
Citation: Zhu, D.; He, Y.; Yu, X.; Li, F.

Trajectory Smoothing Planning of

Delta Parallel Robot Combining

Cartesian and Joint Space.

Mathematics 2023, 11, 4509. https://

doi.org/10.3390/math11214509

Academic Editors: Shujin Laima, Yong

Cao, Xiaowei Jin and Hehe Ren

Received: 1 October 2023

Revised: 28 October 2023

Accepted: 30 October 2023

Published: 1 November 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

Trajectory Smoothing Planning of Delta Parallel Robot
Combining Cartesian and Joint Space
Dachang Zhu * , Yonglong He, Xuezhe Yu and Fangyi Li *

School of Mechanical and Electrical Engineering, Guangzhou University, Guangzhou 510006, China;
heyonglong@e.gzhu.edu.cn (Y.H.); 2112307093@e.gzhu.edu.cn (X.Y.)
* Correspondence: zdc98998@gzhu.edu.cn (D.Z.); fangyi_li@gzhu.edu.cn (F.L.)

Abstract: Delta parallel robots have been widely used in precision processing, handling, sorting,
and the assembly of parts, and their high efficiency and motion stability are important indexes
of their performance.Corners created by small line segments in trajectory planning cause abrupt
changes in a tangential discontinuous trajectory, and the vibration and shock caused by such changes
seriously affect the robot’s high-speed and high-precision performance. In this study, a trajectory-
planning method combining Cartesian space and joint space is proposed. Firstly, the vector method
and microelement integration method were used to establish the complete kinematic and dynamic
equations of a delta parallel robot, and an inverse kinematic/dynamic model-solving program was
written based on the MATLAB software R2020a. Secondly, the end-effector trajectory of the delta
parallel robot was planned in Cartesian space, and the data points and inverse control points of the
end effector’s trajectory were obtained using the normalization method. Finally, the data points
and control points were mapped to the joint space through the inverse kinematic equation, and
the fifth-order B-spline curve was adopted for quadratic trajectory planning, which allowed the
high-order continuous smoothing of the trajectory planning to be realized. The simulated and
experimental results showed that the trajectory-smoothing performance in continuous high-order
curvature changes could be improved with the proposed method. The peak trajectory tracking error
was reduced by 10.53%, 41.18%, and 44.44%, respectively, and the peak torque change of the three
joints was reduced by 3.5%, 11.6%, and 1.6%, respectively.

Keywords: delta parallel robot; kinematic and dynamic modelling; trajectory smoothing planning;
combining Cartesian space with joint space

MSC: 34M25

1. Introduction

The delta parallel robot has been widely used in precision parts processing, hanling,
sorting, and assembly because of its high speed and high precision [1]. When a straight
line or an arc approaches a target curve, the acceleration of the trajectory of the end effector
is abrupt due to tangential discontinuity at the connecting corner of the fitted line seg-
ment, which makes the vibration of the delta parallel robot inevitable during high-speed
operation and even causes production safety accidents [2]. Polynomial functions and
interpolation methods are often used for robot trajectory planning and optimization by
giving constraints on the starting and ending points, as well as constraints on the dis-
placement, velocity, and acceleration. Boryga [3] presented a smooth trajectory planning
method using higher-degree polynomial functions of acceleration to determine accurate
dependencies derived for the calculation of polynomial coefficients and motion time in
the case of velocity, acceleration, and jerk constraints, thus ensuring the continuity and
smoothness of the trajectory. A seventh-order polynomial was applied to the trajectory
planning to achieve the position, velocity, acceleration, and jerk of the actuating joints, and
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the positions/orientations of the parallel mechanism modules were interpolated to obtain
a smooth trajectory without impact [4]. To achieve a smooth and precise trajectory while
minimizing the jerk, Damasevicius et al. [5] proposed natural cubic splines for finding a
Pareto-optimal set of robot arm trajectories. When a robot is required to machine a complex
curved workpiece with high precision and speed, the path is generally dispersed into a
series of points and transmitted to the robot, which not only reduces the precision, but also
causes damage to the motors and robot. To improve the dynamic performance of the delta
parallel pickup robot in high-speed pick-and-place processes, taking time and acceleration
as optimization objectives, a trajectory optimization method based on the improved but-
terfly optimization algorithm (IBOA) was proposed [6]. Zhang et al. [7] inserted a quintic
Bezier curve between small adjacent line segments to achieve velocity and acceleration
continuity at the connecting points, and a quartic polynomial was adopted to achieve a
constant velocity at the velocity limitation. To solve the problem of trajectory continuity,
some fitting curves were presented, such as quintic and cubic nonuniform rational NURBS
curves [8,9], the quintic Pythagorean hodograph (PH) curve [10], combining cubic splines
with a linear segment with parabolic blends [11], and the S-curve [12]. However, since
the trajectory of the end effector in Cartesian space needs to be mapped to the joint space
through the inverse kinematic equation, it is realized by the joint actuator through the
torque control according to the calculated joint variable values. Therefore, the end-effector
position, joint variables, and the precise modeling of the robot kinematics and dynamics
equations impact trajectory smoothing planning and become a very challenging subject in
robotics [13,14].

Should surfaces such as sharp corners, holes, or protrusions be considered in trajectory
planning [15]? Considering the execution characteristics of joint actuators, most trajectory
smoothing planning considers the planning method in joint space. This takes joint velocity,
acceleration, and jerk continuity as the trajectory smoothing targets [16,17]. Considering
the Gaussian interpolation of the boundary conditions, a radial basis function method was
proposed by Chettibi [18] to generate point-to-point smooth trajectories of robot arms. A
multiaxis real-time synchronous look-ahead trajectory planning algorithm was proposed by
Liang et al. [19] based on dynamically given position and velocity sequences under the con-
straint of maximum velocity and the acceleration of each joint axis. Shrivastava et al. [20]
used the cuckoo search algorithm to suppress the linear motion equation to avoid the
directional singularity in Cartesian space. Then, the Bezier curve was used to depict the
shape of the joint trajectory by interpolating the linear polynomials with the parabolic
blend. In the joint space, the joint movement was divided into acceleration, uniform speed,
and deceleration parts; the fourth-order polynomial formed by the root weight was used to
plan the acceleration to ensure the continuity of the displacement, speed, acceleration, and
jerk of each joint and end effector of the robot [21].

On the other hand, some of the literature has studied the trajectory planning of robot
end effectors in Cartesian space [22–27]. However, trajectory smoothing planning in a
single space cannot guarantee trajectory smoothness in other spaces. Moreover, in the
process of high-speed reciprocating motion of a high-speed parallel robot, the influence of
its nonlinear dynamic characteristics on the dynamic response and stable operation of the
system cannot be ignored, especially when the smooth trajectory is mapped from Cartesian
space (or joint space) to joint space (or Cartesian space) [28]. The comprehensive kinematics
and dynamics characteristics of the three DoF parallel manipulator were analyzed under the
accepted Jacobian link matrices and proverbial virtual work principle, and the discretized
piecewise quintic polynomials were employed in order to interpolate the angular positions
of the sequence of joints; these were transformed from predefined via points in Cartesian
space [29]. Dupac [30] proposed quintic Hermite piecewise interpolants having functional
continuity, and the smoothness of the end effector path was guaranteed. At the same time,
inverse kinematics and inverse dynamics were used to compute the coordinates of the joints.
The smoothness of the trajectory of the robot’s end effector was not only smoothly planned
in the Cartesian space, but the kinematic and dynamic changes in the robot joints and the
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torque generated by the joint actuators were also obtained [31]. This study places a focus
on the shock and vibration caused by abrupt trajectory changes, and trajectory-smoothing
planning by combining Cartesian and joint space was proposed. The main contributions of
this study are summarized in the following:

(1) The delta parallel robot’s complete kinematics/dynamics model was established
using vector decomposition and the elementary kinematic energy method. The inverse
kinematics/dynamics model of the delta parallel robot was solved using the pseudoinverse
matrix solution method, and the mapping relationship between Cartesian space and joint
space was constructed.

(2) The trajectory in Cartesian space (end effector) was planned using the normalization
method, and data points and inverse points were used to control the mapping accuracy
from Cartesian space to joint space.

(3) Using a quintic B-spline curve, combined with the data points and inverse control
points, the trajectory planning in the joint space was smoothed.

The rest of this paper is structured as follows: In Section 2, the kinematic and dynamic
model of the Delta parallel robot is presented. The trajectory smoothing planning combining
Cartesian and joint space is proposed in Section 3. The experimental results are shown in
Section 4. Finally, conclusions are drawn in Section 5.

2. Kinematic and Dynamic Model of the Delta Parallel Robot
2.1. Kinematic Model of the Delta Parallel Robot

The origin O of the fixed coordinate system {O− XYZ} is located in the geometric
center of the equilateral triangle. The center point Ai (i = 1− 3) of the three sides of
the equilateral triangle is connected to the active link and the fixed platform by revolute
joints. The outer tangent circle radius of the equilateral triangle is R, the axis of X is
along the direction of

−−→
OA1, and the axis of Y is parallel to the axis of the revolute joint

A1. The origin o′ of the moving coordinate system {o′ − xyz} is located in the geometric
center of the equilateral triangle. The center point Ci (i = 1− 3) of the three sides of the
equilateral triangle is connected to the passive link and the moving platform through a
fixed connection. The outer tangent circle radius of the equilateral triangle is r. The length
of the active links AiBi and passive links BiCi are the constant values la and lb, respectively.
The variable parameters in joint space are θi, i = 1, 2, 3, and the three output displacements
in the Cartesian space of the moving platform are x, y, and z. The geometric configuration
of the delta parallel robot is shown in Figure 1.

Figure 1. The geometric configuration of delta parallel robot with three DoFs.



Mathematics 2023, 11, 4509 4 of 16

Assume that the origin of the moving platform o′ is
[

x y z
]T with respect to the

fixed coordinate system. The inverse positional kinematic of the delta parallel robot can be
given by

−−→
BiCi =

−→
Oo−−−→OAi −

−−→
AiBi and

∥∥∥−−→BiCi

∥∥∥ = lb (1)

The axis vectors of the revolute joint Ri are ki

(
ki =

[
kxi kyi kzi

]T , i = 1, 2, 3
)

.
According to the geometric composition characteristics of the Delta parallel robot, ki can be
derived as follows:

k1 =
[

0 1 0
]T , k2 =

[ √
3/2 1/2 0

]T
, k3 =

[ √
3/2 −1/2 0

]T
(2)

The homogeneous transformation matrix of rotation θ about any axis k =
[

kx ky kz
]T

is satisfied with

Rot(k, θ) =


kxkx(1− cθ) + cθ kykx(1− cθ)− kzsθ kzkx(1− cθ) + kysθ 0
kxky(1− cθ) + kzsθ kyky(1− cθ) + cθ kzky(1− cθ)− kxsθ 0
kxkz(1− cθ)− kysθ kykz(1− cθ) + kxsθ kzkz(1− cθ) + cθ 0
0 0 0 1

 (3)

oPB′ is the changed position of point B in the {o− xyz} coordinate system, which can
be obtained by translation and rotation based on the initial position oPB, which yields to

oPB′ = Rot(ki, θi)
oPB + Trans

(−−→
OAi

)
(4)

oPC′ is the changed position of point C in the {o− xyz} coordinate system, which can
be obtained according to the motion characteristics of the moving platform, which yields to

oPC′ = Trans(
−→
Oo)oPC (5)

By substituting (4) and (5) into (1), we obtain

(x−m cos αi)
2 + (y−m sin αi)

2 + (z + la sin θi)
2 = l2

b (6)

where m = R− r + la cos θi and αi =
2(i−1)π

3 are the angles between the OAi and X axis,
respectively, where i = 1, 2, 3.

Assume that sin(θi) =
2ti

1+t2
i

and cos(θi) =
1−t2

i
1+t2

i
.

Equation (6) can then be calculated as follows

θi = 2 arctan

−Ui ±
√

U2
i − 4KiVi

2Ki

 (7)

where

Ki = l2
b − l2

a − x2 − y2 − z2 − (R− r)2 + 2(x cos αi + y sin αi)(R− r− la) + 2(R− r)la

Ui = −4zla

Vi = l2
b − l2

a − x2 − y2 − z2 − (R− r)2 + 2(x cos αi + y sin αi)(R− r + la)− 2(R− r)la

Assume that bi = BiCi and take the derivative of both sides with respect to the time;
thus, we obtain

QẊ + Bθ̇ = 0 (8)
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where B = diag
(
bT

1 c1, bT
2 c2, bT

3 c3
)

is a diagonal matrix, Q =
[

bT
1 bT

2 bT
3
]T , and ci =[

la sin θi cos αi la sin θi sin αi la cos θi
]T , Ẋ =

[
ẋ ẏ ż

]T is the velocity vector of the

end effector of the delta parallel robot, θ̇ =
[

θ̇1 θ̇2 θ̇3
]T is the velocity vector of the

joints, and 0 ∈ R3×1 is the zero matrix.
Equation (8) can then be rewritten with

θ̇ = −B−1QẊ = JẊ (9)

where J is the kinematic Jacobian matrix of the delta parallel robot.
By taking the derivative of (9) with respect to the time, we obtain

θ̈ = J−1(Ẍ− J̇θ̇) (10)

where J̇ = Q−1Q̇Q−1B−Q−1Ḃ and Q̇, Ḃ are satisfied with

Q̇ = la

 cos α1 sin θ1 sin α1 sin θ1 cos θ1
cos α2 sin θ2 sin α2 sin θ2 cos θ2
cos α3 sin θ3 sin α3 sin θ3 cos θ3

θ̇T + ẊT (11)

and

Ḃ = diag
(

ḃT
1 c1 + bT

1 ċ1, ḃT
2 c2 + bT

2 ċ2, ḃT
3 c3 + bT

3 ċ3

)
(12)

2.2. Dynamic Model of the Delta Parallel Robot

The dynamic model of the delta parallel robot with three DoFs is given by

M(θ)θ̈ + C(θ, θ̇)θ̇ + G(θ) = τ (13)

where M(θ) ∈ R3×3 is the inertial mass matrix, C(θ, θ̇) ∈ R3×3 is the Coriolis and centripetal
force, τ ∈ R3×1 is the moment, G(θ) ∈ R3×1 is the gravity matrix. The dynamic equation
of the delta parallel robot has the following properties:

Remark 1. The inertial mass matrix M(θ) is a positive symmetric matrix and is bounded; it is
satisfied by

mI < M(θ) = MT(θ) 6 m̄I (14)

where m and m̄ are constants that are more than zero, and I ∈ R3×3 is the identity matrix.

The mass of the active link is mb, the mass of the passive link is mp, and the mass of
the moving platform is mm. The mass matrix M(θ) of the delta parallel robot consists of
three parts: an active link Mmb(θ), a passive link Mmp(θ) and a moving platform Mmm(θ).

Considering the motion characteristics of the Delta parallel robot, the mass matrix of
the moving platform can be expressed as

Mmm(θ) = mpl JT J (15)

where mpl is the mass of the moving platform and load, and J is the Jacobian matrix.
The mass matrix of the active link is given by

Mmb(θ) =

 Ib1 0 0
0 Ib2 0
0 0 Ib3

 (16)
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where Ib1 = Ib2 = Ib3 = Im +
(mb

3 + mc
)
l2
a , Im is the moment of inertia of the actuator, and

mc is the mass of the spherical hinge. The linear velocity at any point along the link BiCi
can be expressed as

vBiCi (x) =
(

1− x
lb

)
v1 +

x
lb

v2 (17)

where v1 is the velocity at the connection between the BiCi, and AiBi, v2 is the velocity
at the connection between the BiCi and the moving platform. The elementary kinematic
energy can be given by

dT =
1
2

v2
BiCi

dm =
1
2

v2
BiCi

ρsdx (18)

where ρ is the material density of the link, and s is the cross-sectional area.
By integrating (17), we obtain

T =
∫ lb

0
dT =

1
2

ρs
∫ lb

0
v2

BiCi
dx =

1
2

(
1
3

ml

(
v2

1 + v2
2 + v1v2

))
(19)

The Jacobian matrix of the joint Bi is defined as Ju,i, Mmp(θ) and can be derived as

Mmp(θ) =
3

∑
i=1

1
3

ml

(
JT J + JT

u,i Ju,i + JT
u,i J
)

(20)

Assuming that the equivalent mass of the moving platform is meq = mp f + ml , we
have the following matrix:

3

∑
i=1

1
3

ml

(
JT
u,i Ju,i

)
=

1
3

ml

 l2
a 0 0
0 l2

a 0
0 0 l2

a

 (21)

The mass matrix of the delta parallel robot can be expressed completely as

M(θ) = Ibt + meq JT J (22)

where Ibt =

 Ieq 0 0
0 Ieq 0
0 0 Ieq

, and Ieq = Im +
(

mb
3 + 2ml

3 + mc

)
l2
a .

3. Trajectory Smoothing Planing Combining Cartesian and Jiont Space

Trajectory smoothing planning of the delta parallel robot combining Cartesian and joint
space is mainly conducted to solve the problem of process vibration caused by acceleration
and jerk changes, which are caused by discontinuity at the inflection point of the small
line segment.

3.1. Trajectory Planning in Cartesian Space

Assume that the end effector of the delta parallel robot passes through the set point
pi = (xi, yi, zi) (i = 0, 1, · · · , n), and the complex trajectory consists of multiple microline
segments that are connected. The coordinates of each interpolation point are expressed as

x = x0 + λ∆x, y = y0 + λ∆y, z = z0 + λ∆z (23)

where λ is a normalized factor, (x0, y0, z0) is the initial point position, ∆x, ∆y, and ∆z are
increments on the x, y and z, respectively, and they are satisfied with

∆x = xi+1 − xi, ∆y = yi+1 − yi, ∆z = zi+1 − zi (24)
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Assume that the velocity of the line in the middle section is v, and the acceleration of
the parabola segment is a; the movement time and distance of the parabola segment are
satisfied with

Tp =
v
a

, Lp =
1
2

aT2
p (25)

where Tp is the run time of the parabola segment, and Lp is the displacement of the
parabola segment.

Considering Equation (24), the time, displacement, and acceleration of the parabola
segment after normalization can be expressed as

Tpλi = Tp/Ti, Lpλi = Lp/Li, apλi = 2Lpλi/T2
pλi (26)

where Li and Ti are the displacement and time of two adjacent data points, respectively,
which are given by

Li =

√
(xi+1 − xi)

2 + (yi+1 − yi)
2 + (zi+1 − zi)

2

Ti = 2Tp +
(

Li − 2Lp
)
/v

The normalized factor λ is given by

λ =


1
2 aλit2 0 6 t 6 Tpλi
1
2 aλiT2

pλi + aλiTpλi
(
t− Tpλi

)
Tpλi < t 6 1− Tpλi

1
2 aλiT2

pλi − aλiTpλi
(
t− 1 + Tpλi

)
+ 1

2 aλi
(
t + Tpλi − 1

)2 1− Tpλi < t 6 1

(27)

where t = i/n, i = 0, 1, · · · , n. λ = 0 is the starting point of the line segment, and λ = 1 is
the end point of the line segment.

3.2. Trajectory Planning in Joint Space

By using Equations (7)–(22), the interpolation points obtained from Cartesian space are
inversely mapped to joint space and used as the critical points of trajectory planning in joint
space for quadratic interpolation using the quintic B-spline curve, which is expressed as

θi,k(t) =
k

∑
i=0

Pi+l Bl,k(t) (28)

where t ∈ [0, 1], θi,k(t) is the B-spline curve of kth , Pi+l(l = 0, · · · , k) are the control points,
and Bl,k(t) is the B-spline basis function, which can be given by

Bl,k(t) =
1
k!

k−l

∑
j=0

(−1)jCj
k+1(t + k− l − j)k (29)

where Cj
k+1 = (k+1)!

j!(k+1−j)! , and k = 5.
By substituting (29) into (28), we obtain

θi,5(t) =
1

120
[

1 t t2 t3 t4 t5 ] = M
[

Pi Pi+1 Pi+2 Pi+3 Pi+4 Pi+5
]T (30)
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where

M =



1 26 66 26 1 0
−5 −50 0 50 5 0
10 20 −60 20 10 0
−10 20 0 −20 10 0
5 −20 30 −20 5 0
−1 5 −10 10 −5 1


When t = 0, the end point of the B-spline curve of the fifth dimension is given by

θi,5(0) =
1

120
(Pi + 26Pi+1 + 66Pi+2 + 26Pi+3 + Pi+4) (31)

Given m + 1 data points in joint space θi(i = 0, 1, · · · , m), we inverse calculate the
control point Pi. Since the number of the control points is m + 5, four initial constraint
equations are selected as follows:

θ̈0(0) = 20P0 + 40P1 − 120P2 + 40P3 + 20P4 = 0...
θ 0(0) = −60P0 + 120P1 − 120P3 + 60P4 = 0
θ̈m(1) = 20Pm + 40Pm+1 − 120Pm+2 + 40Pm+3 + 20Pm+4 = 0...
θ m(1) = −60Pm + 120Pm+1 − 120Pm+3 + 60Pm+4 = 0

(32)

By combining (30) and (31), we obtain

120



0
0
θ0
θ1
...
θm
0
0


=



−5 −50 0 50 5
20 40 −120 40 20
1 26 66 26 1

1 26 66 26 1
. . . . . . . . . . . . . . .

1 26 66 26 1
20 40 −120 40 20
−5 −50 0 50 −5





P0
P1
...
Pm
Pm+1
Pm+2
Pm+3
Pm+4


(33)

The method of the inverse control vertex is used to calculate the B-spline curve, and
the B-spline curve of degree k is defined as

p(t) =
∑n

i=0 diωiBi,k(t)
∑n

i=0 ωiBi,k(t)
=

TBi,k(t)Di

TBi,k(t)Wi
, 0 6 t 6 1 (34)

where di(i = 0, 1, · · · , n) is the control vertex of the curve p(t), and ωi is the weight factor
whose number is equal to the number of control vertices.

t =
u− ui+k

ui+k+1 − ui+k

Di =
[

ωidi ωi+1di+1 ωi+2di+2 ωi+3di+3
]T

Wi =
[

ωi ωi+1 ωi+2 ωi+3
]T

where u is a set of node vectors, which are satisfied with [u0, u1 · · · , un+k+1] ∈ [0, 1] and
T=
[

t3 t2 t 1
]
.

4. Simulations and Experiments

The parameters of the delta parallel robot are shown in Table 1.
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Table 1. Parameters of the delta parallel robot.

Parameters Values Parameters Values

Length of active link la 0.1800 m Radius of the fixed platform R 0.1350 m
Length of passive link lb 0.5000 m Radius of the moving platform r 0.0400 m

Mass of the moving platform mp 0.2231 kg Mass of the active link mb 0.3392 kg
Mass of the passive link ml 0.1412 kg Moment of inertia of the motor Im 0.000073 kg·m2

The test time was set to 10 s, and the sampling number was set to 20,001. The
traditional PID controller was used to verify the single-space (Cartesian space) trajectory
smoothing planning, and the proposed trajectory method was compared. The PID controller
parameters were set to KI = diag[3.05, 4.05, 3.05]T , KP = diag[75, 75, 70]T , and KD =
diag[10, 15, 10]T .

4.1. Simulations

In accordance with Equations (20)–(22), SolidWorks software was used to establish the
fixed platform, motor, active link, positive link, and other part models of the delta parallel
robot, and after assembly, Adams software was imported to build a multibody dynamic
system. We created the interface file with MATLAB in the Adams/Controls module and
called the system model established by the Adams software in the MATLAB programming
environment. The specific process is as follows:

(1) Save the 3D solid graphics in the SolidWorks software in the ∗.XT format by reading
the assembly file of this format inthe Adams software; the delta parallel robot model is
imported into the Adams multibody dynamic simulation environment.

(2) Define the material and quality attributes of each part in the Adams environment
and add the influence factors of gravity to improve the multibody dynamic system model
of the delta parallel robot in the Adams software, as shown in Figure 2a.

(3) Define the system’s state variables (angle/velocity) and create a torque association
between the input variables of the system and the single components.

(4) Set up the Adams/Controls module to realize data exchange between the Adams
and the MATLAB/Simulink,R2020a and generate the .m file. The control block diagram of
the Adams and MATLAB united simulation is shown in Figure 2b.

Figure 2. Simulation platform of the delta parallel robot. (a) The multibody dynamic system model
of the delta parallel robot in Adams software. (b) The control block diagram of Adams and MATLAB
software united simulation.

Two trajectory comparison methods have been adopted in this paper: one is to map
the trajectory planned in Cartesian space to joint space through inverse kinematics (without
quadratic trajectory planning), and the other is to map the trajectory planned in Cartesian
space to joint space through inverse kinematics and the quintic B-spline curve proposed in
Section 2.2 for quadratic trajectory planning.
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The end-effector motion trajectory of the delta parallel robot was selected as a five-
pointed star curve. A total of 11 data points of the curve were given, and the start and end
weight factors were selected as 1.0, respectively; the rest were 0.9. The trajectory of the end
effector in Cartesian space is shown in Figure 3.

Figure 3. End-effector trajectory of the delta parallel robot in Cartesian space.

The trajectory planned in the Cartesian space can be mapped to the joint space through
the inverse kinematic transformation of the delta parallel robot. If the trajectory of each
joint runs according to the mapped trajectory, process vibrations will be generated, which
are usually suppressed by the control method. In this paper, the mapped trajectories were
quadratically planned so that the trajectories could be smoothed in joint space. When the
same PID control was adopted, the trajectory tracking curves of each joint for quadratic
planning and nonquadratic planning were derived and are shown in Figure 4. The joint
torque is shown in Figure 5. After the process vibrations were suppressed by quadratic
trajectory planning, the comparison of quadratic planning trajectory tracking errors as
found and is shown in Figure 6.

Figures 3 and 4 show that the PID controller could effectively track the desired tra-
jectory of the Cartesian space trajectory planning and the quadratic trajectory planning in
the joint space, and its steady-state error was kept within 2× 10−3 rad. Figures 5 and 6
show that quadratic trajectory planning in joint space could effectively improve the process
vibration phenomenon caused by corner discontinuity of the adjacent straight segments.
The torque curve was smooth, and the root-mean-square value was reduced. The value
pairs of the trace tracking error and control moment root mean square are shown in Table 2.

Table 2. Comparison of the root mean square of the control moment.

Torque Moment (‖τ‖RMSE (N·m))

Joint Without Quadratic
Planning

With Quadratic
Planning Reduction Rate

1st 0.7309 0.7308 0.014%
2nd 0.5716 0.5707 0.015%
3rd 0.8822 0.8817 0.057%
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Figure 4. Trajectory tracking curves of each joint for quadratic planning and nonquadratic planning.
(a) Ioint 1#. (b) Ioint 2#. (c) Ioint 3#.

Figure 5. Joint torque with quadratic planning and nonquadratic planning. (a) Without quadratic
planning. (b) With quadratic planning.
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Figure 6. Trajectory tracking error with quadratic planning in joint space.

4.2. Experiments

The experimental platform of the delta parallel robot based on the EtherCAT com-
munication mode was constructed. The motion control card was selected from the Googo
GEN-009-00 series, which is EtherCAT’s distributed clock device that ensures synchronous
movement between the various axes, thus avoiding position deviation in the time response
due to the strong coupling characteristics between the various axes. Based on the Ether-
CAT master–slave architecture, three slave stations were configured on the experimental
platform. The model number is JSDG2S-15A-E, and the connection cables are CAT5E-STP
RJ45 industrial ethernet cables. The motor model is JSMA-PBC04AAKB, the speed of the
motor is 3000 rpm, the rated power is 400 W, the moment of inertia is 0.000073 kg·m2, and
the reduction ratio of the motor reducer is 1:25. The experimental platform of the delta
parallel robot is shown in Figure 7.

Figure 7. The experimental platform of the Delta parallel robot.

The interpolation points obtained from Cartesian space were mapped to joint space
through inverse kinematics, and the fifth dimension uniform B-spline curve was used as
the input data for the second interpolation and trajectory smoothing planning of the angle.
The angular velocity, angular acceleration, and angular jerk were obtained in joint space,
which are shown in Figures 8–10, respectively.
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Figure 8. Trajectory tracking of each joint with proposed method and in Cartesian space. (a) Joint 1.
(b) Joint 2. (c) Joint 3.

Figure 9. Tracking error of each joint with proposed method and in Cartesian space. Comparison of
joint velocity trajectories in joint space. (a) Joint 1. (b) Joint 2. (c) Joint 3.

The control torque of the three joints is shown in Figure 10.
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Figure 10. Comparison of joint acceleration trajectories in joint space.

Figures 8 and 9 show that, compared to the single-space (Cartesian space) trajectory
planning, the trajectory planning algorithm combining joint space could obtain a smoothing
trajectory, and the discontinuity of the jerk curve and trajectory mutation could be effectively
improved under the same controller (a traditional PID). Among them, the peak tracking
errors of joint 2 and 3 were 29% and 44% lower, respectively, than that of the single-space
trajectory planning, and the error value of joint 2 was smaller in the 5 s transition stage.
The errors rapidly converged at the initial stage of the three joints.

The comparison of the peak values of the trajectory tracking errors is shown in Table 3.

Table 3. Comparison of the peak values of trajectory tracking errors.

The Peak Value of Trajectory Tracking Error (rad)

Joint Cartesian Space Combining Cartesian
and Joint Space Reduction Rate

1st 0.0057 0.0051 10.53%
2nd 0.0068 0.0040 41.18%
3rd 0.0072 0.0040 44.44%

Figure 10 shows that the peak torque reduction rate of joint 2 of the trajectory obtained
by the proposed trajectory planning algorithm was 11.6%, and the torque change trend
was gentle. Although the peak torque reduction rates of joints 1 and 3 were 3.5% and
1.6%, respectively, it can be seen from the torque amplification diagram that the torque
vibration and shock phenomena at the transition of the adjacent line segments, such as 2 s,
3 s, and 6 s, were effectively reduced when the acceleration chattering was improved. A
comparison of the peak values of the control torque is shown in Table 4.
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Table 4. Comparison of the peak values of control torque.

Peak Value of Control Torque τmax/(N·m)

Joint Cartesian Space Combining Cartesian
and Joint Space Reduction Rate

1st 3.2909 3.1743 3.54%
2nd 3.9193 3.4657 11.65%
3rd 3.0056 2.9584 1.57%

5. Conclusions

In order to solve the problem of process shocks and vibrations caused by tangential
discontinuity at the corner of small line segments in the trajectory planning of the delta
parallel robot end effector, a smooth trajectory planning method based on the combination
of the cubic trajectory planning in Cartesian space and the quintic uniform B-spline curve in
joint space has been proposed in this paper. (1) The trajectory smoothing planning method
combined with Cartesian space and joint space effectively solves the trajectory smoothing
problem with the continuous high-order curves’ derivatives, and the obtained joint jerk is
continuously smooth. (2) The proposed method can make the robot’s end effector move
precisely along a smooth trajectory while making the angular velocity, acceleration, and
jerk of the joint continuously smooth without impact. (3) Smooth trajectory planning
was carried out from the two aspects of robot kinematics and dynamics, wherein the
peak tracking error for joint 1, joint 2, and joint 3 reduced by 10.53%, 41.18% and 44.44%,
respectively, and the maximum joint torque reduction was 11.65%, thereby effectively
reducing the vibration and impact during the movement.
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