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Abstract: Recent advancements in deep learning have led to various challenges, one of which is
the issue of data privacy in training data. To address this issue, federated learning, a technique
that merges models trained by clients on servers, has emerged as an attractive solution. However,
federated learning faces challenges related to data heterogeneity and system heterogeneity. Recent
observations suggest that incorporating pre-trained models into federated learning can mitigate some
of these challenges. Nonetheless, the main drawback of pre-trained models lies in their typically
large model size, leading to excessive data transmission when clients send these models to the server.
Additionally, federated learning involves multiple global steps, which means transmitting a large
language model to multiple clients results in too much data exchange. In this paper, we propose a
novel approach to address this challenge using adapters. Adapters demonstrate training efficiency by
training a small capacity adapter layer alongside a large language model. This unique characteristic
reduces the volume of data transmission, offering a practical solution to the problem. The evaluation
results demonstrate that the proposed method achieves a reduction in training time of approximately
20–40% and a transmission speed improvement of over 98% compared to previous approaches.

Keywords: federated learning; deep learning; transfer learning; adapter transformer
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1. Introduction

Deep learning has emerged as a powerful and evolutionary technology, improving
the quality of life across various fields. The demand for a proficient understanding of
deep learning models has surged, driven by the availability of vast datasets. However, this
pursuit has raised concerns about data privacy during the training process. One attractive
method to mitigate these costs is federated learning [1]. In federated learning, each client
trains its own model and shares only the trained model’s parameters with the server,
without actually sending raw data. Since the server only receives the model parameters,
it cannot access the clients’ data directly. Therefore, federated learning enables training
that ensures the privacy of client data. While federated learning mitigates privacy risks,
it is not without its drawbacks. In comparison to conventional learning methods, it often
experiences performance degradation due to client heterogeneity. And data transfer costs
are required for model aggregation. In this paper, we propose a novel methodology aimed
at ameliorating the transmission challenges, with a specific focus on mitigating large data
transmission needs. Our approach involves the use of adapters, which serve to enhance
the efficiency of data transmission, thus addressing a key limitation of federated learning.

In general, federated learning, which combines the results from multiple clients, often
exhibits a lower performance compared to the traditional centralized learning methods.
This performance degradation can be attributed to the heterogeneity of the systems and
data in federated learning. Since clients train models using their own devices (systems)
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and individual data, variations in device performance can lead to differences in learning
speed. In extreme cases, due to some clients’ performance limitations, they cannot even
participate in the learning process. Furthermore, in federated learning each client trains
models using its own diverse data, where the quantity and quality of data held by each
client may differ. For example, in tasks that require various labels, certain clients may lack
data for some labels, causing problems.

Many methodologies have been proposed to solve the heterogeneity of federated
learning. Many methodologies have improved the aggregation method and training
method of federated learning. There were methods for resolving heterogeneity based
on model weight, such as FedProx [2] and FedDyn [3]. Feature-based heterogeneity
solutions, such as FedUFO [4] and MOON [5], have been proposed. Some tried to solve
the heterogeneity problem by improving the global model performance, and the APFL
algorithm [6] was proposed through this. Also, incorporating pre-trained models into
federated learning has proven to mitigate the performance degradation caused by data
heterogeneity [7].

In [7], it was experimentally confirmed that the pre-trained model solves various
problems of federated learning without using any special aggregation method. Pre-trained
models are models trained on general and large-scale datasets. In the field of natural
language processing, the methodology of fine-tuning these pre-trained language models
for downstream tasks through transfer learning has shown state-of-the-art performance in
most areas. Moreover, in federated learning pre-trained models consistently outperform
non-pre-trained deep learning models [7].

In the field of natural language processing, pre-training generally utilizes large-scale
language models. The recent rapid development of deep learning is closely related to the
increase in model capacity. Each year, the size of the model is increasing, which leads to an
increase in performance. For example, the BERT-base [8] model proposed in 2018, a large-
scale language model commonly used in natural language processing, has a parameter
number of about 340 M. The T5 model [9] proposed in 2019 has a size of 11 B. In addition,
the GPT-3-base [10] and Megatron-Tuning [11] models proposed in 2020 have parameter
numbers of up to 175 B and 530 B, respectively. In federated learning, however, sending
large-scale language models can be burdensome, since the trained parameters need to be
transmitted over the network. In federated learning, during each global epoch, the trained
models need to be downloaded from all clients, and then the models are aggregated and
uploaded. However, uploading/downloading large-scale language models during each
global epoch poses challenges in terms of time and network resources.

In this paper, we propose a novel methodology to address these issues and save net-
work transmission time in federated learning. The proposed method applies Adapters [12],
which were introduced for efficient transfer learning, to federated learning. This allows
federated learning to proceed with less model transmission. We conduct experiments in
the areas of natural language processing and computer vision to demonstrate how the
proposed methodology can significantly reduce the network transmission time compared
to existing approaches.

The main contributions of our paper are three-fold: First, we identify that pre-trained
models can mitigate the data heterogeneity problem in federated learning but render a
new challenge of large data transmission requirements. Second, we introduce the adapter
mechanism, which involves training large language models using smaller-sized adapters.
This approach effectively addresses the problem of excessive data transmission issues in
federated learning that uses transformer-based pre-trained models. Finally, we conduct
extensive experiments on diverse federated learning datasets in both natural language
processing and computer vision domains, to demonstrate the efficiency and performance
of our proposal. The evaluation results highlight a significant reduction in training time of
approximately 20–40% and a remarkable improvement in transmission speed, surpassing
98% compared to previous approaches.
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The structure of the remainder of this paper is outlined as follows. Section 2 provides
an overview of the related work in the field. Section 3 elaborates on the details and design of
the proposed approach. Section 4 presents the results of the evaluation conducted. Finally,
Section 6 concludes the paper.

2. Related Work
2.1. Federated Learning

Deep learning has emerged as a powerful and evolutionary technology, revolutioniz-
ing various research fields across the spectrum. By leveraging large-scale neural networks
and vast amounts of data, deep learning has made significant contributions to diverse
domains, ranging from healthcare and finance to computer vision and natural language
processing. While it is easy to collect massive amounts of data for some tasks to effectively
train deep learning models, there are often difficulties in collecting data for certain tasks due
to security concerns. In the case of medical or conversational data, data privacy is crucial,
requiring extensive security measures and de-identification processes for data collection.

Solving security and privacy issues incurs significant costs, thus increasing the cost
of collecting privacy-preserving data. One attractive method to mitigate these costs is
federated learning [1]. The process of federated training is divided into clients with
private data and servers for model aggregation. The client trains the local model through
private learning data. Then, the trained model parameter is transmitted to the server.
The server aggregates the received model parameters and overwrites them on the global
model. This method can protect privacy by not sending raw data directly to the server.
Federated learning, which gained significant attention after its initial introduction in [1],
was officially introduced in a 2017 Google AI Blog [13] and has been successfully applied in
technologies such as the Mobile G Keyboard. Federated learning is a methodology in deep
learning that enables data decentralization by utilizing multiple local clients and a central
server to train a global model. In this approach, each local client possesses its own data
and trains each local model, which is then transmitted to the central server and aggregated
by the central server to form the global model.

However, in federated learning some problems occurred instead of protecting data
privacy. One of them is performance degradation due to model aggregation. In the process
of aggregating the model, the performance was degraded by various factors, such as the
data heterogeneity and system heterogeneity of each client. Until recently, various aggrega-
tion methodologies and training methodologies have been proposed as a way to solve this
problem. In general, the most basic aggregation method is FedAvg [1], which averages and
aggregates the value of each local model. Since then, FedProx [2] and FedNova [14], which
are aggregation methodologies, have been proposed to solve data heterogeneity. FedProx
adds near-field terms to the local objective function to limit local updates to be closer to the
global model. FedNova uses momentum to accurately weight local models when updating
global models. FedDyn [3] modifies the local goal with a dynamic normalizer consisting
of linear terms based on primary conditions and Euclidean distance terms so that the
local minimum matches the global minimum. FedUFO [4] shares client models with each
other to sort features and log outputs. In addition, some tried to solve the heterogeneity
problem by improving the global model performance, and, through this, the APFL algo-
rithm [6] was proposed. There have been attempts to solve heterogeneity in various ways.
Since then, [7] has tried to solve the problem using a pre-trained model. According to [7], it
was experimentally confirmed that various heterogeneity problems were solved despite
the use of FedAvg when using the pre-trained model in federated learning.

2.2. Adapter

Recently, transfer learning-based methodologies have shown state-of-the-art perfor-
mances in natural language processing. Transfer learning approaches pre-train large-scale
language models on readily available and commonly collected massive datasets, such
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as the wiki dataset. In turn, these pre-trained language models are fine-tuned for down-
stream tasks.

Most pre-trained language models require large model capacity. BERT, a representative
pre-trained language model with transfer learning, has a significantly higher capacity
than LSTM; newer models, like GPT3 [10] and T5 [9], require even larger capacities than
BERT. While these large-scale language models exhibit high performances, they demand
considerable resources and time for training.

To address these challenges, Dosovitskiy et al. [12] proposed the fine-tuning method-
ology using adapters. Instead of training all the parameters of a pre-trained language
model, they demonstrated that training only the proposed adapter layers for downstream
tasks can achieve a comparable performance. Many pre-trained language models form
stacked transformer blocks, where self-attention and feed-forward networks are inter-
connected. In AdapterFusion [15], adapter layers with lower capacities were inserted
between each transformer block of the pre-trained model. Furthermore, it was shown that
training only these adapter layers can yield a similar performance to previous methods.
Subsequently, structurally enhanced adapters, such as the Houlsby adapter [12] and
LoRA [16], were proposed to achieve a high performance with a smaller adapter capacity.

3. Methodology

This paper proposes to use adapters in federated learning, to improve transmission
efficiency during the process of federated learning with large transformer-based pre-trained
language models. Ref. [7] has shown that using a large language model can solve vari-
ous problems with federated learning. Various problems caused by heterogeneity were
alleviated and the performance of the global model was improved. However, federated
learning is trained using model transmission of servers and clients. At this time, using a
large model causes network overload from transmission. The proposed method of this
paper uses adapters to solve the transmission problem. The reason is that the adapter
can train the large language model with fewer parameters. Experiments on NLP and CV
are conducted to confirm the efficiency and performance of the methodology. They also
measure the amount of reduction in transmission.

One of the biggest issues of federated learning is performance degradation due to
data heterogeneity and system heterogeneity. The study [7] showed that the pre-trained
large language model could improve the problem. However, pre-trained large language
models require a high model capacity. When a large-capacity deep learning model is used
in federated learning, a very large amount of transmission is required. Federated learning
requires the parameters of clients to be uploaded/downloaded at each global step, so using
a large capacity model increases the amount of transmission exponentially.

For example, popular transformer models in natural language processing and com-
puter vision, such as BERT-base [8] and ViT-base [17], have sizes of 440 MB and 330 MB,
respectively. In federated learning, it is necessary to transmit and receive the trained model
parameters to and from each client at every global epoch. Therefore, transmitting and
downloading large model parameters multiple times becomes problematic in federated
learning. For instance, if 10 clients perform federated learning for 30 global epochs using
BERT-base, it would result in a total transmission of approximately 264,000 MB, or 263 GB.

T = 2EgNcC (1)

The amount of transmission in federated learning is calculated as shown in Equation (1).
Federated learning should upload/download to all clients at every global step. Therefore,
the total transmission amount T of federated learning is calculated by multiplying the
global epoch Eg, the number of clients Nc, and the capacity C of the model transmission
size and then doubling the result (upload and download).

Hence, we propose using adapters to reduce the size of the model parameters that
need to be transmitted.
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The overall structure of the proposed methodology is illustrated in Figure 1, which
consists of three main steps. The first step is the preparation and downloading of the
pre-trained model. In the first step, the pre-trained model is downloaded so that each
client has the same model structure and parameter value before starting the first global
step of federated learning. The second step is the client model training and upload. In the
second step, clients train the local model. After that, each client uploads the trained adapter
and classification head to the server.The final step is the aggregation and download of the
models. In the final step, the learned models are merged. The learned model parameter
value transmitted in the second step is aggregated to the global model. Each client then
downloads the aggregated global model to start the next global step. Each step is described
in Sections 3.2–3.4.

Figure 1. Overall architecture of federated learning with adapter.

3.1. Pre-Trained Model with Adapter

In this section, we discuss the deep learning model used in this paper. Firstly, the paper
employs a pre-trained large language model. A pre-trained language model refers to a
model that has been trained on a large-scale dataset and is typically divided into pre-trained
transformer layers and embedding layers. The pre-trained large language model is fine-
tuned to fit the downstream task. The classification head is added to classify the label for
the purpose of each downstream task. The classification head is typically implemented as a
one-layer feed-forward network. The classification head derives the probability for each
label in the downstream task. For example, next word prediction predicts the probability
that each word in every word will be used as the next word. Image classification predicts
probabilities for all candidate categories.

Ref. [12] confirms that learning with adapter layers can achieve a similar perfor-
mance. In this paper, we reduce the amount of training parameters by using adapter layers.
The adapter mechanism trains only the adapter layer and classification head while freezing
the pre-trained language model. As a result, the adapter mechanism can achieve a similar
performance even with a small amount of training resources. The adapter layer, trained
using adapter models, such as LoRA [16], Houslby [12], and Preffier [15], is an additional
layer used to train the language model. In other words, the model to be used for federated
learning in this paper consists of an embedding layer, transformer layer, adapter layer,
and classification head. And according to [12], the model training process freezes the
embedding and transformer layers.

3.2. Prepare Pre-Trained Language Model

In this section, we provide detailed explanations on the first steps shown in Figure 1.
The first step is the preparation of the model for client training. In our proposed federated
learning approach, each client performs downstream task training using a pre-trained large
language model with adapters. Federated learning use the global model and the local
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model. The global model is a deep learning model owned by the server, and the local
model is a deep learning model owned by each client. Federated learning is when each
client trains the local model through their dataset and aggregates it to the global model at
the server. Therefore, each local model and global model have the same model structure.
You must also have the same parameter value at the beginning of the training of the
local model.

In summary, in the proposed methodology all clients receive the full model (pre-
trained large language model) from the server before starting federated learning. Note that
this is a one-time download. This ensures that all clients begin with the same pre-trained
parameters for federated learning.

3.3. Train Local Model

The next step involves clients training the local model and uploading it to the server.
Each client fine-tunes the local model for the downstream task. After the local learning
epoch, each client uploads the model parameter value to the server. However, using the pre-
trained large language model in conventional federated learning requires a large amount
of transmission capacity to be uploaded to the server, because federated learning involves
servers and clients transmitting the full model. Typically, pre-trained large language models
have hundreds of MB or several GB of capacity, which requires too much transmission.
In addition, the server is required to receive trained model parameter values from all clients,
which creates a network bottleneck.

In this paper, learning is conducted using adapters to reduce transmission. For learning
with adapters, such as that explained in Section 3.1, the pre-trained model is frozen. There
is no change in the model parameter values of the transformer layer and embedding layer
because only the adapter layer and classification head are learned. Only the adapter layer
and the model parameter value of the classification head change. In this step, clients train
the local model as much as the local epoch through each of their datasets. As a result
of clients learning their respective datasets from the local model, only the adapter layer
and classification head are learned. Therefore, clients send only the adapter layer and
classification head to the server. Compared to the transformer layer and embedding layer,
the capacities of the adapter layer and the classification layer are very small, which can
increase transmission efficiency.

3.4. Aggregation into Global Model

Lastly, the server aggregates the trained parameters, and the clients download them.
The final step aggregates the adapter layer uploaded by clients in the second step and the
model parameter value of the classification head layer. The aggregated model parameter
value is overwritten on the global model. The above process completes the global model
learning in one global step. In this process, the federated learning aggregation method uses
FedAvg [1]. FedAvg is the most basic method of averaging model parameter values for
each local model. At this point, the server aggregates only adapter layers and classification
heads, because the transformer layer and embedding layer did not change the values at
client’s training step.

After one global step is completed, all clients must synchronize their model parameter
value before starting learning for the next global step. Therefore, all clients download
the global model learned on the server. The downloaded parts are the adapter layer and
classification head, because the transformer layer and embedding layer did not change
the values at aggregation step. Therefore, each client downloads only the model pa-
rameter values of the adapter layer and the classification head layer, which can increase
transmission efficiency.

The proposed methodology solves the increased network transmission problem when
using pre-trained large language models in federated learning. Instead of training the
transformer layers and embedding layers, which takes most of the model capacity in the
pre-trained language model, the proposed approach trains and transmits only the smaller-
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sized classification head and adapter layers. In result, the proposed method reduces the
network transmission and the number of parameters to be trained and potentially decreases
the overall training time.

4. Experiments

In this section, we conduct experiments on two types of datasets, namely, natural
language processing and computer vision, to demonstrate the efficiency and performance
of the proposed methodology.

4.1. Datasets and Downstream Task

For the experiments in natural language processing, the federated Stack Overflow
dataset [18] and federated Shakespeare dataset [18], which are federated learning datasets
for natural language processing, are used for training. The federated Stack Overflow dataset
consists of question posts and their corresponding answers uploaded on Stack Overflow.
The Shakespeare dataset contains various phrases from Shakespeare’s literary works.
We use the titles and contents of the posts in these datasets as input and then measure
the performance of the next word prediction task [7]. Next, word prediction predicts the
n + 1th word when up to n words are entered. The accuracy of the predicted word is
measured for performance evaluation of the next word prediction task.

For the experiments in computer vision, the EMNIST dataset [19] and CIFAR100
dataset [20], which are computer vision federated learning datasets, are used for training.
EMNIST is a dataset of handwritten characters and digits, while CIFAR100 is an image
classification dataset with 100 classes. The performance of image classification is measured
using these datasets. All datasets were downloaded using the TensorFlow Federated
API [18].

4.2. Experiment Setup

We detail the experiment setup in this section. We conduct federated learning us-
ing large language models. For natural language processing, we use a pre-trained lan-
guage model in the form of a transformer decoder for the next word prediction task.
We utilize the gpt2-base [21] pre-trained language model, which has a parameter size of
approximately 490 MB.

For computer vision image classification, we use a large encoder-based language
model called ViT [17]. We use ViT-base [17] for training, which has a parameter size of
approximately 330 MB. Additionally, we perform the experiment using three different types
of adapters. For the experiment, we use the Pfeiffer adapter [15], Houlsby adapter [12],
and LoRA [16].

The baseline uses the methodology proposed by [7]. Ref. [7] confirmed that using the
pre-trained language model to conduct federated learning showed a high performance.
The baseline uses a large language model as a global model and a local model for federated
learning. Before starting federated learning, all clients download the model parameter
value of the pre-trained large language model. After that, in each global step, clients
pull-train the large language model and upload/download the large language model.

We also employ the experiments from [1] for comparison with traditional federated
learning. The deep learning model for CV performance measurement is a 3-layer CNN
(5 × 5 kernelsize) with ReLu activation and max pooling (2 × 2 kernelsize). And the
classification layer is a 2-layer feed-forward network. The first layer has 1000 dimensions.
In addition, the embedded layer and the 2-layer LSTM or RNN in 768 dimensions are used
as models for measuring the performance of NLP, and the 1-layer feed-forward network
for the classification head is used at the end.

The federated learning setup for this experiment is as follows. We conduct federated
learning on both IID and non-IID datasets. For non-IID training, we use a total of 9 clients
datasets for 9 clients. For IID training, we convert a total of 27 client datasets into 9 clients
by grouping them in sets of 3. The experiments in this paper were conducted in a local
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environment; thus, the real transmission rate was not measured. The experiments were
performed on a total of 4 RTX3090 GPUs, with 3 GPUs used for parallel training on
3 clients. The server independently uses 1 GPU for aggregating client model parameters
and conducting tests for performance evaluation.

The hyperparameters used in the experiment are shown in Table 1. Since each ex-
periment was conducted with different models and environments, we experimented with
various learning rates and considered the highest performance achieved by each model
as its performance. The learning rates used in the experiment are 0.005, 0.001, 0.0005, and
0.0001, and the differences between each learning rate are mentioned in Section 4.3.2.

Table 1. Hyperparameters used in the experiments.

Hyperparameter Value

Global epoch (NLP) 30
Global epoch (CV) 50
Local step 5
Number of clients 9
Optimizer Adam
Epsilon 0.0005
Batch size (NLP) 16
Batch size (CV) 12
Pre-trained model (NLP) gpt2-base
Pre-trained model (CV) ViT-base
GPU RTX 3090 × 4

4.3. Experimental Results
4.3.1. Accuracy

We examine the accuracy of the next word prediction to verify the performance of
the pre-trained model. The results of the Stack Overflow dataset are shown in Table 2.
We conduct next word prediction using the gpt2 model, employ federated learning for
training, and compare the performance with and without adapters. Traditional federated
learning methods using an RNN and LSTM without using the pre-trained large language
model showed performance of about 13.26 and 14.66. In contrast, when the pre-trained
large language model was used the performance improvement was more than 10 compared
to traditional combined learning. When adapters were not used, an accuracy of 26.97
was observed. When adapters were used, the performances with the Pfeiffer, LoRA,
and Houlsby adapters were 26.69, 25.87, and 26.58, respectively. In summary, not using
adapters results in a slight accuracy improvement compared to using adapters, but the
performance is comparable.

Table 2. Next word prediction accuracy of Stack Overflow non-IID dataset.

Method Language Model lr Pre-Trained Adapter Accuracy

McMahan et al. [1] RNN 0.005 X X 13.26
LSTM 0.005 X X 14.66

Nguyen et al. [7] gpt2-base 0.0005 O X 26.97

gpt2-base 0.0001 O Pfeiffer adapter 26.69
Proposed gpt2-base 0.0001 O LoRA adapter 25.87

gpt2-base 0.0001 O Houlsby adapter 26.58

We next examine the performance of image classification in computer vision (CV),
and the results on CIFAR100 are presented in Table 3. In this experiment, ViT and adapters
were used. Traditional federated learning methods using a CNN without using the pre-
trained large language model showed performance of about 19.5. The Cifar-100 dataset is
difficult to solve with a small model, and when using the baseline ViT without adapters
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an accuracy of 61.51 was achieved. When federated learning was performed with adapters,
the performances were 64.09, 60.91, and 64.19, respectively. The Pfeiffer and Houlsby
adapters showed better performances than the baseline, while the LoRA adapter had a
similar performance to the baseline. The accuracy graphs from using the pre-trained large
language model for each epoch are shown in Figures 2 and 3.

Table 3. Image classification accuracy of CIFAR100 non-IID dataset.

Method Language Model lr Pre-Trained Adapter Accuracy

McMahan et al. [1] CNN 0.001 X X 19.5

Nguyen et al. [7] ViT-base 0.0005 O X 61.51

ViT-base 0.005 O Pfeiffer adapter 64.09
Proposed ViT-base 0.005 O LoRA adapter 60.91

ViT-base 0.005 O Houlsby adapter 64.19

Figure 2. Test accuracy graph of Stack Overflow IID dataset using GPT2-base.

Figure 3. Test accuracy graph of CIFAR100 IID dataset using ViT-base.

To ensure the reliability of the experimental results, additional experiments were
conducted on the Shakespeare dataset in NLP and the EMNIST dataset in CV. The results
and accuracy graphs for these experiments are presented in Tables 4 and 5 and Figures 4
and 5. Overall, these experiments showed similar trends to the results in Tables 2 and 3
and Figures 2 and 3.
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Table 4. Next word prediction accuracy of Shakespeare non-IID dataset.

Method Language Model lr Pre-Trained Adapter Accuracy

McMahan et al. [1] RNN 0.005 X X 16.49
LSTM 0.001 X X 17.48

Nguyen et al. [7] gpt2-base 0.0001 O X 28.46

gpt2-base 0.0005 O Pfeiffer adapter 29.18
Proposed gpt2-base 0.0005 O LoRA adapter 27.75

gpt2-base 0.0005 O Houlsby adapter 28.29

Table 5. Image classification accuracy of EMNSIT non-IID dataset.

Method Language Model lr Pre-Trained Adapter Accuracy

McMahan et al. [1] CNN 0.005 X X 94.64

Nguyen et al. [7] ViT-base 0.0005 O X 99.17

ViT-base 0.005 O Pfeiffer adapter 100
Proposed ViT-base 0.001 O LoRA adapter 95.83

ViT-base 0.005 O Houlsby adapter 100

Figure 4. Test accuracy graph of Shakespeare non-IID dataset.

Figure 5. Test accuracy graph of EMNIST non-IID dataset.
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The results of experiments on IID datasets are shown in Tables 6 and 7, which present
the results assuming that each client has datasets from three individuals. Overall, the IID
datasets showed better performances compared to the non-IID datasets in Tables 2 and 3.
In the Stack Overflow dataset, when using the pre-trained large language model the perfor-
mance improvement was more than 10 compared to traditional federated learning using
an RNN and LSTM. And the highest performance was achieved with the Pfeiffer adapter,
with an accuracy of 28.71. Similarly, in the CIFAR100 dataset the highest performance was
achieved with the Pfeiffer adapter, with an accuracy of 79.0. Also, when the model was
not pre-trained it showed a low performance. In summary, we observe that using adapters
generally improves the performance in IID datasets. Even in cases where the performance
degraded, it still showed a comparable performance to the baseline. The accuracy graphs
from using a pre-trained large language model for each epoch are shown in Figures 6 and 7.

Table 6. Next word prediction accuracy of Stack Overflow IID dataset.

Method Language Model lr Pre-Trained Adapter Accuracy

McMahan et al. [1] RNN 0.001 X X 14.94
LSTM 0.005 X X 16.96

Nguyen et al. [7] gpt2-base 0.001 O X 28.57

gpt2-base 0.0001 O Pfeiffer adapter 28.71
Proposed gpt2-base 0.0005 O LoRA adapter 28.16

gpt2-base 0.0001 O Houlsby adapter 28.04

Table 7. Image classification accuracy of CIFAR100 IID dataset.

Method Language Model lr Pre-Trained Adapter Accuracy

McMahan et al. [1] CNN 0.0001 X X 249

Nguyen et al. [7] ViT-base 0.0005 O X 74.8

ViT-base 0.001 O Pfeiffer adapter 79.0
Proposed ViT-base 0.001 O LoRA adapter 76.3

ViT-base 0.005 O Houlsby adapter 76.9

We conduct additional experiments on the Shakespeare dataset and EMNIST dataset,
to further investigate non-IID datasets. The results of these experiments are presented in
Tables 8 and 9 and Figures 8 and 9. Overall, these experiments showed similar trends to
the results in Tables 6 and 7 and Figures 6 and 7.

Figure 6. Test accuracy graph of Stack Overflow IID dataset.
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Figure 7. Test accuracy graph of CIFAR100 IID dataset.

Table 8. Next word prediction accuracy of Shakespeare IID dataset.

Method Language Model lr Pre-Trained Adapter Accuracy

McMahan et al. [1] RNN 0.005 X X 19.83
LSTM 0.005 X X 19.79

Nguyen et al. [7] gpt2-base 0.0001 O X 31.10

gpt2-base 0.0005 O Pfeiffer adapter 30.6
Proposed gpt2-base 0.001 O LoRA adapter 30.73

gpt2-base 0.0005 O Houlsby adapter 31.01

Table 9. Image classification accuracy of EMNIST IID dataset.

Method Language Model lr Pre-Trained Adapter Accuracy

McMahan et al. [1] CNN 0.0005 X X 98.21

Nguyen et al. [7] ViT-base 0.0001 O X 99.10

ViT-base 0.005 O Pfeiffer adapter 100
Proposed ViT-base 0.005 O LoRA adapter 99.10

ViT-base 0.005 O Houlsby adapter 100

Figure 8. Test accuracy graph of Shakespeare IID dataset.
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Figure 9. Test accuracy graph of EMNIST IID dataset.

4.3.2. Learning Rate

In this section, we conduct experiments with various learning rates. Figures 10 and 11
present the performance tables of the Stack Overflow dataset and CIFAR100 non-IID
experiments, respectively, based on different learning rates. In Stack Overflow, which
is an NLP dataset, there was not a significant change in performance according to the
learning rate. However, in the CV dataset, CIFAR100, using adapters generally showed
better performance at higher learning rates, while in smaller datasets, it showed a better
performance at lower learning rates. This trend was observed to some extent in the
Shakespeare dataset, but in EMNIST, where most adapters achieved an accuracy of 100,
no significant differences were observed based on the learning rate. The corresponding
performance and accuracy graphs of these experiments are provided in Figures 12 and 13.

Figure 10. Test accuracy graph of each learning rate in Stack Overflow non-IID dataset.

Figure 11. Test accuracy graph of each learning rate in CIFAR100 non-IID dataset.
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Figure 12. Test accuracy graph of each learning rate in Shakespeare non-IID dataset.

Figure 13. Test accuracy graph of each learning rate in EMNIST non-IID dataset.

4.4. Time Efficiency
4.4.1. Training Time

When using adapters in training a large language model, optimization is achieved
with fewer parameters. This means there are fewer weights to compute gradients and to
update. Therefore, fine-tuning only the adapters consumes less time compared to fine-
tuning the entire model. This experiment measures the training time in federated learning,
excluding the transmission time. This experiment shows the reduced local model training
time due to the use of adapters. Note that in our experiments we measure the training time
without considering the transmission time, since the experiments were conducted on a
local machine. This allowed us to measure the efficiency in terms of pure training time.

The results are presented in Tables 10 and 11. In this experiment, only the case of using
the same language model was compared because the structure and size of the model greatly
affect the training speed. Table 10 measures the time taken for federated learning on the
Stack Overflow dataset, for 30 epochs at the server. The results showed that using adapters
allowed for a faster training time. For the Stack Overflow dataset, using the adapter
methodology resulted in an approximately 20% reduction in training time compared to
the baseline. The training speed results for the Shakespeare dataset are shown in Table 11.
In this dataset, it was found that using adapters could save up to 40% of the training time.
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Table 10. Training time in local environment with Stack Overflow non-IID dataset.

Method Language
Model

Pre-
Trained Adapter Training

Time

Time
Compared
to Baseline

Nguyen et al. [7] gpt2-base O X 2 h 10 m
59 s 1

gpt2-base O Pfeiffer adapter 1 h 38 m
43 s 0.75

Proposed gpt2-base O LoRA adapter 1 h 45 m
28 s 0.80

gpt2-base O Houlsby adapter 1 h 43 m
54 s 0.79

Table 11. Training time in local environment with Shakespeare non-IID dataset.

Method Language
Model

Pre-
Trained Adapter Training

Time

Time
Compared
to Baseline

Nguyen et al. [7] gpt2-base O X 12 m 20 s 1

gpt2-base O Pfeiffer adapter 7 m 11 s 0.58
Proposed gpt2-base O LoRA adapter 7 m 43 s 0.65

gpt2-base O Houlsby adapter 7 m 42 s 0.65

4.4.2. Transmission Time

Although we did not conduct experiments to measure the actual transmission time,
the transmission efficiency can be computed based on the model’s size. Table 12 presents
the transmission sizes of the pre-trained models and adapters used in this paper.

Table 12. Transmission size for each model.

Model Name Size

RNN 219.34 MB
LSTM 241.87 MB

Nguyen et al. [7] (gpt2-base) 487.82 MB
gpt2+Pfeiffer adapter 3.41 MB
gpt2+LoRA adapter 1.12 MB

gpt2+Houlsby adapter 6.82 MB

CNN 18.36 MB
Nguyen et al. [7] (ViT-base) 330.96 MB

ViT+Pfeiffer adapter 3.41 MB
ViT+LoRA adapter 1.12 MB

ViT+Houlsby adapter 6.82 MB

Firstly, gpt2-base, which is the NLP pre-trained model, had a large size of 487 MB,
while each of the three adapters had sizes of 3.41 MB, 1.12 MB, and 6.82MB, respectively,
which are significantly smaller. In the federated learning methodology used in this paper,
after the initial download of the pre-trained large language model, only the adapters need to
be transmitted at each global epoch, resulting in an efficient transmission time. In addition,
the model sizes of the RNN and LSTM are 219 MB and 241 MB, respectively. Because the
embedding layer of the NLP shows a very large model size, the proposed methodology in
NLP shows better time efficiency than traditional federated learning that uses RNNs and
LSTM. A similar trend is shown in the CV model ViT-base. Compared to the full model size
of the large language model, the model size of the adapter is very small. Since the CNN
model does not include an embedding layer, the model size is significantly small at 18 MB.
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Based on the above Table 12, we measure the efficiency of transmission. Equation (1)
shows the calculation of the amount of transmission in the federated learning methodology.
In an experiment using gpt2-base, about 262,980 MB of transmission is required if federated
learning is conducted using the Table 1 environment. However, when using an adapter,
the transmission size decreases, as shown in Table 12. However, the transmission size
is reduced when the proposed methodology is used. The transmission amount of the
proposed methodology is calculated using the following Equation (2).

T = CpNc + (2Eg − 1)NcC (2)

Cp is the model capacity of the large pre-trained loan model. Eg is the global peer, and
Nc is the number of clients. C is the size of the model transmission. As in Section 3.2, Cp
and Nc are multiplied to calculate the amount of transmission that clients initially use to
download the pre-trained model. Then, it is multiplied by the number of up/downloads
for the global epoch, excluding the initial download by the transfer model capacity C. If
the LoRA adapter is used, only about 4977 MB of transmission is required. If the server
could perform 10 MBps of upload/download speed, it would take approximately 7 h and
18 min for gpt2-base transmission but only approximately 8 min and 17 s for LoRA adapter
transmission. In addition, the amount of transmission in traditional federated learning
using LSTM calculated through (1) is 130,610 MB, or 128 GB. If the server could perform
10 MBps of upload/download speed, it would take approximately 3 h and 37 min. Using
the proposed method in NLP can show better time efficiency than traditional federated
learning using LSTM.

We can expect the same time efficiency for the CV pre-trained model. In the conven-
tional federated learning methodology, if ViT-base is used for federated learning, then
a total of 297,000 MB of transmission would be required. However, when conducting
federated learning using the LoRA adapter, only approximately 3967 MB of transmission
would be needed. This means that with a capability of 10 MBps of upload/download
speed the conventional federated learning methodology would require 8 h and 15 min of
transmission time, while using adapters would only require approximately 6 min and 36 s,
enabling efficient federated learning. In addition, transmission in traditional federated
learning using CNN is 16,524 MB, or 16 GB, which takes approximately 27 min and 32 s.
Therefore, the proposed methodology can save time than traditional federated learning.

5. Discussion and Limitations

The evaluation of the proposed method in this paper revolves around two primary
issues. Firstly, it addresses the question of whether the use of the adapter mechanism can
effectively decrease both the data transmission and learning time. Secondly, it investigates
whether the reduction in training time and data transmission does not lead to performance
degradation. These aspects are rigorously examined through experiments conducted using
the federated learning datasets of both computer vision and natural language processing.

This paper validates the reduction in training time and data transmission detailed
in Section 4.4.2. Adapters significantly reduce the size of the model to be transferred by
up to 98%. We mathematically calculated the decrease in transmission when the model
size is reduced, which causes the reduction in transmission time during the training
time. As a result, the reduction in transmission time shows is about 98%. Furthermore,
the use of adapters reduces the training time of the local model by minimizing the number
of layers that need training. In this paper, we experimentally check the reduction in
training time when the transmission time is excluded in the local environment through
Section 4.4.1. This shows that the reduction in training time, excluding the transmission
time, can be about 20%. This confirms that the proposed methodology may show a
reduction in training time and transmission time. In addition, Section 4.3.1 shows that
performance degradation does not occur despite the reduced training time. Experimental
results of NLP generally show a slight performance degradation. Experiments with CV
generally show performance improvements. We confirm from the experimental results
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that the proposed method represents a reduction in training time, and this does not lead to
significant performance degradation.

In this paper, experiments on CV tasks were not described, which prevented us from
confirming the reduction in training time for these applications. Despite our efforts in
conducting the experiments, we were unable to observe a decrease in the training time,
regardless of whether the adapter was used or not. This limitation arose due to the
speed discrepancy on the CPU-based image pre-processing and training speed using the
GPU. Unfortunately, our computational resources did not permit us to bridge the gap
effectively. In addition, we note that the experiments were conducted solely in a local
environment. We did not perform transmission speed experiments on an actual network
due to these limitations. Instead, we calculated the reduction in transmission speed based
on our experiments in the local settings. Addressing these constraints in future studies will
provide a more comprehensive understanding of the proposed methodology’s applicability
and effectiveness across diverse scenarios.

Furthermore, note that our methodology operates exclusively during the fine-tuning
process and is not applicable in the pre-training phase. This limitation arises from the
need to individually train the pre-trained large language model. Consequently, even
though pre-training demands the most extensive dataset, the proposed method cannot be
employed during this crucial phase. Additionally, while this paper successfully reduces
the training time, there is a slight performance degradation observed in the NLP tasks.
For future work, there is a need for research focused on reducing both the training time and
data transmission during the full training of large language models in federated learning.
Simultaneously, efforts should be directed towards eliminating performance degradation
in NLP tasks through advancements in the adapter mechanism research.

6. Conclusions

In this paper, we addressed the problem of the increased transmission time caused
by the pre-trained large language model in federated learning. To overcome this issue, we
proposed and experimented with a federated learning approach using adapters, which
previously have been suggested as an efficient fine-tuning method. As a result, the transmis-
sion time was reduced by about 98% compared to the methodology using the pre-trained
large language model without adapters. In addition, the training time was also reduced by
20–40% as the number of parameters to be learned decreased. Nevertheless, the predictive
performance was similar. Through this, it was confirmed that time-efficient federated
learning is possible without performance degradation when an adapter is used in federated
learning using a large language model, such as [7]. Also, the proposed methodology
showed lower transmission sizes than traditional federated learning without a large lan-
guage model. In addition, because the proposed methodology uses a large language model,
it showed a higher predictive performance than traditional federated learning. Through
this, it was confirmed that the proposed methodology can induce performance improve-
ments with the same or lower transmission amount as traditional federated learning.

The significance of our proposed method lies in its ability to improve the transmission
efficiency of federated learning. Therefore, it enables the use of a large language model, such
as ChatGPT, powered by the GPT-3 model, in real-world federated learning environments.
While large language models, such as ChatGPT, have shown impressive performances,
it is practically challenging to use GPT-3 in an actual federated learning environment.
This is mainly due to the substantial time and transmission costs incurred by clients with
limited computational resources when learning and transmitting the large GPT-3 model.
In contrast, the proposed methodology offers an attractive solution to significantly reduce
the transmission costs. Furthermore, our experiments showed that the training time was
partially mitigated. In summary, our proposal stands as a key enabler, facilitating the use
of large models in a real-world federated learning environment.
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