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Abstract: In this paper, the problems of estimating the parameters of partial differential equations
from numerous observations in the vicinity of some reference points are considered. The paper is
devoted to estimating the diffusion coefficient in the diffusion equation and the parameters of one-
soliton solutions of nonlinear partial differential equations. When estimating the diffusion coefficient,
it was necessary to construct an estimate of the second derivative based on inaccurate observations of
the solution of the diffusion equation. This procedure required consideration of two reference points
when determining the first and second partial derivatives of the solution of the diffusion equation.
To analyse one-soliton solutions of partial differential equations, a series of techniques have been
developed that allow one to estimate the parameters of the solution itself, but not its equation. These
techniques are used to estimate the parameters of one-soliton solutions of the equations kdv, mkdv,
Sine–Gordon, Burgers and nonlinear Schrodinger. All the considered estimates were tested during
computational experiments.

Keywords: reference points; experiment planning; one-soliton solution
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1. Introduction

Estimating the parameters of differential equations based on inaccurate observations
of their solution is the attention focus of many researchers due to the great fundamen-
tal and applied significance of this problem, especially in connection with problems of
engineering mathematics. The problem is considered not only in statistical terms but
also in a deterministic formulation as an inverse problem for equations of mathematical
physics (see, for example, [1–3]). The task was solved under the assumption of a large
number of observations [4] over a sufficiently long period of time and in a deterministic
formulation [3]. When solving deterministic inverse problems for differential equations,
the question of the influence of inaccurate observations on the estimation of parameters
should be noted to be not raised.

An alternative approach based on a probabilistic model of observation errors was
proposed in [4–8]. This approach includes both a functional central limit theorem [4,5] and
a two-step optimisation procedure [6–8]. The two-step optimisation procedure has been
significantly developed and continued. The approach focuses on the use of smoothing
methods to develop and estimate the differential equations, following recent developments
in functional data analysis and based on the methods described in [9,10].

The development of a two-stage optimisation procedure is based on parameter estima-
tion using nonparametric estimators [11], taking into account time-varying parameters [12]
and their Bayesian estimation [13], three- and four-stage modifications of a two-stage
optimisation procedure [14–16], consideration of errors in the autoregressive model [17]
and applications to chemical kinetics models [18].
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This variety of approaches is largely determined by the task specifics of estimating
the parameters of differential equations. Despite the differences in the approaches used
to solve this problem, the general procedure in the proposed solutions is to minimize the
deviation of the solution of the original differential equation/system from its solution at
estimated parameter values.

In the traditional two-stage method, the distance between the approximation of the dif-
ferential equation solution by observations and its exact value on the segment (or in another
area) is minimized. In our modification of the two-stage method, it is proposed at the first
stage to minimize the distances between estimates of the solution values and its derivatives
at several reference points. And already at the second stage, the unknown parameters are
estimated using these approximations, solving a system of nonlinear equations constructed
using the method of moments (see, for example, [19]).

The method of moments for estimating the parameters of differential equations is
conveniently illustrated by the example of the equation ẋ(t) = ax(t). Let us choose a
reference point t0 and construct consistent estimates ̂̇x(t0), x̂(t0) of the values ẋ(t0), x(t0).
Then, the evaluation of the parameter a becomes â = ̂̇x(t0)/x̂(t0). Let us call it the method
of moments. In a more complex differential equation for estimating an unknown parameter,
it is proposed to replace the values of the function and its derivative at the reference point
with estimates using the least squares method. This paper presents the conditions under
which the estimates of the function and its derivative at the reference point converge
to exact values with an increase in the number of observations in the vicinity of the
reference point/points. Then, the accuracy of the estimation of the parameter of the
differential equation and its consistency are determined by the accuracy of the solution
of the algebraic equation, which includes estimates of the function and derivative at the
reference point/points (see [20] (Theorem 4)).

The results obtained in this way, in a certain sense, correlate with improved statistical
pattern analysis based on Kalman filtering [21–23], but with fast estimation of the differen-
tial equation parameters. Estimating the value of a function and its derivative at a reference
point requires a number of iterations proportional to the number of observations near this
point. This can be done during observations and does not require additional time.

All the methods given in the articles referred to are based on stochastic optimisation.
With a fixed step multiplier, this method does not provide convergence to the desired
solution [24] (Theorem 2): “the gradient method converges on average not to the minimum
point, but to some area around it”. To ensure the required convergence, it is necessary to
consistently reduce the step multipliers, which makes the calculations very slow (inversely
proportional to the number of iterations). And in our method, it is only required to find the
root of a monotone function, for example, by dichotomous division, which is performed
very quickly (as a decreasing geometric progression from the number of iterations). During
computational experiments, parameters were estimated using the proposed method almost
instantly (in a few seconds).

Application of analytical estimates of calculation errors based on probabilistic metrics
allows us to control the accuracy of parameter estimation and to choose the number of
measurements in the vicinity of control points, distances between neighbouring measure-
ments and measurement accuracy. The use of probabilistic metrics gives an advantage
when comparing the listed results and is important when designing a measuring system.
The algorithm proposed allows us to control the accuracy of estimates of the function and
its derivative according to the sufficient conditions of convergence in probability to their
accuracy values and to choose the number of observations in the vicinity of the reference
points, the distance between neighbouring observations around the reference point and the
accuracy of observations. The result of such control is presented in numerical experiments,
which give an affordable accuracy (several percent), especially in a nonlinear Schrodinger
equation. This is important when designing a measuring system and determines the nov-
elty of the proposed method. Such attempts to analyse observational systems are caused,
in particular, by the results in the field of quantum physics (Nobel Prize on physics 2022).
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The reference point number is usually equal to the number of unknown parame-
ters [20]. In this paper, this approach allows us to construct fast running algorithms to
estimate unknown parameters and apply them to estimating the parameters of partial
differential equations and their solutions.

To estimate the solution based on inaccurate observations and its derivative at the
reference point, the authors needed to level out both random observation errors and the
deviation of the solution in a small vicinity of the reference point from the linear function.
Random observation errors are leveled out by a large number of observation points in the
immediate vicinity of the reference point. For this purpose, it is convenient to use linear
regression analysis, which is based on the least squares method but applied to a nonlinear
function. The deviation of the solution in a small neighbourhood of the reference point from
the linear one is offset by the small distance between the points adjacent to the reference
point. To determine the estimate error, the method of probabilistic metrics is used [25]. The
distance between points adjacent to the reference point is related by a power law to the
number of these points. And the power-law parameter is chosen in such a way as to ensure
convergence in probability of estimates of the solution and its derivative at the reference
point to exact values.

To apply this technique to estimating the parameters of partial differential equations
and their solutions, it is necessary to select reference points. Using the method of moments
makes it possible to significantly simplify this procedure, based on an analogy with the
method of planning an experiment [26,27]. In this paper, the described modification of a
two-step procedure for parameter inference in differential equations is used to estimate the
diffusion coefficient in the diffusion equation and to estimate the parameters of one-soliton
solutions of nonlinear partial differential equations.

In the first section, when determining the diffusion coefficient in the diffusion equation,
the problem of estimating the function second derivative arises (see, for example, [28]).
This problem solution needs a more complex algorithm, which requires two reference
points with the distance between them being related by a power function to the number of
points in the vicinity of the reference point. The power function exponent is determined
by the requirement that the probability of estimating the second derivative converge to its
value. Using this approach, an estimate of the diffusion coefficient is constructed and a
computational experiment is carried out to confirm the sufficient accuracy of this estimate.

In the second section we consider kdv, mkdv, Sine–Gordon, Burgers, and nonlinear
Schrodinger equation. One-soliton solutions of these equations are known [29–35] and were
obtained by the Darboux transformation method [29]. However, the number of parameters
in these equations is greater than the number of coefficients in them. This is because
these parameters characterize certain spectral properties. The problem of reference point
choosing stems from the fact that each reference point still needs to be compared with the
partial derivative of the solution. Consequently, several partial derivatives can correspond
to one reference point. For the equations KdV, mKdV, Sine–Gordon, and Burgers, this
problem is solved quite simply, since you can take one reference point at which two partial
derivatives are calculated. But for the nonlinear Schrodinger equation, the one-soliton
solution of which contains four parameters [36], the task becomes more complicated, since
it is necessary to select two reference points.

We find these reference points and obtain the necessary estimates for the parameters
of one-soliton solutions in all of the listed nonlinear partial differential equations. The
solutions obtained during the computational experiment turn out to be quite accurate.

2. Estimates of Diffusion Coefficient
2.1. Evaluation of the First Derivative

Suppose that inaccurate observations were obtained at points ±kh, h > 0,
k = 0, 1, . . . , n, for the state of some physical process described by the function
f (z) : f (±kh) + ε(±kh), k = 0.1, . . . , n. Here, ε(±kh), k = 0.1, . . . , n, are independent
identically distributed random variables with zero mean and finite variance δ2. At first we
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estimate f (0), fz(0) provided that for some ∆ we have in interval [−∆, ∆] the inequality
| fzz| < C1 < ∞.

Previously [37] (Theorem 3), estimates of the first derivative of the function f (z) and
its value at z = 0 were constructed with yk = f (kh) + εk :

f̂ (0) =
1

2n + 1

n

∑
k=−n

yk, f̂z(0) =
1

∑n
k=−n(kh)2

n

∑
k=−n

ykkh. (1)

Theorem 1. If δ2 < ∞ and h = n−α, then, for α > 1, the estimate of f̂ (0) is an asymptotically
unbiased and consistent estimate of the parameter f (0). The estimate f̂z(0) is an asymptotically
unbiased estimate of the parameter fz(0). At 1 < α < 3/2, the estimate f̂z(0) is a consistent
estimate of fz(0).

Proof of Theorem 1. Denote ỹk = f (0) + fz(0)kh + εk and put

f̃ (0) =
∑n

k=−n ỹk

2n + 1
, f̃z(0) =

∑n
k=−n ỹkkh

∑n
k=−n(kh)2 .

Estimates of f̃ (0), f̃z(0) are obtained by the least squares method for f (0), fz(0) of linear
regression [19] and satisfy the following relations

E f̃ (0) = f (0), E f̃z(0) = fz(0), Var f̃ (0) =
δ2

2n + 1
, Var f̃z(0) =

δ2

∑n
k=−n(kh)2 . (2)

Here, symbols E . . . , Var . . . denote the mathematical expectation of random variable. . .
and its variance. In turn, the following equalities are almost surely fulfilled

f̂ (0)− f̃ (0) =
∑n

k=−n(yk − ỹk)

2n + 1
, f̂z(0)− f̃z(0) =

∑n
k=−n(yk − ỹk)kh

∑n
k=−n(kh)2 . (3)

Moreover, the differences yk − ỹk = f (kh)− f (0)− fz(0)kh, k = 0,±1, . . . ,±n are deter-
ministic quantities. Then, from the Taylor formula with a residual term in the Lagrange
form, inequalities follow

| f (kh)− f (0)− fz(0)kh| ≤ C1(kh)2, k = 0,±1, . . . ,±n. (4)

From Formulas (3) and (4) for n→ ∞, the relations follow

| f̂ (0)− f̃ (0)| ≤ ∑n
k=−n | f (kh)− f (0)− fz(0)kh|

2n + 1
≤ 2C1h2 ∑n

k=1 k2

2n + 1
∼ C1h2n2

3
→ 0, (5)

| f̂z(0)− f̃z(0)| ≤
∑n

k=−n |( f (kh)− f (0)− fz(0)kh)kh|
∑n

k=−n(kh)2 ≤ C1h3 ∑n
k=1 k3

∑n
k=1 h2k2 ∼ C1hn

4
→ 0. (6)

The Formulas (2), (5) and (6) lead to the relations

|E f̂ (0)− f (0)| = |E f̂ (0)− E f̃ (0)| � C1h2n2

2
, Var f̂ (0) = Var f̃ (0), (7)

|E f̂z(0)− fz(0)| = |E f̂z(0)− E f̃z(0)| �
3C1hn

4
, Var f̂z(0) = Var f̃z(0). (8)
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Here, an � bn means that lim sup
n→∞

an/bn ≤ 1. Then, from the condition h = n−α, α > 1,

and the relations (7) and (8) we have

|E f̂ (0)− f (0)| → 0, |E f̂z(0)− fz(0)| → 0, n→ ∞, (9)

that f̂ (0), f̂z(0) are asymptotic unbiased estimates of f (0), fz(0).
From the Bieneme–Chebyshev inequality, the relations (5) and (7) and the conditions

h = n−α, α > 1, we obtain for any ε > 0, n→ ∞

P(| f̂ (0)− f (0)| > ε) ≤ P(| f̂ (0)− f̃ (0)|+ | f̃ (0)− f (0)|) > ε) =

= P(| f̃ (0)− f (0)| ≥ ε− | f̂ (0)− f̃ (0)|) ≤ δ2

(2n + 1)(ε− | f̂ (0)− f̃ (0)|)2
→ 0.

Thus, for h = n−α, α > 1, estimate f̂0 is a consistent estimate of x0.
At the same time, from the relations (6), (8) and (9) for h = n−α, 1 < α < 3/2, we

obtain for any ε > 0, n→ ∞

P(| f̂z(0)− fz(0)| > ε) ≤ P(| f̂z(0)− f̃z(0)|+ | f̃z(0)− fz(0)|) > ε)) =

= P(| f̃z(0)− fz(0)| > ε− | f̂z(0)− f̃z(0)|) ≤
3δ2

h2n3(ε− | f̂z(0)− f̃z(0)|)2
→ 0.

Therefore, if the condition h = n−α, 1 < α < 3/2 is true, the estimate f̂z(0) is a consistent
estimate of fz(0).

Theorem 1 contains sufficient conditions in which estimates of function and its deriva-
tive in reference point tend in probability to their accuracy meanings. And we represent in
this subsection necessary relations between number of observations around some reference
point and distance between neighbour observations using probability metrics and accuracy
of observations, when estimates tend in probability to their accuracy meanings.

2.2. Evaluation of the Second Derivative

In this subsection, an algorithm for estimating the second derivative is constructed. To
do this, in addition to the point 0, in the neighbourhood of which 2n + 1 observations have
been made to estimate the first derivative, it is necessary to consider the point h1, h1 = n−β

and make 2n + 1 observations in its neighbourhood. In order to conduct such an analysis
and obtain a fairly good estimate of the second derivative, it is necessary to choose the right
ratio between the parameters α, β. Inequalities are constructed between the parameters
α, β, to ensure the proper quality of the evaluation of the second derivative.

To estimate the second derivative, we will use the following formula

f̂zz(0) =
f̂z(h1)− f̂z(0)

h1
. (10)

If the condition is met sup
z0−hn≤z≤z0+hn+h1

| fzzz(z)| = C2 < ∞. Then, from the Taylor formula

with a residual term in the Lagrange form, we obtain∣∣∣∣ fz(h1)− fz(0)
h1

− fzz(0)
∣∣∣∣ ≤ C2h1. (11)

Thus, we obtain ∣∣∣∣∣E f̂z(0)− fz(z0)

h1

∣∣∣∣∣ ≤ C2

h1

∑n
k=−n |kh|3

∑n
k=−n(kh)2 ≤

C2hn
h1
� hn

h1
. (12)
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Therefore, from relations (11) and (12), we have

∣∣∣E f̂zz(0)− fzz(0)
∣∣∣ = ∣∣∣∣∣E f̂z(h1)− E f̂z(0)

h1
− fzz(0)

∣∣∣∣∣ ≤
∣∣∣∣∣E f̂z(0)− fz(0)

h1

∣∣∣∣∣+
(13)

+

∣∣∣∣ fz(h1)− fz(0)
h1

− fzz(0)
∣∣∣∣+
∣∣∣∣∣E f̂z(h1)− fz(h1)

h1

∣∣∣∣∣ ≤ C2h1 +
2C2hn

h1
� h1 +

hn
h1

.

It is not difficult to prove that

Var f̂zz(0) = Var
f̂z(h1)

h1
+ Var

f̂z(0)
h1
≤ 2σ2

h2h2
1n3

. (14)

Assuming

h = n−α, 1 < α < 3/2; h1 = n−β, 0 < β < min{α− 1, 3/2− α}, (15)

from relations (13) and (14) and Chebyshev‘s inequality for any ε > 0 and for n → ∞
we have

P(| f̂zz(0)− fzz(0)| > ε) ≤ P(| f̂zz(0)− E f̂zz(0)|+ |E f̂zz(0)− fzz(0)| > ε) =

= P(| f̂zz(0)− E f̂zz(0)| > ε− |E f̂zz(0)− fzz(0)|) ≤
Var f̂zz(0)

(ε− |E f̂zz(0)− fzz(0)|)2
→ 0.

This means convergence in probability (consistency of the constructed estimate)

f̂zz(0)
P−→ fzz(0), n→ ∞. (16)

Such complex conditions (15) of convergence in probability seem to be related to the
possible presence of a phase transition and are consistent with the known results on the
turbophoresis of inertial particles [38].

2.3. Numerical Experiment for Diffusion Equation

Consider the diffusion equation

∂u
∂t

= D
∂2u
∂x2 . (17)

As ût(t0, x0), ûxx(t0, x0) are consistent estimates of ut(t0, x0), uxx(t0, x0) relatively, it fol-
lows from Equation (17) that

D̂ =
ût(t0, x0)

ûxx(t0, x0)

is a consistent estimate of the diffusion coefficient D.
The computational experiment was carried out for Equation (17) with the given bound-

ary condition ux(t, 0) = ux(t, 1) = 0, t ≥ 0, and the initial condition
u(0, x) = cos 2πx, 0 ≤ x ≤ 1, in the case when D = 0.01. Via the Fourier method [35], it is
not difficult to find a solution of this equation: u(t, x) = exp

[
−Dt(2π)2] cos 2πx.

Suppose that inaccurate observations are obtained at the points (t0± kh, x0), (t0, x0 ± kh),
(t0, x0 + h1 ± kh), k = 0, 1, . . . , n. Denote ût(t0, x0), ûxx(t0, x0) consistent estimates of par-
tial derivatives ut(t0, x0), uxx(t0, x0), respectively. We believe that inaccurate observations
are obtained at points (t0± kh, x0), (t0, x0± kh), (t0, x0 + h1± kh), k = 0, 1, . . . , n, t0 = 0.05,
x0 = 0.1, h1 = n−40/41, h = n−5/4, n = 450,000 : u(t0 ± kh, x0) + ε1(±kh), u(t0, x0 ± kh)
+ε2(±kh), u(t0, x0 + h1 ± kh) + ε3(±kh), where εi(±kh), i = 1, 2, 3, k = 0, 1, . . . , n, are
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i.i.d.r.v.‘s distributed uniformly on the segment [1/8, 1/8]. As a result, we obtain an esti-
mate D̂ = 0.0113026.

3. Estimates of One-Soliton Solution Parameters
3.1. Preliminaries

The solutions of equations, which we will deal with below, belong to the class of
one-soliton solutions. Here, using the KdV equation

ut + 6uux + uxxx = 0 (18)

as an example, we briefly consider a simple method for obtaining such solutions. Our goal
is to show that the estimating parameters of one-soliton solutions (modulo the choice of
initial conditions) are the spectral parameters of appropriate linear problems. Details, as
well as other methods for solving soliton equations, can be found in [29–34]. Note that the
KdV equation is the first equation in which single-soliton solutions were found. It arises
naturally in plasma physics, solid state physics, biology and many other areas.

The method under consideration is based on two fundamental concepts: the Lax
representation (more generally, the zero curvature representation [30]) and the Darboux
transformation [29]. Let us discuss these concepts in application to Equation (18).

It is well known that an arbitrary soliton equation is represented as a condition for the
joint solvability of two, generally speaking, matrix linear equations. For (18), we have a
system of scalar equations

Lψ = λψ, ψt = Aψ, (19)

where L = −∂2
x + u and A = −4∂3

x + 6u∂x + 3ux. The solvability condition is obtained by
differentiating the first equation in (19) with respect to t, then eliminating ψt with the help
of the second equation and replacing λψ by Lψ. This condition is written as

∂tL = AL− LA (20)

and is called the Lax representation.
The first equation of the system (19) is a one-dimensional stationary Schrodinger

equation. Its one-fold Darboux transformation is determined by the relation

L′T = TL, (21)

where L′ = −∂2
x + u′ is a transformed Schrodinger operator and T is a first-order differential

operator over x. It follows from (20) that u′ = u− 2∂2
x ln ϕ and T = ∂x − ϕx/ϕ, where

ϕ = ϕ(t, x) is the eigenvector of the operator L, corresponding to the eigenvalue λ. For
example, if u = 0, we can take

ϕ = cosh[k(x− x0)− α], λ = −k2, (22)

where α = α(t) is an arbitrary real function.
Let us now show how, using the Lax representations and Darboux transformations,

we can construct a one-soliton solution of Equation (18). We require that, along with (21),
the following relation is fulfilled:

A′T = ∂tT + TA, (23)

where A′ is an operator of the same type as A, but with u replaced by u′. It turns out that this
requirement completely defines the operator A′ and that the Lax representation (20) is valid
for the corresponding dashed operators. The latter, in turn, means that u′ = u− 2∂2

x ln ϕ,
a solution of Equation (18). Choosing a function ϕ (22) from (23), we find α = 4k3t and
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as a result we obtain the desired one-soliton solution (in which we replace for further
convenience u′ by u)

u = −2k2 cosh−2[k(x− x0)− 4k3t]. (24)

Multi-soliton solutions are obtained in a similar way by iterating the Darboux transformation.
Thus, using the KdV equation as an example, we have shown that the parameters of

solutions of soliton equations estimated in this paper (excluding the initial conditions) are
the spectral parameters of the corresponding linear problems. In the considered case, −k2,
the eigenvalue of the Schrodinger operator L, x0, the initial value of the coordinate x are
employed. In a similar way, one-soliton solutions are sought in all the equations under
consideration in this subsection.

3.2. Construction and Estimates of Parameters in One-Soliton Solutions

In this subsection, all random variables characterizing observation errors have a
uniform distribution on the segment [−1/8, 1/8].

KdV equation. Consequently for a KdV one-soliton solution we have

ut = −16k5w−3 sinh(z), z = k(x− 4k2t− x0), w = cosh(z),

ux = 4k3w−3 sinh(z) ⇒ k =

√
− ut

4ux
.

From (24), we obtain
w2 =

ut

2uux
.

Choosing reference point (t, x) = (0, 0), we obtain

k =

√
− ut(0, 0)

4ux(0, 0)
, w =

√
ut(0, 0)

2u(0, 0)ux(0, 0)
, x0 = − arch(w)

k
.

Then, using the method of moments we obtain

k̂ =

√
− ût

4ûx
, ŵ =

√
ût(0, 0)

2û(0, 0)ûx(0, 0)
, x̂0 = − arch(ŵ)

k̂
.

The computational experiment was carried out in the case of x0 = k = 1 with the number
n = 300,000. The following results were obtained

k̂ = 0.997589, x̂0 = 0.989265.

If in the KdV equation with k = 1 we increase n from 300,000 to 3,000,000, we obtain a
change of estimate k̂ from 0.997589 to 1.00075.

mKdV equation. Consider now mKdV equation

ut + 6u2ux + uxxx = 0. (25)

This equation is used in descriptions of isotropic media dimensionally quantized films,
acoustic waves in plasma and internal waves in a symmetric stratified liquid. The one-
soliton solution of Equation (25) is

u(t, x) = sA sinh(A(x− A2t− x0)), s = ±1,

then

ux = sA2 cosh(A(x− A2t− x0)), ut = −sA4 cosh(A(x− A2t− x0))⇒ A =

√
− ut

ux
.
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Choosing reference point (t, x) = (0, 0), we obtain from (25)

u
sA

= sinh(−Ax0) = − sinh(Ax0)

and so

A =

√
− ut(0, 0)

ux(0, 0)
, x0 = − 1

A
arsh

(
u(0, 0)

s

√
−ux(0, 0)

ut(0, 0)

)
.

Using the method of moments, we obtain

Â =

√
− ût(0, 0)

ûx(0, 0)
, x̂0 = − 1

Â
arsh

(
û(0, 0)

s

√
− ûx(0, 0)

ût(0, 0)

)
.

The computational experiment was carried out in the case s = 1 and for x0 = A = 1 at the
point (x, t) = (0, 0) with the number n = 300,000. The following results were obtained

Â = 1.00114, x̂0 = 1.00855.

But it is possible to improve results of numerical experiments if we assume that accuracy
of observations is higher (random variables characterizing observations have a uniform
distribution on the segment [−d, d] with d < 1/8). If in the mKdV equation with A = 1 we
change d from 1/8 to 1/80, we obtain a change of estimate Â from 1.00114 to 1.00016.

These experiments show that not only number n but accuracy of observations influence
accuracy of estimates.

Sine–Gordon equation. Consider now the Sine–Gordon equation

ϕxx − ϕtt = m2 sin ϕ.

This equation is used in descriptions of Bloch wall motion in ferromagnetic crystals, Jackson
constants in superconductivity and nonlinear optics. Its one-soliton solution is

ϕ(t, x) = 4 arctan(exp(mγ(x− vt) + δ)), γ2 =
1

1− v2 . (26)

Denote w = exp(mγ(x− vt)) + δ; then

ϕt = −4mγv
w

1 + w2 , ϕx = 4mγ
w

1 + w2 ⇒ v = − ϕt

ϕx
, γ =

√
ϕ2

x

ϕ2
x − ϕ2

t
.

Choosing reference point (t, x) = (0, 0), we obtain

ϕ(0, 0) = 4 arctan eδ ⇒ δ = ln tan
ϕ(0, 0)

4
, γ =

√
ϕ2

x(0, 0)
ϕ2

x(0, 0)− ϕ2
t (0, 0)

.

Choosing another reference point (t, x) = (0, 1), we obtain

mγ + δ = ln tan
ϕ(0, 1)

4
⇒ m =

1
γ

(
ln tan

ϕ(0, 1)
4
− δ

)
.

Then, we obtain

δ̂ = ln tan
ϕ̂(0, 0)

4
, γ̂ =

√
ϕ̂2

x(0, 0)
ϕ̂2

x(0, 0)− ϕ̂2
t (0, 0)

, m̂ =
1
γ̂

(
ln tan

ϕ̂(0, 1)
4
− δ̂

)
.
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The computational experiment was carried out in the case of γ = 1.1575, δ = 1, m = 2
with the number n = 300,000. The following results were obtained

γ̂ = 1.15352, δ = 0.96641, m̂ = 2.03116.

Burgers equation. Consider Burgers equation

ut + uux = uxx, (27)

Equation (27) is used in hydrodynamics, dislocation theory and visco-elasticity theory. Its
one-soliton solution may be represented in the form

u(t, x) = aδ(1− tanh(z)), z =
1
2
(ax− δa2t),

then

ux = − a2δ

2 cosh2(z)
, ut =

a3δ2

2 cosh2(z)
⇒ δa = − ut

ux
.

Choosing reference point (t, x) = (0, 0), we obtain parameters a, δ :

ut(0, 0) =
a3δ2

2
, ux(0, 0) = − δa2

2
⇒ a =

2u2
x(0, 0)

ut(0, 0)
, δ = − u2

t (0, 0)
2u3

x(0, 0)
.

Then, using the moments method, we obtain

â =
2û2

x(0, 0)
ût(0, 0)

, δ̂ = − û2
t (0, 0)

2û3
x(0, 0)

.

The computational experiment was carried out in the case of a = 1, δ = 1 with the number
n = 300,000. The following results were obtained

â = 1.00355, δ̂ = 0.992503.

Nonlinear Schrodinger equation. The nonlinear Schrodinger equation has the fol-
lowing form

iut + uxx + ν|u|2u = 0. (28)

and is used in nonlinear optics and plasma physics. The one-soliton solution of this
equation has the form [39]

u(x, t) = exp{irx− ist}v(x−Ut) (29)

where r, s, U are constants connected by the relations:

r =
U
2

s =
U2

4
− α (30)

and the function v(q) satisfies an ordinary differential equation of the form v̈− αv+ νv3 = 0
with α = r2 − s.

The one-soliton solution of this equation has the form

|u(x−Ut)| = v(x−Ut) =

√
2α

ν
cosh−1[

√
α(x−Ut)]. (31)

Thus, the parameter α determines the amplitude of the waves and the parameter U deter-
mines their speed. Next, we assume that the parameters of Equation (29) are equal to:

U = 1, α = 1, ν = 4, ρ =
α

ν
=

1
4

,
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the parameters of r, s are determined by the equalities (30) r = 0.5, s = −0.75. From
Formula (31), it follows that

U = − vt(x−Ut)
vx(x−Ut)

.

If (x, t) = (1,−1), then we obtain U = − vt(1,−1)
vx(1,−1)

, where the estimate is as follows

Û = − v̂t(1,−1)
v̂x(1,−1)

. (32)

So if (x, t) = (0, 0), then 2ρ = v2(0, 0) and consequently

ρ̂ =
v̂2(0, 0)

2
. (33)

In turn, for (x, t) = (1,−1), we obtain from Formula (31) the equation

vt(1,−1)
v2(1,−1)

=

√
ν

2
U sinh(

√
ρν(1 + U)).

It follows that in order to estimate the parameter ν, it is necessary to solve the equation

v̂t(1,−1)
v̂2(1,−1)

=

√
ν

2
Û sinh

(√
ρ̂ · ν(1 + Û)

)
. (34)

Inserting estimates Û, ρ̂ from (32) and (33) into Equation (34) and solving this equation by
ν, we find the estimate ν̂. Estimates of listed parameters for the number n = 300,000 are
Û = 1.03146, ν̂ = 3.84376, α̂ = 0.960547, r̂ = 0.51573, ŝ = −0.69457.

It should be noted that most of the one-soliton solutions have the form of travelling
waves. Therefore, by choosing the almost arbitrary reference point (t1, x1), it is not difficult
to estimate the velocity of a travelling wave through partial derivatives of the solution by
the coordinates t, x at the point (t1, x1). Moreover, for the nonlinear Schrodinger equation,
the point (t2, x2) = (0, 0) can serve as another reference point. Using this reference point
allows us to estimate all the parameters of this equation. These rather simple considerations
can be used to estimate the parameters of one-soliton solutions and other nonlinear partial
differential equations.

When we calculate the ratio a/b with the inaccuracy estimates â, b̂ (we used this
calculation in all the examples from Section 3.2), the accuracy of the calculations is quite
high. But when we calculate the roots of hyperbolic functions with small derivatives, the
result may be worse in some (not all) numerical experiments. This is due to the inaccuracy
estimates at the first step of the proposed algorithm and the small derivatives of the
functions whose roots we calculate. Nevertheless, our proposed algorithm allows us to
control the accuracy of estimates of the function and its derivative under the conditions of
convergence in probability to their exact values and to choose the number of observations in
the vicinity of the reference points, the distance between neighbouring observations around
the reference point and the accuracy of observations. The result of such control is presented
in numerical experiments, which give an affordable accuracy (several percent), especially
in nonlinear Schrodinger equation. This is important when designing a measuring system.
Similar problems have arisen, for example, when measuring hidden parameters in quantum
physics (Nobel Prize on Physics, 2022).

4. Discussion

The technique of the moment method developed in this work is also applicable
to estimating the parameters of functions that are not necessarily related to differential
equations. This formulation of the question allows us to consider some problems of
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reliability theory. And finally, in some cases there is no need to estimate the parameters
of differential equations, for example, in problems about solitons. It is only necessary to
estimate the solution parameters of these equations. Moreover, in the problem of solitons
one can consider not only one-soliton, but also multi-soliton solutions. And finally, the
method proposed in this paper allows us to estimate the coefficients of nonlinear partial
differential equations. This issue is especially important when solving inverse problems
of mathematical physics and requires additional and more detailed consideration. In
particular, for differential equation systems in a small neighbourhood of a certain point, the
theorems of solution existence and uniqueness can be used (see, for example, [40,41]).

5. Conclusions

This paper considers the problem of estimating the differential equation parameters
from numerous observations near certain reference points. Conditions are obtained under
which the constructed estimates are consistent. The review includes both linear and nonlin-
ear differential equations. The greatest computational difficulties arose when estimating
the diffusion coefficient in Section 2. According to our data, it took several minutes to solve
the problems in question in the Mathematics package. The described algorithms were quite
successfully used to work with FEFU students (educational program: computer design)
in the subject of systems analysis. This work mainly considers systems of differential
equations with analytical solutions (with the exception of Section 3.1). But there are many
differential equations and systems that cannot be solved analytically. In the future, when
developing this topic, it is planned to consider such equations and systems, the solutions
of which can only be obtained using computer calculations. The purpose of this article is to
initiate the development of the proposed method in various directions. In particular, using
high computing speed, you can choose a model of the system under consideration from
several options. As considered in this work, the problems of estimating the differential
equation parameters are close to the problems of Kalman filtering. This circumstance allows
us to pose the question of the advisability of conducting a large number of observations in
the vicinity of the reference point.
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