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Abstract: Detecting and understanding emotions are critical for our daily activities. As emotion
recognition (ER) systems develop, we start looking at more difficult cases than just acted adult
audio–visual speech. In this work, we investigate the automatic classification of the audio–visual
emotional speech of children, which presents several challenges including the lack of publicly
available annotated datasets and the low performance of the state-of-the art audio–visual ER systems.
In this paper, we present a new corpus of children’s audio–visual emotional speech that we collected.
Then, we propose a neural network solution that improves the utilization of the temporal relationships
between audio and video modalities in the cross-modal fusion for children’s audio–visual emotion
recognition. We select a state-of-the-art neural network architecture as a baseline and present several
modifications focused on a deeper learning of the cross-modal temporal relationships using attention.
By conducting experiments with our proposed approach and the selected baseline model, we observe
a relative improvement in performance by 2%. Finally, we conclude that focusing more on the
cross-modal temporal relationships may be beneficial for building ER systems for child–machine
communications and environments where qualified professionals work with children.

Keywords: audio–visual speech; emotion recognition; children

MSC: 68T10

1. Introduction

Emotions play an important role in a person’s life from its very beginning to the
end. Understanding emotions becomes indispensable for people’s daily activities, in
organizing adaptive behavior and determining the functional state of the organism, in
human–computer interaction (HCI), etc. In order to provide natural and user-adaptable
interaction, HCI systems need to recognize a person’s emotions automatically. In the
last ten to twenty years, improving speech emotion recognition has been seen as a key
factor in improving the performance of HCI systems. While most research has focused on
emotion recognition in adult speech [1,2], significantly less research has focused on emotion
recognition in children’s speech [3,4]. That is because large corpora of children’s speech,
especially audio–visual speech, are still not publicly available, and this forces researchers
to focus on emotion recognition in adult speech. Nevertheless, children are potentially the
largest class of users of most HCI applications, especially in education and entertainment
(edutainment) [5]. Therefore, it is important to understand how emotions are expressed by
children and whether they can be automatically recognized.

Creating automatic emotion recognition systems in a person’s speech is not trivial,
especially considering the differences in acoustic features for different genders [6], age
groups [7], languages [6,8], cultures [9], and developmental [10] features. For example,
in [11], it is reported that the accuracies of speech emotion recognition are “93.3%, 89.4%,
and 83.3% for male, female and child utterances respectively”. The lower accuracy of

Mathematics 2023, 11, 4573. https://doi.org/10.3390/math11224573 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math11224573
https://doi.org/10.3390/math11224573
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0001-7494-8329
https://orcid.org/0000-0002-6073-0393
https://doi.org/10.3390/math11224573
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math11224573?type=check_update&version=2


Mathematics 2023, 11, 4573 2 of 17

emotion recognition in children’s speech may be due to the fact that children interact with
the computer differently than adults, as they are still in the process of learning social and
conversational interaction linguistic rules. It is highlighted in [12] that the main aim of
emotion recognition in conversation (ERC) systems is to correctly identify the emotions in
the speakers’ utterances during the conversation. ERC helps to understand the emotions
and intentions of users and to develop engaging, interactive, and empathetic HCI systems.
The input data for a multimodal ERC is information from different modalities for each
utterance, such as audio–visual speech and facial expressions, and the model leverages
these data to generate accurate predictions of emotions for each utterance. In [13], it was
found that in the case of audio–visual recognition of emotions in voice, speech (text), and
facial expressions, the facial modality provides recognition of 55% of emotional content,
the voice modality provides 38%, and the textual modality provides the remaining 7%. The
last is the motivation to use audio–visual speech emotion recognition.

There are few studies on multimodal emotion recognition in children, and even fewer
studies have been performed on automatic children’s audio–visual emotion recognition.
Due to the small size of the available datasets, the main approach was to use traditional ma-
chine learning (ML) techniques. The authors of [14] mentioned the following most popular
ML-based classifiers: Support Vector Machine, Gaussian Mixture Model, Random Forest,
K-Nearest Neighbors, and Artificial Neural Network, with the Support Vector Machine
(SVM) classifier being employed in the majority of ML-based affective computing tasks.
Recently, there has been a growing focus on automatic methods of emotion recognition
in audio–visual speech. This is primarily driven by advancements in machine learning
and Deep Learning [15], due to the presence of publicly available datasets of emotional
audio–visual speech, and the availability of powerful computing resources [16].

Motivated by these developments, in this study, we have developed a neural network
architecture for children’s audio–visual emotional recognition. We conducted extensive
experiments with our architecture on our proprietary dataset of the children’s audio–visual
speech.

This study offers the following main contributions:

1. An extended description of the dataset with children’s audio–visual emotional speech
we collected and a methodology for collecting such datasets is presented.

2. A neural network solution for audio–visual emotion recognition in children is pro-
posed that improves the utilization of temporal relationships between audio and
video modalities in cross-modal fusion implemented through attention.

3. The results of experiments on emotion recognition based on the proposed neural
network architecture and the proprietary children’s audio–visual emotional dataset
are presented.

The subsequent sections of this paper are organized as follows. We analyze common
datasets and algorithms for multimodal children’s emotion recognition in Section 2. In
Section 3, we present a description of the dataset we collected specifically for our purposes.
We demonstrate the algorithms and the model we propose for solving the problem in
Section 4. In Section 5, we describe the experiments with our data and algorithms; and
in Section 6, we present the results of the experiments. Lastly, Section 7 summarizes the
contributions of this article and formulates the directions for future research on multimodal
children’s emotion recognition.

2. Related Work

Several Audio–Visual Emotion Recognition (AVER) systems for adults have been
discussed in the literature over the past decade. There is plenty of literature and critical
analysis available on four key topics in traditional AVER: databases [17], features, classifiers,
and data fusion strategies [18–21]. The majority of the common deep learning methods
used in AVER are reviewed in [22]. The authors of [15] experimented with various combi-
nations of CNN, LSTM, and SVM models in application with diverse audio–visual data for
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emotion recognition, and found that the audio modality can significantly contribute to the
performance of a model.

The authors of [23] introduced an AVER solution which employs training a CNN
for facial expression recognition and a VGG-based feature extractor for speech emotion
recognition (for audio represented in mel-spectrogram images). They then suggest to match
the dimensions of the output feature tensors of both video and audio feature extractors via
1 × 1 convolutions and to concatenate the results. These joint representations are then fed
into an LSTM network. This approach demonstrates high performance in learning efficient
representations of facial expressions.

However, there are few articles on children’s emotion recognition using single speech
or facial modalities, and even fewer on children’s audio–visual emotion recognition, which
is due to the lack of available children’s audio–visual emotional datasets.

Next, we consider the most relevant modern research on AVER, with a focus on
children’s audio–visual speech. We pay special attention to children’s audio–visual speech
emotion corpora and those approaches that use state-of-the-art machine learning and deep
machine learning methods.

2.1. Children’s Audio–Visual Speech Emotion Corpora

Despite the difficulties in obtaining emotions data, there are corpora of children’s
emotional speech in different languages [24–27] and emotional facial expressions [28] of
children. Research is being conducted on the automatic recognition of emotions from chil-
dren’s speech [29,30] and their facial expressions [31]. The accuracy of emotion recognition
can be higher when using several modalities [32], for example audio and video, which
requires the collection of appropriate audio–visual corpora.

A brief description of the available datasets of children’s audio–visual emotion speech
is presented in Table 1 and in more detail below.

Table 1. Characteristics of multimodal corpora of children’s audio–visual emotions.

Corpus Modality Volume Language Subjects Age Groups, Years

AusKidTalk [33] AV 600 h Australian
English

700 TD;
25 ASD 3–12

AFEW-VA [34] AV 600 clips English 240 TD 8–70

CHIMP [35] AV 8 video files for
10 min English 50 TD 4–6

EmoReact [36] AV 1102 clips English 63 TD 4–14

CHEA VD [37] AV 8 h Chinese 8 TD 5–16

Dataset featuring
children with ASD [32] AVTPh 18 h Irish 12 HFASD 8–12

Note: AV—audio–visual; AVTPh—audio, video, text, physiological signals (heart rate measure); TD—typical
development; ASD—autism spectrum disorder; HFASD—high-functioning autism.

AusKidTalk (Australian children’s speech corpus) [33]—audio and video recordings
of game exercises for 750 children aged three to twelve who speak Australian English. The
study participants were 700 children with typical development and 50 children with speech
disorders—25 children aged 6–12 years have a diagnosis of autism spectrum disorder. For
each child, there are records that are made in a structured session 90–120 min. Speech
is collected in a variety of children’s activities designed to reflect the diversity of use in
children’s communications and different levels of speech skills. Video recording of the
entire session is used to support manual annotation of children’s speech.

AFEW-VA database [34] of 600 real-world videos with accurate annotations of valence
and arousal on 30,000 frames.

CHIMP (Little Children’s Interactive Multimedia Project) [35] dataset collected by the
Signal Analysis and Interpretation Laboratory at the University of Southern California in
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2005. The dataset contains recordings of 50 children aged four to six interacting with a
fictional controlled character in conversational interactive games.

EmoReact (Multimodal Dataset for Recognizing Emotional Responses in Children) [36]
is a dataset with 1102 audio–visual recordings of 63 children aged four to fourteen, and
annotated into 17 emotion categories. To date, this is one of the few datasets containing
both verbal and visual expressions of emotions by children [38].

CHEA VD (Chinese Natural Emotional Audio–Visual Database) [37] is a large-scale
Chinese audio–visual corpus of natural emotions, with different age groups and emotional
states, including eight hours of recordings of children aged five to sixteen.

In [32], the authors presented their plans for creating a multimodal emotion recognition
system for children with high-functioning autism, where the goal is to develop human–
machine interfaces specialized for children with autism. This study involved 12 children
aged 8 to 12 years. Recording is carried out in three sessions of 30 min each. The total time
is 18 h. The proposed system is intended to work with video, audio, text and physiological
(heart rate) modalities.

It should be noted that most of the described datasets are for the English, with some
for the Chinese and Irish languages but none for the Russian.

2.2. Audio–Visual Emotion Recognition

Emotion recognition can be formulated as a problem where some source produces
several streams of data (features) of various modalities (e.g., audio and video), each with
its own distribution, and the goal is to estimate the distributions and map them onto the
source. That, naturally, poses several questions that ought to be answered when building
an emotion recognition system: which modalities are selected and represented, how the
modalities are mapped on each other, and how the joint representations are mapped onto
the sources of the distributions. We will review research that answers those questions and
then propose our solution.

It has been shown that regardless of the model and representations, multimodal
approaches virtually always outperform unimodal ones [39], i.e., adding another modality
can only benefit the performance. While this may seem obvious, the notion actually relies
on the fact that, in the worst-case scenario, a model is able to learn an identity mapping for
the driving modality and disregard the other one. However, as has been shown in practice,
it is rarely the case that additional modalities carry no valuable information. As for the
selection of modalities, the most common ones in the literature are images (or sequences of
images, i.e., video), audio, and text. Since our research is focused on children, including
pre-school children and children with developmental disorders, the contribution of textual
modality, as already noted in Section 1, is insignificant. Therefore, we pick video and audio
as our modalities of choice.

Representation is one of the key concepts in machine learning [40]. While the task of
machine learning imposes a number of limitations on the representations of data, such as
smoothness, temporal and spatial coherence, over the years, a bevy of various represen-
tations have been used to solve various machine learning problems, and while some are
more common than the other, there is no clear rule for choosing the best representation. Tra-
ditional machine learning algorithms rely on the representation of the input being a feature
and learn a classifier on top of that [41]. Meanwhile, the most agile modern models attempt
to learn not only the representations but also the architecture and the hyperparameters
of the model [42]. Both extremes, however, have several issues. The traditional approach
lacks the capability to discover deep, latent features and is mostly unable to achieve high
efficiency associated with learning hierarchical and spatial-temporal relationships within
feature sets, and since there is no space to learn cross-modal relationships, multimodal
models either rely on some sort of decision-level fusion or expert heuristics for joint rep-
resentations. The end-to-end approach, on the other hand, has a high computational cost
and requires a precise, structured approach to training [43]. With those limitations, most of
the modern models take reasonably preprocessed input data, then attempt to learn their
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efficient representations, including joint representations, and finally learn to classify those
representations.

There are several ways to present audio data to a model. The most common in-
clude [22]:

- Waveform/raw audio, seldom used outside of end-to-end models, is simply raw data,
meaning the model has to learn efficient representations from scratch;

- Acoustic features such as energy, pitch, loudness, zero-crossing rate, often utilized
in traditional models, while allowing for simple and compact models, are mostly
independent by design and prevent a model from learning additional latent features;

- A spectrogram or a mel-spectrogram, which shares some similar issues with raw audio,
has found its way into many models due to extensive research into convolutional
neural networks, since, being presented as an image, it enables learning efficient
representations as shown in various practical applications;

- Mel-Frequency Cepstral Coefficients, which represent the short-term power spec-
trum of a sound—very commonly used as they provide a compact but informative
representation.

In [44], a relatively recent example of representation learning was proposed—a large-
scale self-supervised pre-trained WavLM model for speech processing. This model, which
is a transformer encoder, efficiently encodes audio features for classification and is trained
on a large dataset. The frozen encoder can then be utilized as a feature extractor for general
purpose speech processing.

For image processing, the traditional approaches are extremely computationally ex-
pensive. For example, when a raw image is processed through a fully connected neural
network, the network has to treat each pixel as an individual input and learn to extract
relevant features from all locations within the image. In contrast, a convolutional neural
network (CNN) [45] can learn to recognize patterns in an image regardless of where they
are located, using shared weights across the entire image and reducing the number of
parameters required. By design, CNNs learn hierarchical representations of the raw input
data and, due to the shown efficiency of this approach, this is the most common approach
for the representation of visual data. However, while a static image is a common input for
a variety of computed vision problems, there is also a large field of problems concerned
with sequences of images, i.e., video. Since, for most of the practical tasks, there are strong
relationships between consecutive frames of the input video. It is natural that efficient
representations of those relationships are key for achieving high performance. For example,
optical flow is a technique used in computer vision that enables one to recognize and track
movement patterns in video footage [46]. Another option to employ an implementation of
a recurrent neural network (RNN), for example a long short-term memory (LSTM) network
or a convolutional RNN, in which case a network is able to collect global context and
produce representations enhanced with those shared latent features [47]. Another relatively
recent approach is to implement a 3D CNN [48], where the temporal dimension is added to
both the input tensor and the filters. While the idea of considering a sequence of images
as just another dimension of the input tensor is relatively natural, the significant increase
in the number of weights presents the need for a large amount of training video data and
incurs a high computational cost. However, as the CNN architectures for image processing
became highly optimized and somewhat larger video datasets have become available, this
approach became legitimately viable.

The key concept for multimodal classification is the fusion of modalities. Though
earlier models relied on unimodal classification and consecutive ensemble learning for
decision-level fusion such as averaging, voting, and weighted sum, it was quickly dis-
covered that both the redundancy of features between modalities and latent cross-modal
relationships can be utilized to achieve higher performance [18,20]. Another traditional
approach is to implement an early fusion. While some of the works propose the fusion of
modalities at the input data level [49], the most common approach is to combine modalities
upon feature extraction, relying on some sort of heuristics [18,20]. In modern research,
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fusion is applied somewhere between the feature extraction and the decision level with the
goal of learning efficient joint representations to both eliminate the redundancy in order to
reduce the computational cost, and to align modalities to take advantage of cross-modal
relationships.

There are several strategies for this kind of intermediate fusion, but the most common
technique is to implement fusion via an attention mechanism [16]. This is a method to focus
on the most relevant information from each modality, to determine which parts of each
modality’s input should be given greater focus when making a prediction, and selecting
the most important features from each modality and combining them in a meaningful way.
In a more general sense, the attention technique can be understood from the distinction
between soft and hard attention. To emulate human perception and reduce computations,
ideally, a model should be able to ignore the clutter in the input data and attend only to the
meaningful parts [50] sequentially and aggregate information over time—this approach
would implement so-called hard attention. However, to achieve that, it would require the
model to make choices where to look at and they are difficult to represent as differentiable
functions which would be required for the most conventional techniques for training.
Requiring a model to be differentiable means that the model is simply able to associate
more importance with certain parts of the input data—this approach is called soft attention.

Another informative way to designate attention techniques is to focus on the dimen-
sions across which they are applied. Though some terminology may be used interchange-
ably in the literature, the more common ones include:

- Channel attention—as channels of feature maps are often considered feature detectors,
it attempts to select more relevant features for the task [51];

- Spatial attention—in the cases with multidimensional input data such as images, it
attends to inter-spatial relationship of features [52];

- Temporal attention—though the temporal dimension can sometimes be considered
simply as another dimension of input data, in practice it might be beneficial to view it
separately and apply different logic to it, depending on the task [52];

- Cross-attention—mostly utilized in the cases with multiple modalities to learn relation-
ships between modalities; since different modalities often have different dimensions,
the modalities cannot be viewed as just another dimension of the input tensor, thus
requiring a different approach from simply increasing the dimension of the attention
maps; can be used to combine information from different modalities, in which case it
is said to implement the fusion of modalities [53].

The authors of [54] suggested that applying attention along the input dimensions
separately achieves lower computational and parameter overhead compared to computing
attention maps with the same dimensions as the input. The authors of [55] proposed
the “Squeeze-and-Excitation” block, an architectural unit that explicitly models interde-
pendencies between channels and recalibrates feature maps channel-wise. The authors
of [56] presented a self-attention mechanism for CNN to capture long-range interactions
between features, which, in modern research, is mostly applied to sequence modeling
and generative modeling tasks, they show that they can improve the performance of a
model by increasing the number of feature maps by concatenating the feature maps with
multihead attention maps. The authors of [57] implemented cross-attention for multimodal
emotion recognition from audio and text modalities where the features from the audio
encoder attend to the features from the text encoder and vice versa to highlight the most
relevant features for emotion recognition. Though the features from those two modalities
are eventually concatenated before passing them to the classifier, the attention block does
not explicitly implement a fusion of modalities and is rather an example of late fusion. The
authors of [58] proposed a universal split-attention block for the fusion of modalities where
the attention block explicitly fuses features from different modalities and can be both placed
at an arbitrary stage of a network and repeated multiple times across the network. In this
paper, we consider that model as a baseline for comparison with the proposed alternative
cross-modal fusion block.
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After the feature maps are generated by a network, the final step is to classify the
sample into one of the target categories. The most common approach is to map the feature
maps onto scalar values (flatten the feature maps) and present the output as a scalar vector
so that it can be presented to a fully connected network which is trained to classify the
input into one of the target categories, usually by a SoftMax layer with the number of
neurons equal to the number of target classes [41]. Even though this approach is utilized
in most of the modern models, flattening of the feature maps effectively discards the
spatial and temporal relationships. To investigate some of those issues, the authors of [59]
suggested generating so-called “class activation maps”, where the class activation map
points to the segments of the input image which the network considers discriminative to
detect the target class. Since the outcome of this procedure can encapsulate the spatial and
temporal relationships between the input and the feature maps, this information can also
be employed for classification. In this paper, we demonstrate one such approach.

3. Corpus Description

To study children’s audio–visual emotion recognition, an audio–visual emotional
corpus was collected. The corpus contains video files with emotional speech and facial
expressions of Russian-speaking children.

3.1. Place and Equipment for Audio–Visual Speech Recording

The recording sessions were held in a laboratory environment without soundproofing
and with regular noise levels. A PMD660 digital recorder (Marantz Professional, inMusic,
Inc., Sagamihara, Japan) with a SENNHEIZER e835S external microphone was used to
capture a 48 kHz mono audio signal, and a SONY HDR-CX560 video camera (Sennheiser
electronic GmbH & Co. KG, Beijing, China) was used to record a child’s face from a distance
of one meter in 1080p resolution at 50 frames per second. During testing, the child sat at
the table opposite the experimenter. The light level was constant throughout the recording
session.

3.2. The Audio–Visual Speech Recording Procedure

Recording of speech and facial expressions of children was carried out when testing
children according to the Child’s Emotional Development Method [60], which includes
two blocks. Block 1 contains information about the child’s development received from
parents/legal representatives. Block 2 includes tests and tasks the purpose of which is
the evaluation of expression of the emotions in the child’s behavior, speech, and facial
expressions, and ability of the child to perceive the emotional states in others. Each session
lasted between 60 and 90 min.

Participants in this study were 30 children aged 5–11 years.
The criteria to include children in this study were:

1. The consent of the parent/legal representative and the child to participate in this
study.

2. The selected age range.
3. The absence of clinically pronounced mental health problems, according to the medical

conclusion.
4. The absence of verified severe visual and hearing impairments.

The parents were consulted about the aim and the procedure of this study before
signing the Informed Consent. Also, the parents were asked to describe in writing the
current and the overall emotional development of their child.

The experimental study began with a short conversation with the children in order
to introduce the experimenter to the child. The child then completed the following tasks:
playing with a standard set of toys, co-op play, “acting play” when the child is asked to show
(depict) the emotions “joy, sadness, neutral (calm state) anger, fear”; should pronounce
the speech material, manifesting the emotional state in voice; video tests—for emotions
recognition, standard pictures containing certain plots.
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All procedures were approved by the Health and Human Research Ethics Committee
(HHS, IRB 00003875, St. Petersburg State University) and written informed consent was
obtained from parents of the child participant.

3.3. Audio–Visual Speech Data Annotation

Specifically, for training the neural network based on our approach with 3D CNN,
we have prepared an annotated dataset that contains relatively short video segments with
audio. First, we performed facial landmark detection across the whole video dataset and
automatically selected the segments with continuous streams of video frames with fully
visible faces (as per the data collection procedure, most of the frames with fully visible faces
belong to a child being recorded). Further, we applied speaker diarization and selected the
segments in which continuous streams of video frames with fully visible faces overlap with
continuous speech. Next, a group of 3 experts reviewed the obtained video segments to
either annotate them with emotions expressed by a child, or to annotate the segment with
additional timestamps when across the video segment a child expresses different emotions
at different times. If the face or speech of a non-target person appears in the recording,
experts should reject the segment. A segment receives a label only if all experts agree with
the expressed emotion, otherwise the segment is rejected. Once the annotation process
was complete, the annotations were used to filter the dataset and further categorize the
video segments by expressed emotion where appropriate. Finally, we randomly split the
segments into subsegments of 30 frames in length, which were then used to train the neural
network.

4. A Neural Network Architecture Description

To classify children’s emotions, we propose a neural network based on 3D CNN for
video processing and 1D CNN for audio processing. To demonstrate the performance of
our solution, we took as the baseline the architecture from [58], as that solution has shown a
state-of-the-art performance for the target problem. Note, however, that in [58], the authors
propose a modality fusion block while utilizing existing approaches for video and audio
processing to demonstrate the performance of their proposed solution for several machine
learning problems, including emotion detection. Similarly, in this manuscript we do not
discuss in detail the underlying models and refer the reader to the original article [58].
Our goal here is to demonstrate that, by optimizing the attention component of the model
to the particularities of the source data, we can improve the performance of the emotion
classification for children’s speech.

Per the research on children’s speech, some of which is reviewed in Section 1, the
temporal alignment of video and audio modalities is highly informative for detecting
emotions in children’s speech. Furthermore, research seems to indicate that this temporal
alignment may depend not only on the psychophysiological aspects of children in general,
but may also differ for typically and atypically developing children, and, moreover, for
different types of atypical development. This naturally provides for an assumption that by
increasing the focus and granularity of modeling the inter-modal temporal relationships
may result in an improved performance of a model. To address this problem, we propose a
modification of the cross-attention fusion module introduced in [58], followed by a classifier
inspired by [59], based on the application of “Squeeze-and-Excitation”-like attention [55]
to the feature maps of the final layer for a classification. This preserves more spatial
relationships than the traditional approach of flattening the feature maps and attaching a
fully connected network.

For a comparison between the baseline and the suggested in this paper architectures,
see Figure 1.
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Let us underscore a couple of differences between the proposed and the baseline 
models. First, in this paper, we present a different implementation for the fusion block, in 
which the fusion is performed in a window and using the query-key-value approach to 
calculate attention. Second, in the baseline model, the fusion block is placed at two loca-
tions, while in our model, we found that a single block is sufficient. However, it is im-
portant to highlight that neither we nor the authors of the baseline model require a specific 
placement of the fusion block. Both consider the fusion block as a black box or, in a sense, 
a layer that can be placed at arbitrary positions and an arbitrary number of times, depend-
ing on various circumstances such as a choice of the baseline models for video and audio 
processing. Third, in our work, we propose a different approach to classification. Instead 
of the traditional flattening of feature maps with the dense layer, we deploy an attention 
layer to transform feature maps into class maps matching the number of target classes. 

4.1. An Algorithm for Multimodal Attention Fusion 
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Multimodal Split Attention Fusion and the suggested architecture (b). The blocks highlighted with
green signify the implementations of the multimodal fusion over the base models for video and audio
processing.

Let us underscore a couple of differences between the proposed and the baseline
models. First, in this paper, we present a different implementation for the fusion block,
in which the fusion is performed in a window and using the query-key-value approach
to calculate attention. Second, in the baseline model, the fusion block is placed at two
locations, while in our model, we found that a single block is sufficient. However, it is
important to highlight that neither we nor the authors of the baseline model require a
specific placement of the fusion block. Both consider the fusion block as a black box or, in a
sense, a layer that can be placed at arbitrary positions and an arbitrary number of times,
depending on various circumstances such as a choice of the baseline models for video and
audio processing. Third, in our work, we propose a different approach to classification.
Instead of the traditional flattening of feature maps with the dense layer, we deploy an
attention layer to transform feature maps into class maps matching the number of target
classes.

4.1. An Algorithm for Multimodal Attention Fusion

Following [58], we do not assume a specific placement of the attention block in the
architecture; essentially, we only consider the attention block in the context of a neural
network architecture as a black box with feature maps in—feature maps out. Briefly (for a
more detailed explanation we direct the reader to [58]), the cross-attention fusion module
for video and audio modalities takes feature maps F = {Fv, Fa}, where Fv are feature maps
for the video modality and Fa are feature maps for the audio modality and, as an input
and produces modified feature maps F′ =

{
F′v, F′a

}
with the goal of enhancing the quality

of representations of features of each modality by attending to them according to the
information learned from another modality. As a side note, here we do not make an explicit
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distinction between the sets of feature maps and the blocks of sets of feature maps where the
notion of blocks appears from the concept of cardinality in the ResNeXt architecture, which
refers to an additional dimension to the data passing through a network. Both our approach
and the approach in [58] are essentially agnostic to this distinction in the sense that both
simply operate on vectors containing feature maps. To calculate the modified feature maps,
first each modality must be mapped to a space with only a temporal dimension, which for
our task simply means that the spatial dimensions of the video modality are collapsed into
a scalar by global average pooling. After obtaining the channel descriptors, a commonly
called global context descriptor has to be formed as the source of the information about
cross-modal relationships. Here, we propose the following approach: to capture the more
immediate relationships between the modalities, we calculate the query, key, and value [61]
in a window of length S for the context vectors Fc

v and Fc
a for video and audio modalities,

respectively (see Figure 2).
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Since this approach originally appeared in the context of natural language processing
and is often explained in terms of that field, here we want to provide a brief intuition
for applying this approach in more general terms. In the case of one modality, the goal
is to find relationships between different sections of a feature map of that modality. For
additional clarity, when we consider a video, i.e., a modality with both spatial and temporal
dimensions, we can consider either the self-attention within a single image, where sections
are represented as regions of pixels in the image, and the self-attention within the temporal
dimension obtained by collapsing the spatial dimensions of a series of images. The “query,
key, and value” approach is agnostic to whichever one we choose.

In this article, we are always talking about the attention in the temporal dimension.
To achieve that, each section is mapped to three different vectors: “query”—functioning
as a request, “value”—functioning as a response, and “key”—a map between queries
and values. Nevertheless, it is important to understand that attributing a function or role
to those vectors serves mostly for the purposes of human understanding, while from a
purely technical standpoint, the procedure is implemented simply through tripling a fully
connected layer and then another layer joining the outputs together.

Let us call the learnable transformations for the “query”, “key”, and “value” (q, k, and
v) vectors TQ, TK, and TV , respectively. Then, for the context vectors Fc

v and Fc
a for video

and audio modalities, and for their windowed segments Fc, Si
v and Fc, Si

a , we calculate:

q = TQ

(
Fc, Si

v

)
, k = TK

(
Fc, Si

a

)
, v = TV

(
Fc, Si

a

)
(1)
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While the dimensions of the value vectors are not required to match the dimensions of
the query and key vectors, unless there is a specific reason to choose otherwise, most com-
monly the dimensions do match, for simplicity. We follow this approach, so q, k, v ∈ RD.
Strictly speaking, the key vectors do not provide a one-to-one mapping between queries
and values, instead, they encapsulate the likelihood or the strength of the relationship be-
tween each query and each value. Also, since we consider each segment of each windowed
context vector to be independent, we are only interested in the relative likelihood, which
we, following the common approach, implement using so f tmax.

So, for each query ql , we calculate:

so f tmax
([

ql , km

])
for each key km, l, m ∈ 1, . . . , M (2)

or, in matrix form:
so f tmax

(
[q1, . . . , qM][k1, . . . , kM]

T
)

. (3)

This result, in some sense, is a heatmap, showing the strength of the relationships
between queries and values.

Now, at this point, we still have to construct a function that would take this heatmap
and the values, and produce a new set of feature maps, and while in principle this function
can also be learned. It has been shown that a simple weighted average provides a good
balance between the performance and the computational resources required, since it can,
again, be calculated as a straightforward matrix multiplication.

Summarizing the algorithm, we can present the equation for joining the outputs (the
attention) as:

Attention(Q, K, V) = so f tmax
(

QKT
√

dk

)
V (4)

where
√

dk is a simple scaler.
As for the learnable transformations of the query, key, and value for multiple modali-

ties, in our case we obtain them via projection of the windowed segments of the context
vectors vs and as for video and audio modalities, respectively, with learnable parameters
wq, wk, and wv:

q = wqvs, k = wkas, v = wvas (5)

After obtaining the attention maps (4), we can calculate the new feature maps:

F′ =
{

F′V , F′A
}
= {FV � AV , FA � AA}. (6)

Here, just as we do not distinguish between feature maps and sets of feature maps,
we also can view our suggested windowed attention as adding another dimension to a
collection of feature maps which we can simply flatten when necessary, e.g., when passing
them to a classifier.

4.2. An Algorithm for Feature-Map-Based Classification

Regarding the classifier, inspired by the concept of class activation maps in [59], we
propose the following intuition first: with N feature maps at the final layer, our goal is to
obtain C feature maps, each representing the category we are attempting to detect. To realize
this transformation, we propose to apply the “Squeeze-and-Excitation”-type attention [55] C
number times each with different learnable parameters assuming that this procedure would
allow to learn the relationships between the low-level feature descriptors, represented by
the feature maps of the final layer, relevant to each target class separately. This way, after
applying so f tmax to the globally average pooled class maps, we are expecting to obtain a
probability distribution for the target classes.

Comparing to [55], we omit the initial transformation step for the feature maps, as
we assume the feature maps at the final layer already represent low-level features and do
not require additional transformations for spatial information. So, for each of the C class
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maps, we perform global average pooling, followed by the excitation operation (see [55],
Section 3.2):

s = σ(W2δ(W1z)), (7)

where σ is a sigmoid function, δ is ReLU, W1,2 are learnable parameters also implementing a
bottleneck with a dimensionality reduction–expansion hyperparameter, and s is the vector
further used to scale the channels of the feature volume F̂′ i = F̂i ∗ si.

The final output of the model is then:

R = so f tmax
(

GAP
([

F̂′
1...C

]))
. (8)

5. Experimental Setup
5.1. Software Implementation

To achieve higher efficiency in conducting the experiments, we created a software
environment based on the Docker Engine 24.0 (www.docker.com, accessed on 28 October
2023). The aim of this framework was to simplify running the experiments of different
machines, conducting ablation studies, and experimenting with image and audio process-
ing models. We employed the PyTorch 2.0 (https://pytorch.org, accessed on 28 October
2023) for implementing the components of our model and we followed the SOLID [62]
approach to software development to simplify reconfiguration of the model. Then, we
created docker configuration scripts which would dynamically pull the necessary source
code and downloadable resources such as base models, set up an execution environment
and external libraries, and run the experiments. We ran the experiments on two machines
with NVIDIA GeForce RTX 3090 Ti GPUs.

5.2. Fine-Tuning

Similar to [58], we used the baseline models trained on the Ryerson Audio–Visual
Database of Emotional Speech and Song (RAVDESS) [63], and we further fine-tuned the
models with samples from our proprietary dataset of children’s emotional speech.

5.3. Performance Measures

For evaluation of the results of the experiments, we selected several common metrics
often used for similar tasks. First of all, we collected the multiclass recognition results into
confusion matrices and calculated the true positive (TP), true negative (TN), false positive
(FP), and false negative (FN) metrics.

Then, we calculated the accuracy, precision, and recall as

Accuracy =
TP + TN

TP + TN + FP + FN
, (9)

Precision =
TP

TP + FP
, (10)

Recall =
TP

TP + FN
, (11)

respectively.
Additionally, we calculated the F1-scores per class as

F1(class) =
2× Precision(class)× Recall(class)

Precision(class) + Recall(class)
. (12)

6. Experimental Results

From the corpus of child speech, we selected 205 recorded sessions and after pro-
cessing them as described in Section 3.3 we obtained 721 video segments with variable
length, annotated with an expressed emotion. Due to a relatively small volume of data,
we randomly extracted 30-frame-length non-intersecting segments, ensuring the balance

www.docker.com
https://pytorch.org
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between classes and repeated the process 6 times and averaged the results. For each batch,
we performed a k-fold cross-validation with 80% of samples used for training and 20% for
testing.

In addition, we conducted an ablation study where we tested the fusion block sepa-
rately from the classifier.

The results of automatic emotion recognition are presented in Figure 3, and Tables 2 and 3.
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Table 2. Per-class scores in multiclass classification.

Per-Class Performance

Emotion Anger Joy Neutral Sad

Accuracy 0.77 0.74 0.70 0.77
Recall 0.48 0.42 0.59 0.48

Precision 0.54 0.48 0.43 0.54
F1-score 0.51 0.45 0.50 0.51

Table 3. Average scores in multiclass classifications.

Classifier Overall Accuracy

Fusion block + classifier 0.492
Fusion block only 0.487

Compared with the performance of the state-of-the-art (baseline) model at 0.482, our
proposed approach demonstrates a relative improvement in performance by approximately
2%.

7. Discussion and Conclusions

We propose a hypothesis that by focusing more on the temporal relationships between
different modalities for multimodal automatic emotion recognition in children, we can
achieve improvements in performance. Due to the complexity of the problem, in the
modern scientific literature, one can find a wide variety of approaches and models. To test
our hypothesis, we selected several common and popular approaches that demonstrate
state-of-the-art performance on similar tasks and took them as a baseline. Since it is not
viable to test fusion and classification modules in isolation, to make sure that the difference
in performance between the proposed solution and the baseline model emerges from
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the implementation of the proposed solution, it is important to minimize the differences
with the baseline neural network architecture. Unfortunately, in machine learning, even
repeating the same experiment with the same model and data, it is impossible to produce
exactly the same results. However, we attempted our best to utilize the same models and
mostly the same training data, except for our novel corpus of children’s emotional speech.

As for the implementation of our solution, we focused on the parts of the model
responsible for the multimodal fusion via attention. To help the model to focus more
on the temporal relationships between different modalities, we proposed to window the
context vectors of the modalities, calculate the attention with the query-key-value approach,
and perform modality fusion utilizing the obtained attention maps. Additionally, since
this approach focuses on the temporal dimension, we also introduced an approach to
classification based on the concept of class activation maps that elevates the attention to the
spatial dimensions. However, it is important to highlight that our original hypothesis only
related to the temporal dimension and, even though, eventually, we observed a cumulative
improvement in performance. We did not explicitly test the hypothesis that the proposed
approach to classification works as a universal drop-in replacement, we consider it only as
an extension of the proposed fusion module.

By evaluating the results of the experiments, we confirmed that with a significant
degree of certainty our solution can improve the performance of automatic children’s
audio–visual emotion recognition. A relatively modest result at approximately 2% perfor-
mance improvement is nevertheless promising, since there is significant space for further
improvement. Our goal here was to demonstrate specific optimizations to the fusion and
classification components of the network without optimizations to the overall network
architecture, which means that further fine-tuning of the architecture is possible. Our
ongoing work on collecting a large dataset of children’s audio–visual speech provides
us with data to sufficiently improve the fine-tuning of the baseline models and further
take advantage of the proposed solution. In addition, since this work only used a dataset
with samples where all experts were in agreement with the emotions expressed, a larger
dataset with more “difficult” samples with disagreements between the experts would be
more helpful for our proposed solution by design. In future research, we plan to focus
on collecting more data, particularly, for children with atypical development, and testing
our solution on more diverse data. Also, we want to develop more practical tools and
applications for people working with children with typical and atypical development to
stress-test our solution in a real-time environment.
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