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Abstract: The near-future parking space availability is informative for the formulation of parking-
related policy in urban areas. Plenty of studies have contributed to the spatial–temporal prediction for
parking occupancy by considering the adjacency between parking lots. However, their similarities in
properties remain unspecific. For example, parking lots with similar functions, though not adjacent,
usually have similar patterns of occupancy changes, which can help with the prediction as well. To fill
the gap, this paper proposes a multi-view and attention-based approach for spatial–temporal parking
occupancy prediction, namely hybrid graph convolution network with long short-term memory
and temporal pattern attention (HGLT). In addition to the local view of adjacency, we construct a
similarity matrix using the Pearson correlation coefficient between parking lots as the global view.
Then, we design an integrated neural network focusing on graph structure and temporal pattern to
assign proper weights to the different spatial features in both views. Comprehensive evaluations on
a real-world dataset show that HGLT reduces prediction error by about 30.14% on average compared
to other state-of-the-art models. Moreover, it is demonstrated that the global view is effective in
predicting parking occupancy.

Keywords: parking occupancy prediction; multi-view; graph convolution; time pattern attention

MSC: 68T09

1. Introduction

The huge number of vehicles in urban areas has posed many challenges not just to
the dynamic transportation systems but also to the static ones. For example, an instance
investigation [1] showed that only about 25% drivers did not cruise to find parking in the
central business district of cities, which can result in unnecessary traffic congestion [2]
and lead to additional emissions [3]. To reduce cruising time and optimize parking space
utilization, various parking-related smart services have been developed, e.g., parking
guidance, dynamic pricing, and space sharing [4,5]. As the foundation to enable these
services, a spatial–temporal parking occupancy prediction method is required for regional
parking occupancy prediction to provide the near-future parking occupancy in urban areas.

Spatio-temporal prediction is essential to further address parking challenges and opti-
mize the operation of intra-city traffic flows compared to time series prediction, as today’s
urban areas are well connected to each other. In this context, two challenges are emerg-
ing. First, the underlying features hidden in spatial–temporal data should be extracted to
promote spatial–temporal parking occupancy prediction [6,7]. Moreover, considering that
multivariate variables are introduced for spatial–temporal parking occupancy prediction,
the flexible weighting of them is needed to achieve fair and reasonable predictions [8].

In the last decade, recurrent neural networks (RNNs) have dominated the time-series
prediction in transportation research [9]. However, spatial dependencies are ignored in
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these methods. To fill the gap, plenty of related studies have recently proposed to utilize
graph neural networks (GNNs) to embed adjacent relationships into time-series data,
and achieve spatial–temporal prediction by combining GNNs with RNNs [10]. Such an
integration has contributed to outstanding improvement in predictive accuracy. However,
the fixed adjacent graph used in these methods has been always criticized due to the lack of
a global view. We argue that parking lots with similar functions, though not adjacent, will
generate similar demand changes, e.g., parking occupancy in different business districts
would respond similarly to holidays [11]. Such a synchronization can be helpful for the
spatial–temporal parking occupancy prediction. Moreover, even though many studies on
traffic condition prediction have employed a novel technique, i.e., attention mechanism [12],
for better parameter weighting in the past few years [13], an integration method is still
lacking for the near-future spatial–temporal parking occupancy prediction via building an
effective model with graph and temporal attentions.

To fill the research gap, we proposed a multi-view and attention-based approach for
spatial–temporal parking occupancy prediction, namely hybrid graph convolution network
with long short-term memory and temporal pattern attention (HGLT). The proposed
approach HGLT consists of two modules: (1) The multi-view spatial module utilizes
two separate graph attentional networks (GATs) [14] to extract the spatial features hidden
in the adjacency and similarity matrices, respectively. The similarity between parking lots
is measured by the Pearson correlation coefficient [15]. (2) The multivariate temporal module
employs long short-term memory (LSTM) and temporal pattern attention (TPA) [13] to decode
the multiple features given by the spatial module. A real-world dataset containing 35 parking
lots in Guangzhou, China is used for model validation. The results empirically show that
HGLT obtains the highest scores in all the six evaluation metrics, namely mean squared error
(MSE) 0.0014, root mean square error (RMSE) 0.0353, mean absolute error (MAE) 0.0221, mean
absolute percentage error (MAPE) 10.11%, relative absolute error (RAE) 15.47% and r-square
(R2) 86.04%. Compared to the state-of-the-art baselines, the proposed method reduces the
prediction errors by 30.14% on average, and improves the degree of fit of the proposed method
by 18.8% in R2 on average in four prediction intervals. Moreover, the ablation experiment
demonstrates the effectiveness of each component in the proposed model, and the global view
can bring a 28.19% improvement in accuracy on average.

The main contributions of the study are as follows:

• In addition to the local view of adjacency, we consider the similarity in occupancy
changes between parking lots in a global view to introduce more helpful information
for prediction. The similarity between parking lots is determined by a typical metric
for linear correlation, i.e., Pearson correlation coefficient.

• We design a hybrid graph convolution network to extract spatial features and in-
tegrate temporal pattern attention (TPA) to assign reasonable weights to different
spatial features.

• The proposed approach HGLT is tested on a real-world dataset, and the results of
the experiment empirically demonstrate that HGLT outperforms the representative
models, and each component in the proposed method is effective.

2. Related Work

Regional parking occupancy prediction is one of the foundations of parking manage-
ment and guidance systems, which can be considered a typical spatial–temporal prediction
problem. Reliable and accurate regional parking occupancy prediction can recommend
suitable parking spaces for drivers and help city managers dynamically adjust parking
management strategies to improve the utilization of parking resources [16,17].

Previous studies on parking occupancy prediction fell into three main categories, i.e.,
statistical models, machine learning methods and deep neural networks. The statistical
models make predictions by extracting the linear correlation of time series. For example,
autoregressive integrated moving average (ARIMA) is utilized to predict the unoccupied
parking space [18], which performs well when the change in remaining berth is relatively
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flat. However, the nonlinear correlation in the parking occupancy sequences remained
unspecific in these studies, leading to poor prediction performance during sharp fluctua-
tions [19]. Machine learning methods are widely used for parking lot occupancy prediction
because they do not require linear assumptions. For example, a short-term prediction model
for available parking space is proposed [20], which achieves a more accurate performance
with a more efficient structure than the largest Lyapunov exponents (LEs) method. Com-
bining the Support Vector Regression (SVR) and Fruit Fly Optimization Algorithm (FOA),
a vacant parking space prediction method is proposed [21], which performs better than the
back-propagation neural network (BPNN). A parking availability prediction model based
on neural networks and random forests is proposed to demonstrate the role of WoT and
AI in smart cities [22]. In recent years, computational and storage capabilities have been
evolving, and deep learning has been widely used for intelligent traffic status prediction
and parking occupancy prediction [23–26]. For example, a novel long short-term memory
recurrent neural network (LSTM-NN) model is proposed to make multistep prediction
for parking occupancy based on historical information [27]. A parking vacancy prediction
model named DWT-Bi-LSTM was recently proposed, which combines wavelet transform
(WT) and bi-directional long-short term memory (Bi-LSTM) [28] to decompose time series
at multiple scales and extract bi-directional temporal features, respectively. However, the
above studies only considered the temporal patterns and ignored the spatial correlation
between parking lots.

Regional parking occupancy prediction needs to extract the spatial–temporal correla-
tion. For example, an auto-regressive model [29] and a boosting method [30] for on-street
parking availability prediction were proposed at an earlier time, which consider both
temporal and spatial correlation. A neural network model for block-level parking lot
occupancy prediction was proposed to extract spatial relationships of traffic flow using the
convolutional neural network (CNN) and capture temporal correlation using stacked LSTM
autoencoder [31], and the model outperformed multi-layer LSTM and Lasso. However,
the non-Euclidean spatial correlation between parking lots is not taken into account by the
CNN, and its prediction performance is limited. Since graph neural networks (GNNs) are
good at processing non-Euclidean graph structure data [11,32,33], they have been widely
used for spatial–temporal prediction in transportation research, such as traffic flow and
speech [11,34–36]. Spatial–temporal parking occupancy prediction is not an exception. An
illustration is the graph convolutional neural network and long short-term memory net-
work (GCN-LSTM) [37], which uses graph convolutional neural networks to extract spatial
relationships of traffic flows in large-scale networks and learns temporal features using
long short-term memory (LSTM). For the purpose of further improvement in feature repre-
sentation, attention mechanisms are introduced. Examples include hybrid spatial–temporal
graph convolutional networks (HST-GCNs) [38] and semi-supervised hierarchical recurrent
graph neural networks-X (SHARE-X) [39]. The HST-GCN introduces a focus mechanism
based on the similarity of parking duration distributions to take into account long-term
spatio-temporal correlations. SHARE-X employs a hierarchical graph attention module to
learn the adjacencies between parking lots. A hierarchical recurrent network module was
also constructed to incorporate short-term and long-term dynamic temporal dependencies
of parking lots. Although these GNN-based methods contribute to introducing adjacent re-
lationships between parking lots, features hidden in the parking lots with similar functions
are omitted. Furthermore, an integrated model with graph attention and temporal pattern
attention is still missing in spatial–temporal parking occupancy prediction.

In summary, previous spatial–temporal parking occupancy prediction methods mainly
use GNNs to extract spatial correlation and RNNs to extract temporal correlation. These
methods only consider the adjacency between parking lots but not the global correlation in
spatial dependencies. And they do not consider the influence degree of different spatial
dependencies on the prediction results. To fill these gaps, we propose a multi-view and
attention-based model integrated by GAT, LSTM and TPA, which considers not just the
adjacency between parking lots but also the similarity in parking occupancy changes.
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3. Methodology

As shown in Figure 1, the proposed approach consists of a multi-view spatial module
and multivariate temporal module. Specifically, the multi-view spatial module employs
GAT to embed the graph data (i.e., the distance-based adjacency and correlation-based
similarity) into dense vectors. The multivariate temporal module aligns LSTM and TPA to
extract the underlying patterns hidden in the spatial–temporal features (i.e., the embedded
vectors) given by the spatial module. Details of our method are discussed in the following
subsections. There are three colors of squares in the model overview. Each colored square
represents a feature of a viewpoint. The orange square indicates the matrix formed by
the input raw data x. The blue squares indicate the matrices of the hidden layers of GAT
S whose graph structure is generated based on distance. The green squares indicate the
matrices of the hidden layers of GAT S′ whose graph structure is generated based on
similarity. The number of rows of these matrices is equal to the length of the sequence
l. The number of columns of these matrices is equal to the number of parking lots. The
feature matrices of different colors are stacked into a 3D tensor u and fed into a multivariate
temporal module to achieve prediction after temporal feature extraction and attention
allocation. In addition, the gray elements represent learnable model components. To ensure
the seamless integration, the structure of each network component is shown in Table 1.

Dataset

Graph generation 

based on distance

Graph generation 

based on 

similarity

t

t

t

GAT

GAT

GAT

GAT

stack

LSTM

TPA

CNN

Attention 
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…
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Prediction result

…
…

𝑺𝐾
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𝑺1
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 Multi-view  spatial module 𝐱

𝐮

Figure 1. Overview of the proposed model structure.

Table 1. The list of network structure.

Network Structure

GAT
Input (batch, N, l, G)

Output (batch, N, l, G)

LSTM
Input (batch×N, l, m)

Hidden (batch×N, l, m)
Layer 2

TPA
Input (batch×N, l, m)

Output (batch, N)
N, l, G, m denote the number of nodes, sequence length, graph, and the number of feature maps, respectively.

3.1. Problem Definition

In our work, parking occupancy is defined as the division of the number of in-used lots
and the capacity of parking lots, ranging between 0 and 1. The objective of regional parking
occupancy prediction is to use a unified model to simultaneously predict the near-future
parking occupancy of multiple parking lots within a region based on the historical records
of the specific region.
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By considering parking lots as nodes and their relationships (such as distances and
similarities) as edges, the objective function can be written as Equation (1), where xt

represents the observed occupancy of all nodes at time t in a specific area, while y represents
the predicted ones at time t + ∆t; l denotes the look-back window size, and ∆t denotes the
predictive interval for the data-driven prediction model HGLT, respectively. Furthermore,
given N parking lots in the studied area, xt = [xt

1, xt
2, xt

i , ..., xt
N ], where xt

i is the value of
occupancy in park i at time t, and the same for y. The problem can be formulated as

y = HGLT(xt−l+1, xt−l+2, ..., xt, Gd, Gs) (1)

where Gd and Gs denote the distance-based graph and similarity-based graph, respectively,
which are described below.

3.2. Multi-View Spatial Module

We argue that parking-related spatial features can be categorized into two groups,
i.e., distance-based adjacency and correlation-based similarity. From a local perspective,
parking demand will propagate between neighboring parking lots, especially during peak
hours. For example, when a park becomes crowded or its price is increased, drivers will be
inclined to choose the neighboring parking lots as an alternative. Since such a propagation
will decline as the distance increases, we determine the local spatial relationships between
parking lots by their distances. On the other hand, from a global perspective, the features
hidden in the parking lots with similar functions should be considered. For example,
two commercial parking lots with the same type or points of interest will have similar
patterns of change in parking occupancy. Moreover, parking lots for industrial areas will
have high occupancy during work hours due to daily commuting, while the occupancy of
parking lots for residential areas will be relatively low during this period. Therefore, we
can also find a strong correlation between non-adjacent parking lots.

Therefore, to be comprehensive, the proposed method first constructs two graph
structures based on distance and similarity, respectively. Then, two separate hierarchical
graph attention mechanisms are employed to extract local and global spatial features from
the two graphs, respectively.

3.2.1. Graph Convolution Based on Distance

We utilize the graph attentional network (GAT) [14] to simulate the demand propaga-
tion between parking lots. Specifically, by considering the traffic net as a graph, parks can
be viewed as the nodes, while the connectivity of two parking lots can be viewed as the
edges. In this work, the connectivity is determined by distance. Let Gd be the graph based
on distance. The connectivity of the i-th and j-th parking lot can be determined as follows:

ed
i,j =

{
1, if di,j ≤ D
0, if di,j > D

(2)

where di,j is the distance of the i-th and j-th parking lots in the road network, and D is
the threshold value which can be set based on experience. ed

i,j represents the state of the
connection between the the i-th and j-th parking lots. A value of 1 for ed

i,j means that the i-th
and j-th parking lots are connected, while a value of 0 means that they are not connected.

The computing processes of GAT are divided into two steps. The input is a ma-
trix x = [x1, x2, ..., xN ], where xi is the input hidden state of the i-th node from moment
t− l + 1 to moment t, and N is the number of the nodes. The output of GAT is a matrix
S = [s1, s2, ..., sN ], where si is the output hidden state of the i-th node from moment t− l + 1
to moment t. Based on the Gd, the attention score wd

i,j of the i-th and j-th nodes is expressed
as Equation (3):

wd
i,j = FG(xi, xj, Wd, b) = LeakyReLU(Wd(xi ‖ xj) + b) (3)
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where Wd is the parameter matrix of the fully connected network, and b is the bias of the
fully connected network. “‖” means vector concat. LeakyReLU is a nonlinear activation
function expressed as Equation (4):

LeakyReLU =

{
z, if z ≥ 0
0.01z, if z < 0

(4)

where z represents the input variable.
Then, the hidden statuses are updated. For each node in the graph, the attention score

of all its neighboring nodes is normalized using the softmax function. The calculation can
be expressed as Equation (5):

αd
i,j =

exp(wd
ij)

∑k∈Ni
exp(wd

ik)
(5)

where Ni stands for the set of i-th node’s neighbors.
The output hidden state of the i-th node is calculated by the weighted average of

neighboring nodes and the ReLU function, which is expressed as Equation (6):

si = ReLU(∑j∈Ni
αd

ijxj) (6)

Note that to prevent overfitting, dropout should be used in each layer of GAT (by
default 0.2) as recommended in the original GAT paper [14]. Same below in Section 3.2.2.

Since a single layer of graph convolution can only consider the impact of neighboring
parking lots, we use multi-layer graph convolution to model the impact of parking lots at
different distances and output the results of each layer of graph convolution as features.
Let the number of layers be K.

3.2.2. Graph Convolution Based on Similarity

The parking occupancy of a target parking lot may be synchronized with and show
a similar or opposite parking occupancy change pattern to the parking occupancy of
non-neighboring parking lots, which makes datasets of different parking lots strongly
correlated. We adopt the Pearson correlation coefficient to model the synchronization
between parking lots. If the Pearson correlation coefficient between two parking lots
exceeds the threshold value, the two parking lots are considered connected. Then, we
can construct a graph structure based on the Pearson correlation coefficient. The Pearson
correlation coefficient is a statistical measure that quantifies the strength and direction of
a linear relationship between two continuous variables. In other words, it measures how
much one variable changes when the other variable changes in a linear fashion. Typically,
when the coefficient < −0.4 or >0.4, the two variables are considered to be correlated at
medium strength and above. The Pearson correlation coefficient between the i-th and j-th
parking lots ci,j is calculated as follows:

ci,j =
∑n

t=1
(
xt

i − x̄i
)(

xt
j − x̄j

)
√

∑n
t=1
(
xt

i − x̄i
)2
√

∑n
t=1

(
xt

j − x̄j

)2
(7)

where xt
i and xt

j are the parking occupancy of the i-th and j-th parking lots at time step t,
and x̄i and x̄j are the average value of the parking occupancy of the i-th and j-th parking
lots. n is the length of the time series.

Let Gs be the graph based on similarity. The connectivity of the i-th and j-th parking
lots can be determined as follows:
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es
i,j =

{
1, if |ci,j| ≤ C
0, if |ci,j| > C

(8)

where ci,j is the Pearson correlation coefficient of the i-th and j-th parking lots in the road
network, and C is the threshold value which can be set according to the actual needs. es

i,j
represents the state of the connection between the i-th and j-th parking lots. A value of 1
for es

i,j means that the i-th and j-th parking lots are connected, while a value of 0 means
that they are not connected.

The computing processes of GAT are divided into two steps. The input is a ma-
trix x = [x1, x2, ..., xN ], where xi is the input hidden state of the i-th node from moment
t− l + 1 to moment t, and N is the number of the nodes. The output of GAT is a ma-
trix S

′
= [s

′
1, s

′
2, ..., s

′
N ], where s

′
i is the output hidden state of the i-th node from moment

t− l + 1 to moment t. Based on the Gd, the attention score wd
i,j of the i-th and j-th nodes is

expressed as Equation (9):

ws
i,j = FG(xi, xj, Ws, b) = LeakyReLU(Ws(xi ‖ xj) + b) (9)

where Ws is the parameter matrix of the fully connected network, and b is the bias of the
fully connected network. LeakyReLU is a nonlinear activation function like Equation (4).
“‖” means vector concat.

Then, the hidden statuses are updated. For each node in the graph, the attention score
of all its neighboring nodes is normalized using the softmax function. The calculation can
be expressed as Equation (10):

αs
i,j =

exp(ws
ij)

∑k∈Ni
exp(ws

ik)
(10)

where Ni stands for the set of the i-th node’s neighbors.
The output hidden state of the i-th node is calculated by the weighted average of

neighboring nodes and the ReLU functions, which is expressed in Equation (11):

s
′
i = ReLU(∑j∈Ni

αs
ijxj) (11)

To model the impact of parking lots with different levels of synchronization, we use
multi-layer graph convolution and output the results of each layer of graph convolution as
the features. Let the number of layers be K.

Then, we stack the input vector and the output of each layer of the graph convolution
modules as a feature matrix. The feature matrix can be expressed as follows:

ut = [x, S1, S2, ..., SK, S
′
1, S

′
2, ..., S

′
K] (12)

where K is the the number of layers.

3.3. Multivariate Temporal Module

As shown in Figure 2, the proposed method adopts LSTM and TPA to detect the
temporal pattern across multiple time steps in the feature series and assign weight to
different features. First, the stacked feature tensor is fed to LSTM to exact the temporal
feature. The hidden layer states of LSTM are divided into two parts. The hidden layer states
from moment t− l to moment t form the state matrix H, and the hidden layer state at the
current moment t is used separately for scoring function computation and final prediction.
Then k 1D CNN filters are separately used to convolve along the rows of the matrix to form
a new feature matrix H

′
. Each colored box represents a convolution result of one filter in

the feature matrix H
′
. Then, the scoring function calculates the attention weights for each

row of the feature matrix H
′
. The feature vector vt is obtained by the weighted summation
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of the rows of the feature matrix H
′

and combined with the hidden layer state at the current
moment t to make the final prediction.

LSTM

ℎ𝑡−𝑙+1

…...

ℎ𝑡

ℎ𝑡−𝑙 ℎ𝑡−1

𝐻𝑚,1
′ 𝐻𝑚,2

′ 𝐻𝑚,𝑘
′…...

𝐻1,1
′ 𝐻1,2

′ 𝐻1,𝑘
′…...

𝐻2,1
′ 𝐻2,2

′ 𝐻2,𝑘
′…...

…
…

…
..

Scoring 

Function

𝛼1

𝛼2

𝛼𝑚

…
…

…
..

𝑣𝑡

ℎ𝑡
′

y

ℎ𝑡

stack

u

Figure 2. The structure of multivariate temporal module.

3.3.1. Long Short-Term Memory

In order to extract the high-dimensional temporal patterns in parking occupancy, we
adopt LSTM to build the temporal module. LSTM is a modified recurrent neural network
(RNN) for processing and predicting significant events in time series with long intervals
and delays [40].

LSTM generally defines a recurrent function FL and calculates ht for current time t,
as Equation (13):

ht, ut = FL(ht−1, ut−1, ft) (13)

where ht ∈ Rm is the hidden layer state of the LSTM at time t; m is the dimension of
variables; ft ∈ Rm is the final state of memory cell at time t; and ut is the value of feature
sequence at time t.

The calculation is defined by Equation (14):

it = sigmoid(Wui ut + Whi
ht−1)

ft = sigmoid(Wu f ut + Wh f
ht−1)

ot = sigmoid(Wuo ut + Who ht−1)

st = ft � ut−1 + it � tanh(Wug ut + Whg ht−1)

ht = ot � tanh(ut)

(14)

where t is the time step, it is the input gate, ft is the forget gate, and ot is the output gate.
it, ft, and ot ∈ Rm. Wui , Wu f , Wuo , Wug , Whi

, Wh f
, Who and Whg are the coefficient matrix.

Wui , Wu f , Wuo and Wug ∈ Rm×r, m, r are the dimension of the variable. Whi
, Wh f

, Who and
Whg ∈ Rm×m, and � denotes the element-wise multiplication.

3.3.2. Temporal Pattern Attention

Different spatial features are extracted in the spatial module. Different spatial features
have different degrees of influence on the prediction results. Therefore, assigning different
weights to different feature sequences can improve the prediction accuracy. A typical
attention mechanism selects information from the previous time steps that is relevant to the
current time step to help prediction but fails to capture temporal patterns across multiple
time steps. And when there are multiple variables in each time step, the typical attention
mechanism fails to select the variables relevant to the target time step. The temporal
patterns attention (TPA) mechanism can assign weights to different variables to select those
variables that are helpful for prediction. According to the state matrix of LSTM, the TPA
first detects temporal patterns using CNN, then calculates the context vector vt with the
attention mechanism and makes a prediction with the context vector vt at last.
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As is shown in Figure 2, the state matrix H consists of previous hidden layer states of
LSTM, which is presented as Equation (15):

H = [ht−l , ht−l+1, ..., ht−1] (15)

where t is the current moment, and l is the window size.
To detect the temporal pattern across multiple time steps in the feature series, the TPA

module applies one-dimensional CNN filters on the row vectors of state matrix H. As is
shown in Figure 2, there are k one-dimensional CNN filters fC

i ∈ Rl with length l. The
rectangles in different colors represent different filters. Each filter convolves over m features
of state matrix H and produces a matrix H

′
with m rows and k columns. H

′
i,j represents

the convolutional value of the i-th row vector and the j-th filter. The operation is given
as Equation (16):

H
′
i,j =

l

∑
l=1

Hi,(t−l−1+l) × fC
j,l (16)

As is shown in Figure 2, according to the matrix H
′
, the scoring function calculates

a weight for each row of H
′

by comparing it with the current hidden layer state ht. Then,
the context vector vt is calculated by the weighted sum of the row vectors of H

′
. Then, the

final prediction value is calculated with the context vector vt and the current hidden layer
state ht.

The scoring function Ff is defined as Equation (17).

Ff (H
′
, ht) = H

′
iWaht (17)

where H
′
i is the i-th row of H

′
, Wa is the coefficient matrix, and Wa ∈ Rk×m.

The attention weight of the i-th row vector of H
′
, αv

i , is calculated as Equation (18):

αv
i = sigmoid(Ff (H

′
, ht)) (18)

Then, the row vectors of H
′

are weighted by αv
i to calculate the context vector vt ∈ Rk:

vt =
m

∑
i=1

αv
i H

′
i (19)

Then, we integrate vt and ht to predict the target value:

h
′
t = Whht + Wv(vt)

T (20)

y = Wh′h
′
t (21)

where h
′
t is the integrated vector; y is the predictive value; Wh, Wv and Wh′ are the

coefficient matrix; ht and h
′
t ∈ Rm; Wh ∈ Rm×m; Wv ∈ Rm×k; and Wh′ ∈ R1×m.

4. Experiments and Results

In this section, the performance of the proposed method is tested with several repre-
sentative parking occupancy prediction methods and traffic condition prediction methods
through a real-world dataset.

4.1. Data Description

The dataset used in this paper consists of 35 parking lots in the central business district
of Guangzhou, China as shown in Figure 3. All data are collected in real application
scenarios. The types of parking lots are diverse (e.g., residential, commercial, hospital, and
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recreational). All parking lots have good property management and electronic access gates.
Parking occupancy records of 1–30 June 2018 have a minimum resolution of five minutes.
Therefore, from the temporal dimension, the data have a total of 8640 timestamps. Based on
the driving distances, we construct an adjacency matrix of parking lots as shown in Figure 3.
If the distance is less than 2 km, the two parks are considered connected with each other. In
addition, we construct a similarity matrix based on the Pearson coefficients with a threshold
of 0.4 between the studied parking lots as shown in Figure 4. By considering parking lots
as nodes and their relationships as edges, two graphs are provided to the proposed model
for spatial–temporal parking occupancy prediction.

4.2. Evaluation Metrics

In order to make a comprehensive and fair comparison, six metrics, i.e., mean absolute
percentage error (MAPE), mean absolute error (MAE), mean squared error (MSE), root
mean squared error (RMSE), relative absolute error (RAE), and R-Square Coefficient (R2) are
used as the indicators of the performance of compared models. Their calculation formulas
are presented in Equation (22):

MSE =
1
M

M

∑
i=1

(yi − ŷi)
2

RMSE =

√√√√ 1
M

M

∑
i=1

(yi − ŷi)2

MAE =
1
M

M

∑
i=1
|yi − ŷi|

MAPE =
1
M

M

∑
i=1
|yi − ŷi

yi
|

RAE =
∑M

i=1 |yi − ŷi|
∑M

i=1 |yi − ȳ|

R2 = 1− ∑M
i=1(yi − ŷi)

2

∑M
i=1(yi − ȳ)2

(22)

where yi and ŷi are the observed and predicted values of sample i, respectively; ȳ is the
mean value of samples; and M is the sample size.

4.3. Experimental Setup

Considering the huge success of neural networks (NNs) in spatial–temporal prediction,
we select six representative NN-based models as competitive approaches. (1) The fully
connected neural network (FCNN) is a network designed after the connectivity of biological
neurons, which cannot distinguish between different types of features. (2) Long short-term
memory (LSTM) [40] is an improved recurrent neural network with excellent temporal
feature extraction capability. (3) The graph attention network (GAT) [14] is a neural network
running on graph-structured data, which is able to assign different weights to different
nodes in the neighborhood. (4) Du-parking [41] is a deep learning parking occupancy
prediction model for Baidu Map, which is a business model that has been widely used
in major cities, such as Shenzhen and Beijing. The model improves on the LSTM and
consists of three main components that simulate the overall impact of the temporal data,
the cycle and the current general influence. (5) GCNN + LSTM [37] is a spatial–temporal
deep learning prediction model that uses graph convolutional neural networks (GCNNs)
to extract the spatial relations and utilizes long-short term memory (LSTM) to capture the
temporal features. (6) GATLSTM [42] is a model combining GAT and LSTM, which is able
to assign reasonable weights on the graph and learn spatial–temporal features. For this, the
typical prediction model LSTM is selected as the baseline.
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The training and test sets are divided according to a ratio of 8 to 2 in every parking lot,
which means the former 80% data can be used to train the model, and the remaining 20%
can only be used for evaluation, which is a strict prohibition of information disclosure. We
set the threshold of distance-based adjacency D to be 2 km, which is approximately 2 times
to the 80th percentile of 1.35 km in walking trips investigated by [43]. It can be assumed
that drivers will only look for parking in parking lots within a two-hop neighborhood
of the target parking lot, due to the distance. So the number of the graph propagation
K is set to 2. Then, the number of feature maps m is 5 (1 + 2 + 2). The five feature
maps include local occupancy feature, 1-hop similarity-based neighbors feature, 2-hop
similarity-based neighbors feature, 1-hop distance-based neighbors feature, and 2-hop
distance-based neighbors feature. According to the example in the original TPA paper,
the number of CNN filters is set equal to the feature dimension [13]. Therefore, the same
setting is used for the experiments in this paper, i.e., m = k = 5. The threshold of Pearson-
based similarity C is set to 0.4, leading to more than 60% of the edges’ eS = 1 as shown in
Figure 4. Note that the hyperparameters should be set according to the actual application
scenarios. Moreover, the test will be conducted to predict the parking occupancy rate
in four time intervals, namely 15, 30, 45 and 60 min. Note that their prediction time
steps are 3, 6, 9, and 12, respectively, as the temporal resolution of the dataset is 5 min.
Since we use one previous hour’s data for prediction, the sequence length l is set to 12.
And in all the learning methods, we use the uniform loss function MSE, which is widely
used in regression tasks. Finally, some important running configurations of the proposed
model and compared models are listed in Table 2. All the experiments are conducted on
a Windows workstation with an NVIDIA Quadro RTX 4000 GPU, an Intel(R) Core(TM)
i9-10900K CPU, and 64G RAM. To ensure that the model is reproducible, we share our code
on a Github link (https://github.com/kuanghx3/HGLT, acessed on 15 September 2023).

Parking lot: 

Figure 3. Spatial distribution of the studied parking lots.

https://github.com/kuanghx3/HGLT
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Figure 4. Pearson correlation between different parking lots.

Table 2. List of running configurations.

Model Param Value Comment

all models

lr 0.001 learning rate
max epoch 2000 -
optimizer Adam -

loss function MSE -
l 12 sequence length

∆t 3, 6, 9, 12 prediction interval

Graph-based models K 2 the number of graph propagation
D 2 km the threshold of distance-based adjacency

HGLT
C 0.4 the threshold of Pearson-based similarity
m 5 the number of feature maps
k 5 the number of the CNN filters in TPA

Du-parking - - ref to the original paper.

4.4. Experiment Results and Discussion

The performance of the evaluated methods is analyzed in three parts, namely (1) the
comparison experiment, to illustrate the good performance of the proposed model; (2) the
ablation experiment, to verify each module’s effectiveness for prediction accuracy improve-
ment; and (3) the feature importance, to demonstrate that the weight assignment of the
proposed model is effective and reliable.

4.4.1. Comparison Experiment

As shown in Table 3, the evaluation metrics of the compared models are summarized.
The results empirically show that the RNN model (i.e., LSTM) outperforms the GNN one
(i.e., GAT) in all the metrics, while GAT is even inferior to the model with the simplest neural
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network, i.e., FCNN, indicating that GNNs alone are ineffective for the spatial–temporal
prediction. Moreover, we can see that LSTM outperforms the integration of GCNN and
LSTM, but is inferior to that of GAT and LSTM, suggesting that the graph attentions can
bring better improvement in feature extraction than the typical graph convolution behavior.
In contrast, the proposed method HGLT reduces the prediction error significantly with the
highest scores in all six evaluation metrics, namely MSE 0.0014, RMSE 0.0353, MAE 0.0221,
MAPE 10.11%, RAE 15.47% and R2 86.04%. Compared to other methods, the proposed
method reduces the prediction errors by 30.14% on average, especially with a 38.15%
reduction in MSE, a 21.12% reduction in RMSE, a 23.81% reduction in MAE, a 43.78%
reduction in MAPE, and a 23.81% reduction in RAE, and improves the degree of fit of the
proposed method by 18.8% in R2 on average in four prediction intervals. Furthermore,
the proposed method HGLT on average reduces the prediction error over the baseline
model LSTM by 17.42% in MSE, 10.22% in RMSE, 8.43% in MAE, 17.02% in MAPE, and
8.43% in RAE, and improves the degree of fit of the proposed method by 1.94% in R2. And
compared to GATLSTM, the proposed method HGLT on average reduces the prediction
error by 8.93% in MSE, 5.05% in RMSE, 3.64% in MAE, 9.76% in MAPE, and 3.64% in RAE,
and improves the degree of fit of the proposed method by 1.26% in R2. The comparisons
illustrate that the spatial and temporal modules can work jointly and smoothly to achieve
the best performance.

To evaluate the learning capability of compared models, a line plot is drawn to
illustrate their convergence profile in the training process. As shown in Figure 5, a best
convergence profile is obtained by the proposed model. The black line see a loss drop at
around 130 epochs, while other models require more than 250 epochs. Moreover, in the
800th epoch, the loss of the model in this paper is decreased closely to e−7, while the loss
of other models except GATLSTM is still around e−6, where e is the natural logarithm. In
addition, the outstanding performance obtained by GATLSTM indicates again that the
graph attention is effective for the spatial–temporal parking occupancy prediction.

0 100 200 300 400 500 600 700 800
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6

5

4

3

2

ln
 (M

SE
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ss
)

GAT
FCNN
Du-parking
GCNN+LSTM
LSTM
GATLSTM
HGLT

Figure 5. Convergence profile of the compared models.
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Table 3. The list of evaluation metrics of compared models in different intervals.

Metrics (×10−2) MSE RMSE
Model 15 min 30 min 45 min 60 min Average 15 min 30 min 45 min 60 min Average

GAT 0.32 0.39 0.47 0.56 0.43 5.66 6.25 6.86 7.45 6.56
FCNN 0.09 0.15 0.23 0.32 0.20 3.01 3.91 4.78 5.61 4.33

Du-parking 0.08 0.14 0.22 0.31 0.19 2.80 3.78 4.72 5.59 4.22
GCNN + LSTM 0.08 0.14 0.21 0.29 0.18 2.78 3.70 4.58 5.40 4.11

LSTM 0.07 0.12 0.19 0.27 0.16 2.70 3.49 4.35 5.20 3.94
GATLSTM 0.06 0.11 0.18 0.25 0.15 2.36 3.30 4.19 5.03 3.72
proposed 0.05 0.09 0.17 0.23 0.14 2.17 3.04 4.09 4.84 3.53

Metrics (×10−2) MAE MAPE
Model 15 min 30 min 45 min 60 min Average 15 min 30 min 45 min 60 min Average

GAT 4.35 4.72 5.11 5.49 4.92 36.11 38.24 40.54 43.06 39.49
FCNN 1.79 2.36 2.91 3.46 2.63 8.60 12.02 15.65 19.42 13.92

Du-parking 1.72 2.32 2.89 3.45 2.60 12.29 15.35 18.60 22.04 17.07
GCNN + LSTM 1.73 2.27 2.80 3.30 2.52 10.39 12.81 15.28 17.75 14.06

LSTM 1.61 2.13 2.68 3.22 2.41 8.31 10.94 13.41 16.09 12.19
GATLSTM 1.43 2.01 2.58 3.13 2.29 7.44 9.39 12.32 15.68 11.21
proposed 1.38 1.85 2.61 2.98 2.21 6.68 8.13 12.23 13.41 10.11

Metrics (×10−2) RAE R2

Model 15 min 30 min 45 min 60 min Average 15 min 30 min 45 min 60 min Average

GAT 30.55 33.13 35.84 38.50 34.51 28.74 20.68 12.58 5.34 16.83
FCNN 12.55 16.54 20.44 24.27 18.45 92.03 86.84 80.67 73.62 83.29

Du-parking 12.06 16.28 20.30 24.21 18.21 92.86 87.42 81.03 73.87 83.79
GCNN + LSTM 12.11 15.95 19.61 23.11 17.69 90.89 84.84 78.07 71.23 81.26

LSTM 11.29 14.91 18.77 22.58 16.89 93.06 88.06 81.82 74.66 84.40
GATLSTM 10.00 14.13 18.10 21.97 16.05 93.81 88.58 82.34 75.16 84.97
proposed 9.71 12.95 18.29 20.91 15.47 94.58 90.12 82.09 77.37 86.04

The bolded items are the best ones.

4.4.2. Ablation Experiment

In order to verify the effectiveness of each component in our model, i.e., the graph
attentions on adjacency and similarity, the temporal modules with LSTM and TPA, we
conduct an ablation experiment with all the parking lots in all the four prediction intervals.
The results are illustrated in Table 4. The usefulness of a module can be demonstrated by the
decrease in accuracy, i.e., the more the accuracy decreases after removing it, the more useful
the module is. From the table, the proposed model has a 43.45% improvement over the
model without LSTM on average, a 28.80% improvement over the model without adjacency,
a 28.19% improvement over the model without similarity, and a 9.85% improvement over
the model without TPA. It can be concluded that LSTM plays the most significant role in
spatial–temporal parking occupancy prediction. More importantly, although the adjacent
graph relationship ranks second, the graph convolution based on similarity between
parking lots provides 28.19% improvement in accuracy on average, ranking third. Even
though TPA delivers the smallest boost, it also results in a 9.85% improvement compared
to the full model. The ablation experiment proves the effectiveness of each component in
the proposed model.

4.4.3. Feature Importance

In this subsection, the temporal and spatial attentions are visualized to demonstrate the
reliability of the attention assignment of the proposed model. First, through adding a normal
distribution noise to each time steps of the input features, the temporal feature importance is
estimated according to the corresponding responses as shown in Figure 6. The figure shows
that the occupancy data closest to the current moment (i.e., t and t − 1) are most heavily
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weighted in the prediction, while the attentions allocated at all other times are numerically
similar, which is in line with common sense. In terms of the spatial features, we derive the
network weights assigned to the five feature maps of the observed local occupancy, 1-hop
similarity-based neighbors, 2-hop similarity-based neighbors, 1-hop distance-based neighbors,
and 2-hop similarity-based neighbors. As shown in Figure 7, attention on the 1-hop distance-
based feature map is greater than that on the 2-hop one, consistent with the assumption that
changes in needs brought about by first-order neighbors are more pronounced. In contrast,
attention on the 1-hop similarity-based feature map is less than that on the 2-hop one, indicating
that a less similar park can also provide helpful information to the target parks. In overall, it
can be concluded that the adjacency and similarity between parking lots are both significant
for spatial–temporal parking occupancy prediction.

Table 4. The list of evaluation metrics of ablation experiments.

Metrics (×10−2) MSE RMSE
Model 15 min 30 min 45 min 60 min Average 15 min 30 min 45 min 60 min Average

* LSTM 0.15 0.22 0.30 0.40 0.27 3.82 4.69 5.52 6.31 5.09
* Adjacency 0.11 0.18 0.26 0.34 0.22 3.36 4.23 5.05 5.85 4.62
* Similarity 0.11 0.17 0.25 0.35 0.22 3.27 4.17 5.05 5.95 4.61

* TPA 0.07 0.12 0.19 0.27 0.16 2.59 3.49 4.35 5.16 3.90
Full 0.05 0.09 0.17 0.23 0.14 2.17 3.04 4.09 4.84 3.53

Metrics (×10−2) MAE MAPE
Model 15 min 30 min 45 min 60 min Average 15 min 30 min 45 min 60 min Average
* LSTM 2.72 3.23 3.72 4.19 3.47 24.09 27.14 29.97 32.79 28.50

* Adjacency 2.07 2.62 3.15 3.67 2.88 10.96 13.94 16.90 19.91 15.43
* Similarity 2.03 2.58 3.13 3.72 2.86 10.38 13.12 16.10 20.17 14.94

* TPA 1.59 2.15 2.70 3.21 2.41 7.13 9.55 12.00 14.61 10.82
Full 1.38 1.85 2.61 2.98 2.21 6.68 8.13 12.23 13.41 10.11

Metrics (×10−2) RAE R2

Model 15 min 30 min 45 min 60 min Average 15 min 30 min 45 min 60 min Average

* LSTM 19.07 22.68 26.10 29.41 24.32 79.06 71.51 64.45 56.69 67.93
* Adjacency 14.52 18.37 22.13 25.76 20.19 88.79 82.69 75.70 68.03 78.80
* Similarity 14.22 18.11 21.94 26.09 20.09 87.68 80.32 72.36 65.07 76.36

* TPA 11.13 15.10 18.93 22.52 16.92 92.56 87.10 80.64 73.91 83.55
Full 9.71 12.95 18.29 20.91 15.47 94.58 90.12 82.09 77.37 86.04

Note that * denotes “without”. The bolded items are the best ones.
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Figure 6. The importance of the input features at different moment in prediction.
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Figure 7. Attention of the five feature maps, where S and D denote the similarity- and distance-based
features, respectively.

5. Conclusions and Future Work

Spatial–temporal parking occupancy prediction is a essential technology of Parking
Guidance and Information (PGI) systems. The accurate and effective regional parking oc-
cupancy prediction can improve the parking efficiency and utilization of parking resources,
alleviate parking problems and reduce traffic congestion and pollution. Previous studies
on spatial–temporal parking occupancy prediction have always considered the correlation
of adjacent parking lots and ignored the correlation between un-adjacent parking lots. The
parking lots with similar functions, though not adjacent, will generate similar demand
changes, e.g., parking occupancy in different business districts would respond similarly
to holidays [11]. Considering that the attention mechanism can improve the parameter
weights of the model, we propose a multi-view graph neural network with spatial and
temporal attention. In addition to the local adjacency, we consider the global similarity
between parking lots. Specifically, the proposed model consists of two modules, i.e., multi-
view spatial module and multivariate temporal module, for multi-view graph feature
embedding and multivariate temporal decoding, respectively.

Through a comprehensive evaluation on a real-world dataset with 35 parking lots,
the global view (i.e., the similarity matrix calculated by Pearson correlation coefficient)
and the integration of GAT, LSTM and TPA enable the highly accurate spatial–temporal
prediction. As shown by the evaluation results, the proposed approach outperforms other
state-of-the-art models in three aspects, namely (1) the prediction errors can significantly
reduce the prediction error by 30.14% on average in five regression metrics, i.e., MSE,
RMSE, MAE, MAPE, and RAE in four prediction intervals; (2) the proposed model achieves
optimal convergence, which sees the loss drop 2× faster than in other models; and (3) HGLT
assigns attention on different spatial features reasonably, indicating the effectiveness of its
attention-based integration.

Although providing promising results, the model needs to be improved in the future
work within the three directions: (1) Introduce multi-source data and consider the dynamic
changes: Traffic status is affected by a variety of other factors, including weather, public
emergencies, etc. This introduces perturbation to the time-series data and makes prediction
difficult. It is worthwhile to explore methodologies for introducing multi-source data and
enhancing the model’s adaptability to such changes. (2) Apply to more scenarios: Different
scenarios may have different transportation patterns, so it is necessary to investigate the
applicability of the model in different urban environments. (3) Apply the model to a
parking guidance system: Parking guidance systems are downstream applications of
parking occupancy prediction, informing drivers about parking space availability. This
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enables engineering applications and artificial intelligence to be effectively combined to
improve the practical capability of the model.
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