Fast Method for Estimating the Parameters of Partial Differential Equations from Inaccurate Observations
Abstract
:1. Introduction
2. Estimates of Diffusion Coefficient
2.1. Evaluation of the First Derivative
2.2. Evaluation of the Second Derivative
2.3. Numerical Experiment for Diffusion Equation
3. Estimates of One-Soliton Solution Parameters
3.1. Preliminaries
3.2. Construction and Estimates of Parameters in One-Soliton Solutions
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Penenko, A.V. Consistent numerical schemes for solving nonlinear inverse source problems with the gradient-type algorithms and the Newton–Kantorovich methods. Numer. Anal. Appl. 2018, 11, 73–88. [Google Scholar]
- Penenko, A.V. The Newton–Kantorovich method in inverse source problems for production-destruction models with time series-type measurement data. Numer. Anal. Appl. 2019, 12, 51–69. [Google Scholar]
- Penenko, A.V.; Khassenova, Z.T.; Penenko, V.V.; Pyanova, E.A. Numerical study of a direct variational data assimilation algorithm in Almaty city conditions. Eurasian J. Math. Comput. Appl. 2019, 7, 53–64. [Google Scholar]
- Qi, X.; Zhao, H. Asymptotic efficiency and finite-sample properties of the generalized profiling estimation of parameters in ordinary differential equations. Ann. Stat. 2010, 38, 435–481. [Google Scholar]
- Jie, Z.; Hai-Lin, F. Consistent estimation of ordinary differential equation when transformation parameter is unknown. Stat. Probab. Lett. 2016, 115, 60–69. [Google Scholar]
- Ramsay, J.; Hooker, G. Dynamic Data Analysis; Springer: New York, NY, USA, 2017. [Google Scholar]
- Crassidis, J.L.; Junkins, J.L. Optimal Estimation of Dynamic Systems, 2nd ed.; Chapman and Hall/CRC Applied Mathematics and Nonlinear Science; CRC Press: London, UK; New York, NY, USA, 2011. [Google Scholar]
- Raol, J.R.; Girija, G.; Singh, J. Modelling and Parameter Estimation of Dynamic Systems; IET Control Engeneering Series 65; The Institution of Engineering and Technology: London, UK, 2004. [Google Scholar]
- Ramsay, J.O.; Silverman, B.W. Functional Data Analysis; Springer Science and Business Media: New York, NY, USA, 2005. [Google Scholar]
- Ramsay, J.O.; Hooker, G.; Campbell, D.; Cao, J. Parameter estimation for differential equations: A generalized smoothing approach. Stat. Methology Ser. B 2007, 69, 741–796. [Google Scholar]
- Brunel, N.J.-B. Parameter estimation of ODE’s via nonparametric estimators. Electron. J. Statist. 2008, 2, 1242–1267. [Google Scholar]
- Liang, H.; Miao, H.; Wu, H. Estimation and constant and time-varying dynamic parameters of HIV infection in a nonlinear differential model. Ann. Appl. Stat. 2010, 4, 460–483. [Google Scholar]
- Lixin, M.; Jiwei, Z.; Xue, Z.; Guozhong, F. Bayesian estimation of time-varying parameters in ordinary differential equation models with noisy time-varying covariates. Commun. Stat.-Simul. Comput. 2021, 50, 708–723. [Google Scholar]
- Husin, S.F.; Mamat, M.; Ibrahim, M.A.H.; Rivaie, M. An Efficient Three-Term Iterative Method for Estimating Linear Approximation Models in Regression Analysis. Mathematics 2020, 8, 977. [Google Scholar]
- Aliev, F.A.; Aliev, N.A.; Mutalimov, M.M.; Namazov, A.A. Algorithm for solving the identification problem for determining the fractional-order derivative of an oscillatory system. Appl. Comput. Math. 2020, 19, 415–422. [Google Scholar]
- Khalsaraei, M.; Shokri, A. A new explicit singularly P-stable four-step method for the numerical solution of second order IVPs. Iranian J. Math. Chem. 2020, 11, 17–31. [Google Scholar]
- Hu, Y.; Wu, S.; Feng, S.; Jin, J. Estimation in Partial Functional Linear Spatial Autoregressive Model. Mathematics 2020, 8, 1680. [Google Scholar] [CrossRef]
- Jyh-Shyong, C.; Chia-Chi, L.; Wei-Ling, L.; Jin-Han, D. Two-stage parameter estimation applied to ordinary differential equation models. J. Taiwan Inst. Chem. Eng. 2015, 57, 26–35. [Google Scholar]
- Freedman, D.A. Statistical Models: Theory and Practice; Cambridge University Press: Cambridge, UK, 2009. [Google Scholar]
- Tsitsiashvili, G.S.; Gudimenko, A.N.; Osipova, M.A. Mathematical and Statistical Aspects of Estimating Small Oscillations Parameters in a Conservative Mechanical System Using Inaccurate Observations. Mathematics 2023, 11, 2643. [Google Scholar] [CrossRef]
- Shao, J.; Zhang, X.; Chen, W.; Shen, X. Improved statistical pattern analysis monitoring for complex multivariate processes using empirical likelihood. Processes 2020, 8, 1619. [Google Scholar] [CrossRef]
- Hu, X.; Wei, X.; Han, J.; Zhu, X. Adaptive disturbance estimation and cancelation for ships under thruster saturation. Int. J. Robust Nonlinear Control 2020, 30, 5004–5020. [Google Scholar] [CrossRef]
- Wang, Z.; Xie, L.; Wan, Q. Beam space joint azimuth, elevation and delay estimation for large-scale MIMO-OFDM system. IEEE Trans. Instrum. Meas. 2023, 72, 9506412. [Google Scholar]
- Polyak, B.T. Convergence and convergence rate of iterative stochastic algorithms II. The Linear case. Autom. Remote. Control 1977, 4, 101–107. [Google Scholar]
- Zolotarev, V. Modern Theory of Summation of Random Variables; VSP: Utrecht, The Netherlands, 1997. [Google Scholar]
- Cox, D.R.; Reid, N. The Theory of the Design of Experiments. By Chapman and Hall/CRC; Boca Raton: London, UK; New York, NY, USA; Washington, DC, USA, 2000. [Google Scholar]
- Shih-Kung, L. Planning Behaviour. Theories and Experiments; Cambridge Scholars Publishing: Cambridge, UK, 2019. [Google Scholar]
- Thambynayagam, R.K.M. The Diffusion Handbook: Applied Solutions for Engineers; McGraw-Hill: New York, NY, USA, 2011. [Google Scholar]
- Matveev, V.B.; Salle, M.A. Darboux Transformations and Solitons; Springer Series in Nonlinear Dynamics; Springer: Berlin, Germany, 1991. [Google Scholar]
- Faddeev, L.D.; Takhtajan, L.A. Hamiltonian Methods in the Theory of Solitons, Series: Classics in Mathematics; Springer: Berlin, Germany, 2007. [Google Scholar]
- Novikov, S.P.; Manakov, S.V.; Pitaevskii, L.P.; Zakharov, V.E. Theory of Solitons: The Inverse Scattering Method. Monographs in Contemporary Mathematics; Springer: New York, NY, USA, 1984. [Google Scholar]
- Hirota, R. The Direct Method in Soliton Theory. Cambridge Tracts in Mathematics; Cambridge University Press: Cambridge, UK, 2004. [Google Scholar]
- Gesztesy, F.; Holden, H. Soliton Equations and Their Algebro-Geometric Solutions. Volume I: (1+1)-Dimensional Continuous Models. Series: Cambridge Studies in Advanced Mathematics; Cambridge University Press: Cambridge, UK, 2003. [Google Scholar]
- Manukure, S.; Booker, T. A short overview of solitons and applications. Partial. Differ. Equ. Appl. Math. 2021, 4, 100140. [Google Scholar] [CrossRef]
- Treves, F. Analytic Partial Differential Equations; A Series of Comprehensive Studies in Mathematics; Springer: Berlin, Germany, 2020; Volume 359. [Google Scholar] [CrossRef]
- Shokri, A.; Ramos, H.; Khalsaraei, M.; Aliev, F.A. Fourth derivative singularly P-stable method for the numerical solution of the Schrodinger equation. Adv. Differ. Equ. 2021, 1, 506. [Google Scholar] [CrossRef]
- Tsitsiashvili, G.S.; Osipova, M.A.; Kharchenko, Y.N. Estimating the coefficients of a system of ordinary differential equations based on inaccurate observations. Mathematics 2022, 10, 502. [Google Scholar] [CrossRef]
- Belan, S.; Fouxon, I.; Falkovich, G. Localization-delocalization transitions in turbophoresis of inertial particles. Phys. Rev. Lett. 2014, 112, 234502-1–234502-5. [Google Scholar] [CrossRef] [PubMed]
- Whitham, G.B. Linear and Non-Linear Waves; A Wiley-Inter Science Publication; John Willey and Sons: New York, NY, USA, 1974. [Google Scholar]
- Teschl, G. Ordinary Differential Equations and Dynamical Systems; American Mathematical Society: Providence, RI, USA, 2012. [Google Scholar]
- Hartman, P. Ordinary Differential Equations, Classics in Applied Mathematics; Society for Industrial and Applied Mathematics: Philadelphia, PA, USA, 2002. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tsitsiashvili, G.; Gudimenko, A.; Osipova, M. Fast Method for Estimating the Parameters of Partial Differential Equations from Inaccurate Observations. Mathematics 2023, 11, 4586. https://doi.org/10.3390/math11224586
Tsitsiashvili G, Gudimenko A, Osipova M. Fast Method for Estimating the Parameters of Partial Differential Equations from Inaccurate Observations. Mathematics. 2023; 11(22):4586. https://doi.org/10.3390/math11224586
Chicago/Turabian StyleTsitsiashvili, Gurami, Alexey Gudimenko, and Marina Osipova. 2023. "Fast Method for Estimating the Parameters of Partial Differential Equations from Inaccurate Observations" Mathematics 11, no. 22: 4586. https://doi.org/10.3390/math11224586
APA StyleTsitsiashvili, G., Gudimenko, A., & Osipova, M. (2023). Fast Method for Estimating the Parameters of Partial Differential Equations from Inaccurate Observations. Mathematics, 11(22), 4586. https://doi.org/10.3390/math11224586