. Adaptation to new challenges is anticipated,
and expert consultation is sought when necessary. Following these guidelines will enable the
successful application of our technique, ensuring stability and high-performance control in critical
real-world scenarios.

Remark 15. During the development and implementation of our control strategy, several challenges
and limitations emerged that warrant discussion in the revised article. These include the necessity
for accurate mathematical models to describe chaotic fractional-order laser systems and the selection
of appropriate numerical techniques and considerations of their limitations. Furthermore, addressing
the need for practical validation, potentially through real-world experiments or simulations, is
crucial to enhance the strategy’s credibility and applicability. The complexities of tuning PID
controllers for optimal performance also deserve attention, as do the implications of hardware
choices on the method’s efficiency in real-time applications. Considering the generalizability of
the approach beyond specific systems and acknowledging potential computational time challenges
in time-sensitive scenarios are additional factors that should be discussed. By recognizing and
addressing these challenges and limitations, the revised article can offer a more comprehensive
perspective on the development and practical application of the control strategy.

Remark 16. The efficacy of our control method in stabilizing chaotic fractional-order laser systems
was assessed using key criteria: (1) Chattering Reduction: The method effectively reduced control
signal fluctuations, minimizing chattering. (2) Finite-Time Stabilization: It successfully achieved
finite-time control objectives, ensuring rapid system stabilization. (3) Steady-State Error: The
controlled systems approached desired setpoints with minimal error. (4) Robustness: The method
demonstrated resilience to disturbances and parameter variations. These criteria were met in the
numerical scenarios, affirming the method’s success in chaotic system control.

Remark 17. The two numerical scenarios in our study illustrate the practical value and effectiveness
of our chattering-free–finite-time PID SMC technique. They show its real-world applicability in
controlling chaotic fractional-order laser systems, emphasizing chattering reduction and the ability
to achieve finite-time control objectives. These scenarios also compare the technique’s performance to
traditional methods, highlighting its advantages in practical applications.

Remark 18. Thess research findings have the potential to significantly impact real-world ap-
plications beyond theoretical research. The control technique we have developed offers practical
implications in various domains and systems. For instance, in optical engineering it can enhance
the control of laser systems used in medical devices, telecommunications, and material processing,
leading to greater precision and performance. In aerospace and aviation, where chaotic systems are
prevalent, our method can contribute to smoother and more stable flight control, ensuring safety and
accuracy. Similarly, in robotics the reduction of chattering can improve the efficiency and precision
of robotic motion control. Medical devices, energy systems, environmental monitoring, and financial
markets are other domains where our technique can stabilize chaotic behavior, leading to more reliable
and safe operations. Overall, our research findings hold promise for enhancing the performance and
control of complex and dynamic systems in practical applications across various fields.

Remark 19. There is considerable potential for the further refinement and extension of our control
method in addressing more complex and diverse chaotic systems beyond the scope of this study.
The core principles and techniques we have developed can serve as a solid foundation for tackling
a broader range of challenges. For instance, refining the method to adapt dynamically to varying
system dynamics, extending it to multi-agent systems, optimizing real-time implementation, and
incorporating parameter estimation techniques are avenues for further development. Additionally,
conducting practical experiments in real-world applications across various domains can help validate
and enhance the method’s performance. Advanced control architectures and applications in human–
machine interaction or environmental monitoring are other promising areas for future exploration.
This ongoing research can pave the way for more versatile and practical applications of our control
method in addressing the complexity of diverse chaotic systems.
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Remark 20. In the context of practical applications, significant implications are brought about
by our research findings for engineers, researchers, and practitioners interested in the control of
chaotic systems with fractional-order dynamics. Practical advantages are offered by the reduction
of chattering and the achievement of finite-time control objectives, promoting the presence of
smoother and more stable control signals and precise timing in various domains, including optical
engineering, aerospace, and robotics. The versatility of our method allows for its adaptation to
diverse applications, while the potential for real-world validation permits further refinement and
effectiveness testing in specific systems. The enhanced stability provided is particularly valuable
in applications where complex systems demand precise control, ensuring the safety and reliability
of systems. Ultimately, innovation in the field of control techniques is encouraged by our research,
opening up new possibilities for addressing the challenges posed by complex and dynamic systems.

Remark 21. The proposed method distinguishes itself from existing control techniques in terms
of its stability, performance, and applicability to various chaotic systems. It enhances stability by
significantly reducing chattering in chaotic systems, resulting in smoother and more stable control
signals that reduce mechanical wear. Moreover, the method excels in performance by achieving
finite-time control objectives, a critical feature for applications with strict timing requirements. This
advantage sets it apart from certain traditional control techniques that may not guarantee finite-time
control, making it highly suitable for time-critical scenarios. The method’s versatility allows it to
be applied to a wide range of chaotic systems with fractional-order dynamics, including domains
such as optical engineering, aerospace, and robotics, making it a practical and adaptable choice for
diverse applications.

Remark 22. The alignment of our research outcomes with current trends and developments in
the field of fractional-order systems and control is observed, accompanied by novel insights and
contributions. The chattering reduction, a significant outcome, addresses the prevailing issue of
chattering in control systems, which is vital for applications demanding smooth and precise control.
Achieving finite-time control objectives corresponds with the growing requirement for time-critical
applications in various domains. Our control method’s versatility and adaptability to diverse chaotic
systems with fractional-order dynamics align with the current trend of developing universally
applicable control techniques. The emphasis on real-world validation and application reflects the
shift towards practical implementation and validation of control techniques in diverse scenarios.
Furthermore, our research contributes novel insights by demonstrating the efficacy of fractional-order
control techniques in chaotic systems, inspiring further exploration in the application of fractional
calculus in control theory.

Remark 23. The findings and methodologies presented in our study have the potential to stimulate
interdisciplinary collaborations and inspire future research directions across various domains.
Collaboration with medical researchers can explore the application of fractional-order control in
medical devices and therapies, including drug delivery systems and patient-specific treatments.
Environmental scientists and engineers can adapt our methodologies for environmental monitoring,
climate modeling, and pollution control, while focusing on improving data accuracy and stability.
Interdisciplinary research with experts in autonomous systems and robotics can lead to innovations
in autonomous vehicles and robotic systems. Collaborations with advanced manufacturing experts
can enhance control in 3D printing and machining processes. Additionally, collaborations with
energy experts can explore the application of our techniques in stabilizing energy systems, while
cooperation with control theorists can lead to advancements in fractional-order control theory. By
applying our techniques to various domains, complex control challenges can be addressed, and
advancements in these fields can be facilitated.

Remark 24. This work, focusing on the stabilization of chaotic fractional-order laser systems,
stands out in its ability to address disturbances when compared to previous works [42,43]. It
offers a specialized solution tailored to the unique challenges presented by this specific class of
systems. Notably, our paper introduces an innovative approach to eliminate chattering, a common
issue in control systems. This is achieved by transforming the control input’s sign function into
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the fractional derivative, resulting in a smooth and chattering-free control input, a feature not
found in previous works [42,43]. Moreover, our work leverages fractional-order Lyapunov stability
theory, ensuring system stability even in the presence of disturbances, a theoretical foundation that
distinguishes it from previous works [42,43]. Additionally, it provides practical validation through
numerical scenarios, demonstrating the real-world applicability of its disturbance-handling methods
and underscoring its robustness in the context of chaotic fractional-order laser systems.

5. Discussion and Conclusions

In this study, a novel single-input finite-time PID sliding mode control (SMC) technique
has been presented, aimed at stabilizing a specific group of unknown 4-dimensional
chaotic FO laser mechanisms. Through the combination of the PID concept with the FO-
version of the Lyapunov stability theory, a new finite-time PID SMC strategy has been
developed, effectively addressing chaotic behavior in the aforementioned unknown 4-
dimensional chaotic FO laser system. The utilization of the boundedness characteristic
inherent in FO chaotic systems is a distinctive aspect of this approach, making it well-
suited for practical implementation. Furthermore, notable advancement in this method
involves the transformation of the control input’s sign function, responsible for undesirable
chattering, into the fractional derivative of the control input. This transformation results in a
smooth and chattering-free control input, further enhancing the performance of the method.
To demonstrate the effectiveness of the proposed chattering-free–finite-time PID SMC
technique, two numerical scenarios have been presented, providing compelling evidence
of its capability in stabilizing the unknown 4-dimensional chaotic FO laser system. These
scenarios serve as illustrative examples, highlighting the method’s potential for practical
applications in controlling chaotic systems.
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