Morlet Wavelet Neural Network Investigations to Present the Numerical Investigations of the Prediction Differential Model
Abstract
:1. Introduction
- A layer structure of MWNNs is designed, and optimization is performed through an integrated neuro-evolution-based heuristic with IPAS to solve the PDM numerically;
- The analysis with 3, 10, and 20 neurons is presented to interpret the stability and accuracy of the designed approach for solving the PDM;
- The proposed MWNN-GAIPAS is executed for three different examples based on PDM, and a comparison is performed with the exact solutions to validate the accuracyof the proposed MWNN-GAIPAS;
- Statistical investigations through different performances of fitness: “root mean square error (R.MSE)”, “variance account for (VAF)”, “Theil’s inequality coefficients (TIC)”, and semi-inter quartile range (S.I.R) further authenticate the MWNN-GAIPAS for solving all examples of the PDM;
- The complexity performances of the MWNN-GAIPAS based on 3, 10, and 20 neurons with the use of different statistical operators are examined for all of the examples of the PDM;
- The proposed MWNN-GAIPAS provides reasonable and accurate results in the training span. Furthermore, smooth processes of implementation, constancy, and expendability are other obvious advantages.
2. Methodology: MWNN-GAIPAS
- An error-based merit function is presented to construct the MWNNs;
- For the optimization of the merit function, the hybrid form of GAIPAS is described for the decision variables of MWNNs.
2.1. MWNN Modeling
2.2. Optimization Process: GAIPAS
Algorithm 1. The optimization-based MWNN-GAIPAS is given in the pseudo-code for solving the PDM. |
“GA” start
IPAS initiates
|
3. Statistical Performances
4. Simulations of the Results
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Niculescu, S.I. Delay Effects on Stability: A Robust Control Approach; Springer Science & Business Media: Berlin, Germany, 2001; Volume 269. [Google Scholar]
- Luo, D.; Tian, M.; Zhu, Q. Some results on finite-time stability of stochastic fractional-order delay differential equations. Chaos Solitons Fractals 2022, 158, 111996. [Google Scholar] [CrossRef]
- Almarri, B.; Janaki, S.; Ganesan, V.; Ali, A.H.; Nonlaopon, K.; Bazighifan, O. Novel Oscillation Theorems and Symmetric Properties of Nonlinear Delay Differential Equations of Fourth-Order with a Middle Term. Symmetry 2022, 14, 585. [Google Scholar] [CrossRef]
- Sabermahani, S.; Ordokhani, Y. General Lagrange-hybrid functions and numerical solution of differential equations containing piecewise constant delays with bibliometric analysis. Appl. Math. Comput. 2020, 395, 125847. [Google Scholar] [CrossRef]
- Rihan, F.A.; Alsakaji, H.J. Stochastic delay differential equations of three-species prey-predator system with cooperation among prey species. Discret. Contin. Dyn. Syst. S 2022, 15, 245–263. [Google Scholar] [CrossRef]
- Bildik, N.; Deniz, S. A new efficient method for solving delay differential equations and a comparison with other methods. Eur. Phys. J. Plus 2017, 132, 51. [Google Scholar] [CrossRef]
- Rahimkhani, P.; Ordokhani, Y.; Babolian, E. A new operational matrix based on Bernoulli wavelets for solving fractional delay differential equations. Numer. Algorithms 2016, 74, 223–245. [Google Scholar] [CrossRef]
- Sabir, Z.; Günerhan, H.; Guirao, J.L.G. On a New Model Based on Third-Order Nonlinear Multisingular Functional Differential Equations. Math. Probl. Eng. 2020, 2020, 1683961. [Google Scholar] [CrossRef]
- Aziz, I.; Amin, R. Numerical solution of a class of delay differential and delay partial differential equations via Haar wavelet. Appl. Math. Model. 2016, 40, 10286–10299. [Google Scholar] [CrossRef]
- Frazier, M.W. Background: Complex Numbers and Linear Algebra. In An Introduction to Wavelets through Linear Algebra; Springer: Berlin/Heidelberg, Germany, 1999; pp. 7–100. [Google Scholar]
- Tomasiello, S. An alternative use of fuzzy transform with application to a class of delay differential equations. Int. J. Comput. Math. 2016, 94, 1719–1726. [Google Scholar] [CrossRef]
- Vaid, M.K.; Arora, G. Solution of Second Order Singular Perturbed Delay Differential Equation Using Trigonometric B-Spline. Int. J. Math. Eng. Manag. Sci. 2019, 4, 349–360. [Google Scholar] [CrossRef]
- Hashemi, M.S.; Atangana, A.; Hajikhah, S. Solving fractional pantograph delay equations by an effective compu-tational method. Math. Comput. Simul. 2020, 177, 295–305. [Google Scholar] [CrossRef]
- Adel, W.; Sabir, Z. Solving a new design of nonlinear second-order Lane–Emden pantograph delay differential model via Bernoulli collocation method. Eur. Phys. J. Plus 2020, 135, 427. [Google Scholar] [CrossRef]
- Erdogan, F.; Sakar, M.G.; Saldır, O. A finite difference method on layer-adapted mesh for singularly perturbed delay differential equations. Appl. Math. Nonlinear Sci. 2020, 5, 425–436. [Google Scholar] [CrossRef]
- Seong, H.Y.; Majid, Z.A. Solving second order delay differential equations using direct two-point block method. Ain Shams Eng. J. 2017, 8, 59–66. [Google Scholar] [CrossRef]
- Sabir, Z.; Guirao, J.L.G.; Saeed, T.; Erdoğan, F. Design of a Novel Second-Order Prediction Differential Model Solved by Using Adams and Explicit Runge–Kutta Numerical Methods. Math. Probl. Eng. 2020, 2020, 9704968. [Google Scholar] [CrossRef]
- Sabir, Z.; Raja, M.A.Z.; Wahab, H.A.; Shoaib, M.; Aguilar, J.G. Integrated neuro-evolution heuristic with sequential quadratic programming for second-order predic-tion differential models. Numer. Methods Partial. Differ. Equ. 2020. [Google Scholar]
- Raja, M.A.Z.; Shoaib, M.; Hussain, S.; Nisar, K.S.; Islam, S. Computational intelligence of Levenberg-Marquardt backpropagation neural networks to study thermal radiation and Hall effects on boundary layer flow past a stretching sheet. Int. Commun. Heat Mass Transf. 2021, 130, 105799. [Google Scholar] [CrossRef]
- Tian, Y.; Chen, H.; Ma, H.; Zhang, X.; Tan, K.C.; Jin, Y. Integrating conjugate gradients into evolutionary algo-rithms for large-scale continuous multi-objective optimization. IEEE/CAA J. Autom. Sin. 2022, 9, 1801–1817. [Google Scholar] [CrossRef]
- Sabir, Z.; Amin, F.; Pohl, D.; Guirao, J.L. Intelligence computing approach for solving second order system of Emden–Fowler model. J. Intell. Fuzzy Syst. 2020, 38, 7391–7406. [Google Scholar] [CrossRef]
- Awais, M.; Rehman, H.; Raja, M.A.Z.; Awan, S.E.; Ali, A.; Shoaib, M.; Malik, M.Y. Hall effect on MHD Jeffrey fluid flow with Cattaneo–Christov heat flux model: An application of stochastic neural computing. Complex Intell. Syst. 2022, 8, 5177–5201. [Google Scholar] [CrossRef]
- Sabir, Z.; Wahab, H.A.; Umar, M.; Erdoğan, F. Stochastic numerical approach for solving second order nonlinear singular functional differential equation. Appl. Math. Comput. 2019, 363, 124605. [Google Scholar] [CrossRef]
- Wahid, M.A.; Bukhari, S.H.R.; Daud, A.; Awan, S.E.; Raja, M.A.Z. COVICT: An IoT based architecture for COVID-19 detection and contact tracing. J. Ambient. Intell. Humaniz. Comput. 2022, 14, 7381–7398. [Google Scholar] [CrossRef] [PubMed]
- Chaudhary, N.I.; Raja, M.A.Z.; Khan, Z.A.; Mehmood, A.; Shah, S.M. Design of fractional hierarchical gradient de-scent algorithm for parameter estimation of nonlinear control autoregressive systems. Chaos Solitons Fractals 2022, 157, 111913. [Google Scholar] [CrossRef]
- Sabir, Z.; Manzar, M.A.; Raja, M.A.Z.; Sheraz, M.; Wazwaz, A.M. Neuro-heuristics for nonlinear singular Thomas-Fermi systems. Appl. Soft Comput. 2018, 65, 152–169. [Google Scholar] [CrossRef]
- Shoaib, M.; Kausar, M.; Nisar, K.S.; Raja, M.A.Z.; Zeb, M.; Morsy, A. The design of intelligent networks for entropy generation in Ree-Eyring dissipative fluid flow system along quartic autocatalysis chemical reactions. Int. Commun. Heat Mass Transf. 2022, 133, 105971. [Google Scholar] [CrossRef]
- Raja, M.A.Z.; Sabir, Z.; Mehmood, N.; Al-Aidarous, E.S.; Khan, J.A. Design of stochastic solvers based on genetic algorithms for solving nonlinear equations. Neural Comput. Appl. 2014, 26, 1–23. [Google Scholar] [CrossRef]
- Sabir, Z.; Baleanu, D.; Raja, M.A.Z.; Guirao, J.L.G. Design of Neuro-Swarming Heuristic Solver for Multi-Pantograph Singular Delay Differential Equation. Fractals 2021, 29, 2140022. [Google Scholar] [CrossRef]
- Umar, M.; Amin, F.; Ali, M.R. Neuro-swarm intelligence to study mosquito dispersal system in a heterogeneous atmosphere. Evol. Syst. 2023. [CrossRef]
- Umar, M.; Amin, F.; Wahab, H.A.; Baleanu, D. Unsupervised constrained neural network modeling of boundary value corneal model for eye surgery. Appl. Soft Comput. 2019, 85, 105826. [Google Scholar] [CrossRef]
- Umar, M.; Amin, F.; Al-Mdallal, Q.; Ali, M.R. A stochastic computing procedure to solve the dynamics of preven-tion in HIV system. Biomed. Signal Process. Control. 2022, 78, 103888. [Google Scholar] [CrossRef]
- Łuczak, D. Mechanical vibrations analysis in direct drive using CWT with complex Morlet wavelet. Power Electron. Drives 2023, 8, 65–73. [Google Scholar] [CrossRef]
- Reddy, G.T.; Reddy, M.P.K.; Lakshmanna, K.; Rajput, D.S.; Kaluri, R.; Srivastava, G. Hybrid genetic algorithm and a fuzzy logic classifier for heart disease diagnosis. Evol. Intell. 2020, 13, 185–196. [Google Scholar] [CrossRef]
- Mayer, M.J.; Szilágyi, A.; Gróf, G. Environmental and economic multi-objective optimization of a household level hybrid renewable energy system by genetic algorithm. Appl. Energy 2020, 269, 115058. [Google Scholar] [CrossRef]
- Zou, D.; Li, S.; Kong, X.; Ouyang, H.; Li, Z. Solving the combined heat and power economic dispatch problems by an improved genetic algorithm and a new constraint handling strategy. Appl. Energy 2019, 237, 646–670. [Google Scholar] [CrossRef]
- Song, Y.; Wei, L.; Yang, Q.; Wu, J.; Xing, L.; Chen, Y. RL-GA: A Reinforcement Learning-based Genetic Algorithm for Electromagnetic Detection Satellite Scheduling Problem. Swarm Evol. Comput. 2023, 77, 101236. [Google Scholar] [CrossRef]
- Jahed Armaghani, D.; Hasanipanah, M.; Mahdiyar, A.; Abd Majid, M.Z.; Bakhshandeh Amnieh, H.; Tahir, M.M.D. Airblast prediction through a hybrid genetic algorithm-ANN model. Neural Comput. Appl. 2018, 29, 619–629. [Google Scholar] [CrossRef]
- Sohail, A. Genetic Algorithms in the Fields of Artificial Intelligence and Data Sciences. Ann. Data Sci. 2021, 10, 1007–1018. [Google Scholar] [CrossRef]
- Aziz, R.M.; Mahto, R.; Goel, K.; Das, A.; Kumar, P.; Saxena, A. Modified Genetic Algorithm with Deep Learning for Fraud Transactions of Ethereum Smart Contract. Appl. Sci. 2023, 13, 697. [Google Scholar] [CrossRef]
- Jiang, Y.; Wu, P.; Zeng, J.; Zhang, Y.; Zhang, Y.; Wang, S. Multi-parameter and multi-objective optimisation of articulated monorail vehicle system dynamics using genetic algorithm. Veh. Syst. Dyn. 2019, 58, 74–91. [Google Scholar] [CrossRef]
- Bertocchi, C.; Chouzenoux, E.; Corbineau, M.-C.; Pesquet, J.-C.; Prato, M. Deep unfolding of a proximal interior point method for image restoration. Inverse Probl. 2020, 36, 034005. [Google Scholar] [CrossRef]
- Wright, S.E.; Lim, S. Solving nested-constraint resource allocation problems with an interior point method. Oper. Res. Lett. 2020, 48, 297–303. [Google Scholar] [CrossRef]
- Pesteh, S.; Moayyed, H.; Miranda, V. Favorable properties of Interior Point Method and Generalized Correntropy in power system State Estimation. Electr. Power Syst. Res. 2020, 178, 106035. [Google Scholar] [CrossRef]
- Garreis, S.; Surowiec, T.M.; Ulbrich, M. An interior-point approach for solving risk-averse PDE-constrained opti-mization problems with coherent risk measures. SIAM J. Optim. 2021, 31, 1–29. [Google Scholar] [CrossRef]
- Asadi, S.; Darvay, Z.; Lesaja, G.; Mahdavi-Amiri, N.; Potra, F. A Full-Newton Step Interior-Point Method for Mon-otone Weighted Linear Complementarity Problems. J. Optim. Theory Appl. 2020, 186, 864–878. [Google Scholar] [CrossRef]
- El Hayek, P.; Boueri, M.; Nasr, L.; Aoun, C.; Sayad, E.; Jallad, K. Cholera Infection Risks and Cholera Vaccine Safety in Pregnan-cy. Infect. Dis. Obstet. Gynecol. 2023, 2023, 4563797. [Google Scholar] [CrossRef] [PubMed]
- Tian, M.; El Khoury, R.; Alshater, M.M. The nonlinear and negative tail dependence and risk spillovers between foreign ex-change and stock markets in emerging economies. J. Int. Financ. Mark. Inst. Money 2023, 82, 101712. [Google Scholar] [CrossRef]
- Issa, J.S. A nonlinear absorber for the reflection of travelling waves in bars. Nonlinear Dyn. 2022, 108, 3279–3295. [Google Scholar] [CrossRef]
- Kassis, M.T.; Tannir, D.; Toukhtarian, R.; Khazaka, R. Moments-based sensitivity analysis of x-parameters with re-spect to linear and nonlinear circuit components. In Proceedings of the 2019 IEEE 28th Conference on Electrical Performance of Electronic Packaging and Systems (EPEPS), Montreal, QC, Canada, 6–9 October 2019; pp. 1–3. [Google Scholar]
- Younes, G.A.; El Khatib, N. Mathematical modeling of atherogenesis: Atheroprotective role of HDL. J. Theor. Biol. 2021, 529, 110855. [Google Scholar] [CrossRef]
- Kanbar, F.; Null, R.T.; Klingenberg, C. Well-Balanced Central Scheme for the System of MHD Equations with Gravitational Source Term. Commun. Comput. Phys. 2022, 32, 878–898. [Google Scholar] [CrossRef]
- Habre, S.S. Qualitative aspects of differential equations in an inquiry-oriented course. Int. J. Math. Educ. Sci. Technol. 2021, 54, 351–364. [Google Scholar] [CrossRef]
- Touma, R.; Saleh, M. Well-balanced central schemes for pollutants transport in shallow water equations. Math. Comput. Simul. 2021, 190, 1275–1293. [Google Scholar] [CrossRef]
- Younes, G.A.; El Khatib, N. Mathematical modeling of inflammatory processes of atherosclerosis. Math. Model. Nat. Phenom. 2022, 17, 5. [Google Scholar] [CrossRef]
- Younes, Y.; Hallit, S.; Obeid, S. Premenstrual dysphoric disorder and childhood maltreatment, adulthood stressful life events and depression among Lebanese university students: A structural equation modeling approach. BMC Psychiatry 2021, 21, 548. [Google Scholar] [CrossRef]
- Habre, S. Inquiry-oriented differential equations: A guided journey of learning. Teach. Math. Its Appl. Int. J. IMA 2020, 39, 201–212. [Google Scholar] [CrossRef]
Mode | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | 0.1 | 0.2 | 0.3 | 0.4 | 0.5 | 0.6 | 0.7 | 0.8 | 0.9 | 1 | ||
E-I | Min | 4.14× 10−9 | 2.07× 10−8 | 2.85 × 10−7 | 4.46 × 10−7 | 4.86 × 10−7 | 5.58 × 10−7 | 7.48 × 10−7 | 1.00 × 10−6 | 1.20 × 10−6 | 1.30 × 10−6 | 1.34 × 10−6 |
Mean | 3.75 × 10−1 | 4.13 × 10−1 | 4.54 × 10−1 | 4.98 × 10−1 | 5.41 × 10−1 | 5.83 × 10−1 | 6.22 × 10−1 | 6.59 × 10−1 | 6.92 × 10−1 | 7.23 × 10−1 | 7.49 × 10−1 | |
SD | 4.46 × 10−1 | 5.1 × 10−1 | 5.57 × 10−1 | 6.7 × 10−1 | 6.53 × 10−1 | 6.95 × 10−1 | 7.35 × 10−1 | 7.72 × 10−1 | 8.05 × 10−1 | 8.34 × 10−1 | 8.60 × 10−1 | |
Med | 3.93 × 10−2 | 2.13 × 10−2 | 1.21 × 10−2 | 2.48 × 10−2 | 4.61 × 10−2 | 6.65 × 10−2 | 8.59 × 10−2 | 1.05 × 10−1 | 1.23 × 10−1 | 1.41 × 10−1 | 1.59 × 10−1 | |
S.IR | 4.38 × 10−1 | 4.84 × 10−1 | 5.38 × 10−1 | 5.88 × 10−1 | 6.35 × 10−1 | 6.79 × 10−1 | 7.21 × 10−1 | 7.60 × 10−1 | 7.97 × 10−1 | 8.30 × 10−1 | 8.59 × 10−1 | |
E-II | Min | 5.20 × 10−7 | 7.23 × 10−7 | 4.89 × 10−6 | 1.14 × 10−5 | 1.59 × 10−5 | 1.68 × 10−5 | 1.60 × 10−5 | 1.72 × 10−5 | 2.20 × 10−5 | 2.71 × 10−5 | 2.77 × 10−5 |
Mean | 6.72 × 10−2 | 1.31 × 10−1 | 2.03 × 10−1 | 2.76 × 10−1 | 3.50 × 10−1 | 4.22 × 10−1 | 4.91 × 10−1 | 5.57 × 10−1 | 6.18 × 10−1 | 6.74 × 10−1 | 7.23 × 10−1 | |
SD | 3.19 × 10−2 | 5.19 × 10−2 | 7.16 × 10−2 | 9.52 × 10−2 | 1.19 × 10−1 | 1.43 × 10−1 | 1.66 × 10−1 | 1.89 × 10−1 | 2.10 × 10−1 | 2.29 × 10−1 | 2.46 × 10−1 | |
Med | 7.70 × 10−2 | 1.57 × 10−1 | 2.33 × 10−1 | 3.6 × 10−1 | 3.89 × 10−1 | 4.79 × 10−1 | 5.65 × 10−1 | 6.44 × 10−1 | 7.17 × 10−1 | 7.83 × 10−1 | 8.41 × 10−1 | |
S.IR | 1.55 × 10−2 | 2.86 × 10−2 | 1.99 × 10−2 | 1.31 × 10−2 | 1.46 × 10−2 | 2.09 × 10−2 | 2.71 × 10−2 | 3.30 × 10−2 | 3.83 × 10−2 | 4.31 × 10−2 | 4.70 × 10−2 | |
E-III | Min | 1.98 × 10−5 | 8.21 × 10−6 | 8.50 × 10−6 | 5.50 × 10−6 | 7.92 × 10−6 | 2.12 × 10−5 | 1.52 × 10−5 | 1.19 × 10−5 | 2.95 × 10−5 | 5.74 × 10−5 | 5.59 × 10−5 |
Mean | 1.25 × 10−1 | 1.08 × 10−1 | 9.21 × 10−1 | 7.77 × 10−1 | 6.43 × 10−1 | 5.19 × 10−1 | 4.03 × 10−1 | 2.95 × 10−1 | 1.90 × 10−1 | 1.28 × 10−1 | 1.50 × 10−1 | |
SD | 9.57 × 10−1 | 8.20 × 10−1 | 6.93 × 10−1 | 5.72 × 10−1 | 4.60 × 10−1 | 3.60 × 10−1 | 2.75 × 10−1 | 2.15 × 10−1 | 1.98 × 10−1 | 2.18 × 10−1 | 1.06 × 10−1 | |
Med | 1.91 × 10−1 | 1.65 × 10−1 | 1.40 × 10−1 | 1.17 × 10−1 | 9.51 × 10−1 | 7.42 × 10−1 | 5.37 × 10−1 | 3.29 × 10−1 | 1.37 × 10−1 | 8.53 × 10−2 | 1.65 × 10−1 | |
S.IR | 9.91 × 10−1 | 8.47 × 10−1 | 7.10 × 10−1 | 5.77 × 10−1 | 4.52 × 10−1 | 3.39 × 10−1 | 2.31 × 10−1 | 1.34 × 10−1 | 5.59 × 10−2 | 6.92 × 10−2 | 7.89 × 10−2 |
Mode | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | 0.1 | 0.2 | 0.3 | 0.4 | 0.5 | 0.6 | 0.7 | 0.8 | 0.9 | 1 | ||
E-I | Min | 1.20× 10−9 | 4.45 × 10−9 | 3.18 × 10−8 | 6.57 × 10−8 | 8.26 × 10−8 | 7.97 × 10−8 | 7.48 × 10−8 | 8.81 × 10−8 | 1.21 × 10−7 | 1.48 × 10−7 | 1.47 × 10−7 |
Mean | 4.26 × 10−1 | 4.78 × 10−1 | 5.34 × 10−1 | 5.88 × 10−1 | 6.39 × 10−1 | 6.88 × 10−1 | 7.33 × 10−1 | 7.75 × 10−1 | 8.14 × 10−1 | 8.48 × 10−1 | 8.79 × 10−1 | |
SD | 4.46 × 10−1 | 4.97 × 10−1 | 5.50 × 10−1 | 6.02 × 10−1 | 6.51 × 10−1 | 6.98 × 10−1 | 7.42 × 10−1 | 7.83 × 10−1 | 8.20 × 10−1 | 8.54 × 10−1 | 8.83 × 10−1 | |
Med | 2.54 × 10−1 | 2.99 × 10−1 | 3.68 × 10−1 | 4.31 × 10−1 | 4.80 × 10−1 | 5.27 × 10−1 | 5.71 × 10−1 | 6.13 × 10−1 | 6.53 × 10−1 | 6.89 × 10−1 | 7.22 × 10−1 | |
S.IR | 4.66 × 10−1 | 5.23 × 10−1 | 5.79 × 10−1 | 6.33 × 10−1 | 6.82 × 10−1 | 7.27 × 10−1 | 7.68 × 10−1 | 8.06 × 10−1 | 8.40 × 10−1 | 8.77 × 10−1 | 9.05 × 10−1 | |
E-II | Min | 1.15 × 10−8 | 2.04 × 10−8 | 6.16 × 10−8 | 1.79 × 10−7 | 2.65 × 10−7 | 2.88 × 10−7 | 2.64 × 10−7 | 2.38 × 10−7 | 2.55 × 10−7 | 3.30 × 10−7 | 4.24 × 10−7 |
Mean | 4.16 × 10−8 | 8.85 × 10−8 | 1.47 × 10−1 | 2.06 × 10−1 | 2.63 × 10−1 | 3.19 × 10−1 | 3.72 × 10−1 | 4.23 × 10−1 | 4.70 × 10−1 | 5.12 × 10−1 | 5.48 × 10−1 | |
SD | 6.10 × 10−8 | 7.67 × 10−8 | 1.03 × 10−1 | 1.36 × 10−1 | 1.73 × 10−1 | 2.10 × 10−1 | 2.46 × 10−1 | 2.79 × 10−1 | 3.11 × 10−1 | 3.40 × 10−1 | 3.64 × 10−1 | |
Med | 2.32 × 10−3 | 7.26 × 10−8 | 1.73 × 10−1 | 2.69 × 10−1 | 3.58 × 10−1 | 4.48 × 10−1 | 5.15 × 10−1 | 5.86 × 10−1 | 6.52 × 10−1 | 7.12 × 10−1 | 7.61 × 10−1 | |
S.IR | 3.70 × 10−8 | 7.45 × 10−8 | 1.11 × 10−1 | 1.50 × 10−1 | 1.93 × 10−1 | 2.36 × 10−1 | 2.79 × 10−1 | 3.18 × 10−1 | 3.53 × 10−1 | 3.84 × 10−1 | 4.08 × 10−1 | |
E-III | Min | 5.56 × 10−9 | 1.91 × 10−8 | 4.54 × 10−9 | 2.45 × 10−8 | 1.44 × 10−8 | 2.28 × 10−9 | 9.65 × 10−9 | 1.85 × 10−8 | 3.85 × 10−9 | 6.66 × 10−9 | 3.87 × 10−9 |
Mean | 2.30 × 10−1 | 2.50 × 10−1 | 2.13 × 10−1 | 1.80 × 10−1 | 1.50 × 10−1 | 1.24 × 10−1 | 9.84 × 10−8 | 7.42 × 10−8 | 5.08 × 10−8 | 2.80 × 10−8 | 3.14 × 10−8 | |
SD | 5.50 × 10−1 | 5.48 × 10−1 | 4.69 × 10−1 | 3.97 × 10−1 | 3.28 × 10−1 | 2.63 × 10−1 | 2.00 × 10−1 | 1.40 × 10−1 | 8.43 × 10−8 | 4.14 × 10−8 | 4.69 × 10−8 | |
Med | 7.86 × 10−4 | 7.97 × 10−4 | 4.52 × 10−4 | 6.83 × 10−4 | 1.40 × 10−3 | 2.06 × 10−3 | 3.38 × 10−3 | 4.62 × 10−3 | 5.79 × 10−3 | 7.18 × 10−3 | 8.47 × 10−3 | |
S.IR | 9.30 × 10−3 | 6.24 × 10−3 | 3.54 × 10−3 | 4.98 × 10−3 | 6.69 × 10−3 | 1.19 × 10−8 | 1.87 × 10−8 | 2.58 × 10−8 | 3.32 × 10−8 | 2.27 × 10−8 | 2.45 × 10−8 |
Mode | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | 0.1 | 0.2 | 0.3 | 0.4 | 0.5 | 0.6 | 0.7 | 0.8 | 0.9 | 1 | ||
E-I | Min | 4.22× 10−9 | 1.67 × 10−8 | 7.93 × 10−8 | 1.42 × 10−8 | 3.39 × 10−8 | 4.01 × 10−8 | 1.32 × 10−7 | 1.50 × 10−7 | 8.64 × 10−8 | 5.00 × 10−8 | 1.43 × 10−7 |
Mean | 3.47 × 10−1 | 3.89 × 10−1 | 4.43 × 10−1 | 4.94 × 10−1 | 5.44 × 10−1 | 5.92 × 10−1 | 6.37 × 10−1 | 6.79 × 10−1 | 7.19 × 10−1 | 7.55 × 10−1 | 7.87 × 10−1 | |
SD | 4.24 × 10−1 | 4.62 × 10−1 | 5.07 × 10−1 | 5.53 × 10−1 | 5.97 × 10−1 | 6.41 × 10−1 | 6.83 × 10−1 | 7.23 × 10−1 | 7.61 × 10−1 | 7.95 × 10−1 | 8.25 × 10−1 | |
Med | 8.71 × 10−4 | 1.89 × 10−2 | 4.71 × 10−2 | 7.45 × 10−2 | 1.02 × 10−1 | 1.28 × 10−1 | 1.54 × 10−1 | 1.79 × 10−1 | 2.03 × 10−1 | 2.26 × 10−1 | 2.49 × 10−1 | |
S.IR | 4.23 × 10−1 | 4.62 × 10−1 | 5.14 × 10−1 | 5.62 × 10−1 | 6.04 × 10−1 | 6.48 × 10−1 | 6.92 × 10−1 | 7.32 × 10−1 | 7.69 × 10−1 | 7.99 × 10−1 | 8.23 × 10−1 | |
E-II | Min | 2.31 × 10−9 | 1.48 × 10−8 | 8.52 × 10−8 | 9.16 × 10−8 | 9.46 × 10−8 | 1.67 × 10−7 | 3.06 × 10−7 | 4.31 × 10−7 | 4.63 × 10−7 | 4.43 × 10−7 | 5.02 × 10−7 |
Mean | 1.15 × 10−2 | 5.33 × 10−2 | 1.04 × 10−1 | 1.54 × 10−1 | 2.03 × 10−1 | 2.50 × 10−1 | 2.95 × 10−1 | 3.37 × 10−1 | 3.75 × 10−1 | 4.10 × 10−1 | 4.41 × 10−1 | |
SD | 2.85 × 10−2 | 5.47 × 10−2 | 9.77 × 10−2 | 1.43 × 10−1 | 1.88 × 10−1 | 2.31 × 10−1 | 2.72 × 10−1 | 3.11 × 10−1 | 3.47 × 10−1 | 3.79 × 10−1 | 4.08 × 10−1 | |
Med | 4.78 × 10−5 | 6.73 × 10−2 | 1.50 × 10−1 | 2.29 × 10−1 | 3.16 × 10−1 | 3.89 × 10−1 | 4.54 × 10−1 | 5.16 × 10−1 | 5.72 × 10−1 | 6.25 × 10−1 | 6.78 × 10−1 | |
S.IR | 9.75 × 10−4 | 4.99 × 10−2 | 9.93 × 10−2 | 1.48 × 10−1 | 1.95 × 10−1 | 2.40 × 10−1 | 2.82 × 10−1 | 3.22 × 10−1 | 3.59 × 10−1 | 3.92 × 10−1 | 4.21 × 10−1 | |
E-III | Min | 2.23 × 10−9 | 6.07 × 10−8 | 7.51 × 10−8 | 9.56 × 10−8 | 1.82 × 10−7 | 7.64 × 10−9 | 2.99 × 10−8 | 4.07 × 10−8 | 5.42 × 10−8 | 1.76 × 10−9 | 4.38 × 10−9 |
Mean | 6.58 × 10−1 | 5.99 × 10−1 | 5.08 × 10−1 | 4.24 × 10−1 | 3.46 × 10−1 | 2.74 × 10−1 | 2.06 × 10−1 | 1.42 × 10−1 | 8.09 × 10−2 | 3.31 × 10−2 | 4.71 × 10−2 | |
SD | 8.23 × 10−1 | 7.13 × 10−1 | 6.04 × 10−1 | 5.02 × 10−1 | 4.06 × 10−1 | 3.17 × 10−1 | 2.35 × 10−1 | 1.58 × 10−1 | 8.82 × 10−2 | 3.78 × 10−2 | 7.41 × 10−2 | |
Med | 2.43 × 10−2 | 5.77 × 10−2 | 4.54 × 10−2 | 3.42 × 10−2 | 3.23 × 10−2 | 3.22 × 10−2 | 3.50 × 10−2 | 3.96 × 10−2 | 4.82 × 10−2 | 1.77 × 10−2 | 4.90 × 10−3 | |
S.IR | 7.97 × 10−1 | 7.09 × 10−1 | 6.07 × 10−1 | 5.11 × 10−1 | 4.21 × 10−1 | 3.36 × 10−1 | 2.47 × 10−1 | 1.64 × 10−1 | 7.70 × 10−2 | 2.73 × 10−2 | 2.96 × 10−2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sabir, Z.; Arbi, A.; Hashem, A.F.; Abdelkawy, M.A. Morlet Wavelet Neural Network Investigations to Present the Numerical Investigations of the Prediction Differential Model. Mathematics 2023, 11, 4480. https://doi.org/10.3390/math11214480
Sabir Z, Arbi A, Hashem AF, Abdelkawy MA. Morlet Wavelet Neural Network Investigations to Present the Numerical Investigations of the Prediction Differential Model. Mathematics. 2023; 11(21):4480. https://doi.org/10.3390/math11214480
Chicago/Turabian StyleSabir, Zulqurnain, Adnène Arbi, Atef F. Hashem, and Mohamed A Abdelkawy. 2023. "Morlet Wavelet Neural Network Investigations to Present the Numerical Investigations of the Prediction Differential Model" Mathematics 11, no. 21: 4480. https://doi.org/10.3390/math11214480
APA StyleSabir, Z., Arbi, A., Hashem, A. F., & Abdelkawy, M. A. (2023). Morlet Wavelet Neural Network Investigations to Present the Numerical Investigations of the Prediction Differential Model. Mathematics, 11(21), 4480. https://doi.org/10.3390/math11214480