
Citation: Chen, K.-S.; Huang, T.-H.;

Lin, J.-S.; Yu, C.-M.; Yang, C.-M.

Fuzzy Evaluation Model of

Machining Process Loss. Mathematics

2023, 11, 4596. https://doi.org/

10.3390/math11224596

Academic Editor: Aleksandar

Aleksić

Received: 14 October 2023

Revised: 4 November 2023

Accepted: 8 November 2023

Published: 9 November 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

Fuzzy Evaluation Model of Machining Process Loss
Kuen-Suan Chen 1,2,3, Tsun-Hung Huang 1, Jin-Shyong Lin 4,*, Chun-Min Yu 1,* and Chun-Ming Yang 5

1 Department of Industrial Engineering and Management, National Chin-Yi University of Technology,
Taichung 411030, Taiwan; kschen@ncut.edu.tw (K.-S.C.); toby@ncut.edu.tw (T.-H.H.)

2 Department of Business Administration, Chaoyang University of Technology, Taichung 413310, Taiwan
3 Department of Business Administration, Asia University, Taichung 413305, Taiwan
4 Department of Mechanical Engineering, National Chin-Yi University of Technology, Taichung 411030, Taiwan
5 School of Economics and Management, Dongguan University of Technology, Dongguan 523808, China;

2020812@dgut.edu.cn
* Correspondence: linjsh@ncut.edu.tw (J.-S.L.); march@ncut.edu.tw (C.-M.Y.)

Abstract: In facing the many negative impacts of global warming on the earth’s environment, the
machining industry must reduce the rates of product rework and scrap in the manufacturing process
by enhancing the process quality of the processed product. According to the concept of the Taguchi
loss function, the closer the measured value of the processed product is to the target value T, then the
longer the mean time between failures (MTBF) of the product. Clearly, raising the process quality of
the processed product can effect energy saving and waste reduction during production and sales,
which can help enterprises fulfill their corporate social responsibilities. On the basis of the Taguchi
loss function, this study used the process expected loss to evaluate the process loss. Next, the process
expected loss was used as an evaluation index, in which the accuracy index and the precision index
can help the machining industry find the direction for improvement. Additionally, this study first
derived a confidence interval of the process expected loss. Then, it was built on the confidence
interval, and a confidence interval-based fuzzy test was developed for the process expected loss.
Finally, an empirical example was adopted to explain the application of the fuzzy evaluation model
of the machining process proposed in this paper.

Keywords: Taguchi loss function; process expected loss; confidence interval; confidence interval-based
fuzzy test; corporate social responsibility

MSC: 62C05; 62C86

1. Introduction

As global warming has impacted the earth’s environment, how to coexist with the
natural environment has become an important issue. How to balance economic growth and
sustainable development is an issue that governments and enterprises in various countries
must face together [1,2]. Given this line of thinking, we must increase the extent of our
responsibility for the social and ecological environment [3,4]. Therefore, corporate social
responsibility (CSR) has now become a common business concept that is being promoted
across the globe [5]. It is clear that products must be produced with circular economy green
thinking—reduce, reuse, and recycle—from development and design to production and
processing [6]. Only in this way can enterprises fulfill their social responsibilities and ease
their burdens on society and the ecological environment.

Taiwan is the fifth largest exporter and the seventh largest producer of machinery
and machine tools in the world [7,8]. For the machining industry, elevating the process
quality of processed products can decrease the proportion of rework and scrap of processed
products in the production stage. In addition, based on the concept of the Taguchi loss
function, when the measured value of the processed product is closer to the target value
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T, the mean time between failures (MTBF) of the product is longer [9]. According to
Kethley [10], the Taguchi loss function is expressed as follows:

L(X) = k(X− T)2, (1)

where k is the multiplier and T is the target value. In order to not lose generality, it was
assumed that the tolerance of the product quality characteristics is T ± d. For individual
processed products, as the size of the processed product is closer to the target value T, the
process loss is lower. For the entire machining process, the expected process loss can be
used as a tool through which to evaluate the process loss [8]. In a normal manufacturing
process, the expected value of the Taguchi loss function with k/d =1 is displayed as follows:

θL= E[L(X)] = δ2 + γ2, (2)

where δ = (µ− T)/d and γ = σ/d. It is clear that δ and γ are two important factors that
affect the expected value of process loss. δ refers to the accuracy index, and γ refers to
the precision index [8]. When the process mean µ is closer to the target value T, then the
value of δ is closer to 0, and the process expected loss is lower. Similarly, when the value of
process variance σ2 is smaller, then the value of γ is also smaller, and the process expected
loss is lower further still. In addition, the process yield of the product is also the function of
δ and γ as per the following:

p = P(T − d ≤ X ≤ T + d)
= P

(
T−µ−d

σ ≤ Z ≤ T−µ+d
σ

)
= Φ

(
1−δ

γ

)
+ Φ

(
1+δ

γ

)
− 1

(3)

Based on the abovementioned, as the process mean µ is closer to the target value T, the
value of δ is closer to 0. Except for the lower process expected loss, the process yield is also
higher. Likewise, when the value of process variance σ2 is smaller, the process expected loss
is lower, whereas the process yield is higher. Clearly, the decrease in the process expected
loss can ensure an improvement in the process yield. Thus, the rates of rework and scrap
for the processed product can be lowered in the manufacturing stage. In the meantime,
MTBF can also be extended after the product is sold, thereby achieving the effect of energy
saving and carbon reduction [11]. Based on the abovementioned, through aiming to assist
all machining manufacturers, we examine whether the accuracy (δ) and precision (γ) of the
process can meet the requirements of the Six Sigma quality level, whether improving the
process allows it to reach the required level, and whether establishing a complete process
loss evaluation and improvement model aids with this aim (which is an important issue).

Therefore, this paper uses the expected value of the Taguchi loss function as the
evaluation index to develop a complete process loss evaluation and improvement model,
which can not only assist machining manufacturers in enhancing process quality, but can
also achieve the effect of energy saving and carbon reduction.

Since the process expected loss θL has unknown parameters, the misjudgment led by
sampling error may take place if the evaluation index θL of the machining process loss is
only evaluated by point estimation [12]. In addition, companies emphasize the mechanism
of quick responses, and—given costs and timeliness—usually the sample size is not big.
Accordingly, the sample size will make statistical tests vary, and then inconsistent decisions
will be made [11,13–15]. In addition, many studies have pointed out that the confidence
interval-based fuzzy testing model can incorporate past accumulated data with experts’
experiences, so the precision of the test can be maintained in the state of small samples [10].
Furthermore, according to the studies mentioned in the above literature [8,9,13], fuzzy tests
based on confidence intervals collect data with real numbers instead of fuzzy numbers,
which are relatively simple and easy to collect. Therefore, in this paper, we propose a
confidence interval-based fuzzy testing model for index θL.
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The remainder of this paper is organized as follows. In Section 2, we derive a 100%
confidence interval of δ and develop a confidence interval-based fuzzy test for this index. In
Section 3, we derive a 100% confidence interval of the process expected loss and construct
a confidence interval-based fuzzy test for the process expected loss. Next, in Section 4,
an application example is used to illustrate the application of the fuzzy evaluation model
of the machining process that is proposed by this study. Lastly, conclusions are made in
Section 5.

2. Confidence Interval-Based Fuzzy Test of δ

According to Equation (2), the process expected loss is denoted as θL= δ2 + γ2,
where δ and γ are two unknown parameters. As mentioned earlier, δ = (µ− T)/d is
the accuracy index. As noted by Kethley [11], accuracy can be leveled up by adjusting
machine parameters; as such, the cost of improvement will be relatively low, and it will
be relatively easy to succeed. Hence, this paper first develops a fuzzy test of the accuracy
index δ, as well as decides whether to improve it. In the era of IE 4.0 smart manufacturing,
the offset that can stably control the process is viewed as quantity, even if the value of the
accuracy index δ is quite close to 0.

Let X1, X2, . . ., Xn be a random sample of random variable X; then, the maximum
likelihood estimators of δ and γ are respectively expressed as follows:

δ̂ =
1
n

n

∑
j=1

(Xj − T
d

)
=

X− T
d

(4)

and

γ̂ =

√
∑n

j=1
(
Xj − X

)2

√
nd

=
S
d

, (5)

where S =
√

n−1∑n
j=1
(
Xj − X

)2 is the sample standard deviation. Thus, the estimator of
the process expected loss θL is denoted as follows:

θ̂L=
1
n

n

∑
j=1

(Xj − T
d

)2

= δ̂2 + γ̂2. (6)

In the normal manufacturing process, the expected value of the estimator is derived
as follows:

E
(
θ̂L
)
=

1
n

n

∑
j=1

E

((Xj − T
d

)2
)

=
1
n

n

∑
j=1

{
Var

(Xj − T
d

)
+

(
E
(Xj − T

d

))2
}

=δ2 + γ2. (7)

It is clear that the expected value of the estimator θ̂L is equal to θL. Thus, θ̂L is an
unbiased estimator of the process expected loss θL.

According to Chen et al. [16], when the process quality reaches the k-sigma quality
level, then we have |δ| ≤ 1.5/k and γ ≤ 1/k. However, since the German government
introduced Industry 4.0 in 2011, a number of companies have integrated information,
communication technologies, and digital manufacturing technologies to promote a fully
networked production environment of smart manufacturing [17,18]. Based on the studies
of Liu et al. [19], with the development and rapid evolution of emerging technologies
such as the Internet of Things (IoT) and Big Data analysis, the manufacturing industry
has also integrated and applied related technologies to move toward the goal of smart
manufacturing. In addition, according to the research conducted by Askr et al. [20], process
offsets can be easily reduced by controlling optimal machine parameters. Clearly, we can
reduce process losses by starting from lowering process offsets, as well as by striving to
diminish the process variations to achieve the purpose of lowering process losses. In order
to quickly control process shifts, process monitoring and adjustment must be carried out in
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the state of small samples and the non-mass production of defective sizes. This study first
proposes a confidence interval-based fuzzy test of δ. As mentioned earlier, the machining
industry has been moving toward smart manufacturing since Industry 4.0. As such, the
process mean, which is required to deviate from the target value T, is quite small. Thus,
the null hypothesis H0 is µ = T, and the alternative hypothesis H1 is µ 6= T, which is
equivalent to

H0 : δ = 0; (8)

H1 : δ 6= 0. (9)

Let the random variable T =
√

n(δ̂− δ)/γ̂, then T is distributed as a t distribution
with an n− 1 degree of freedom, which is denoted as T∼ tn−1. This study first adopts a
confidence interval-based fuzzy test of δ. Next, this study then derives the 100 × (1− α)%
confidence limit of δ as follows:

p
(
−tα/2;n−1 ≤

√
n(δ̂−δ)

γ̂ ≤ tα/2;n−1

)
= 1− α

⇒ p
(

δ̂− tα/2;n−1√
n γ̂ ≤ δ ≤ δ̂ +

tα/2;n−1√
n γ̂

)
= 1− α.

(10)

Therefore, [Lδ, Uδ] is the 100 × (1− α)% confidence interval of δ, as shown below:

[Lδ, Uδ]=

[
δ̂−

tα/2;n−1√
n

γ̂, δ̂ +
tα/2;n−1√

n
γ̂

]
. (11)

As noted by some studies, the α-cuts of the triangular fuzzy number ˜̂δ is presented as
follows:

δ̂[α] =
[
δ̂1(α), δ2(α)

]
for 0.01 ≤ α ≤ 1. (12)

When 0 ≤ α ≤ 0.01, then the set is δ̂[α] =
[
δ̂1(0.01), δ̂2(0.01)

]
, where

δ̂1(α) = δ̂−
tα/2;n−1√

n
γ̂ and δ̂2(α) = δ̂ +

tα/2;n−1√
n

γ̂. (13)

It is clear that when α = 1, then δ̂1(1) = δ̂2(1) = δ̂, and the triangular fuzzy number

of ˜̂δ is ˜̂δ =
(
δ̂L, δ̂M, δ̂R

)
, where δ̂M = δ̂,

δ̂L = δ̂− t0.005;n−1√
n

γ̂ and δ̂R = δ̂ +
t0.005;n−1√

n
γ̂. (14)

Therefore, the membership function of fuzzy number ˜̂δ is

=(x) =



0 i f x < δ̂− t0.005;n−1√
n γ̂

β1 i f δ̂− t0.005;n−1√
n γ̂ ≤ x < δ̂

1 i f x = δ̂

β2 i f δ̂ < x ≤ δ̂ +
t0.005;n−1√

n γ̂

0 i f δ̂ +
t0.005;n−1√

n γ̂ < x

, (15)

where β1 is determined by

x = δ̂−
tβ1/2;n−1√

n
γ̂; (16)

and β2 is determined by

x = δ̂ +
tβ2/2;n−1√

n
γ̂. (17)
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Let set GT be the area in the graph of membership function =(x) as follows:

GT =
{
(x, α)|δ̂1(α) ≤ x ≤ δ̂2(α), 0 ≤ α ≤ 1

}
. (18)

In addition, let the set GR be the area in the graph of membership function =(x) but to
the right of the vertical line x = 0, as depicted below:

GR =
{
(x, α)|0 ≤ x ≤ δ̂2(α), 0 ≤ α ≤ a

}
, (19)

where α = a such that δ̂2(α) = 0. As noted by Chen et al. [21], let ∆T = δ̂R − δ̂L, then

∆T = δ̂R − δ̂L= 2
t0.005;n−1√

n
γ̂. (20)

Let ∆R = δ̂R − 0, then

∆R = δ̂R − 0 = δ̂ +
t0.005;n−1√

n
γ̂. (21)

The membership function =(x) relative to ∆T and ∆R is shown as follows (Figure 1):
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According to Chen and Yu [22], let decision variable D = ∆R/∆T be expressed as
follows:

D =
∆R
∆T

=
δ̂ +

t0.005;n−1√
n γ̂

2 t0.005;n−1√
n γ̂

. (22)

In this paper, we proposed fuzzy test rules and improvements in the measuring of the
accuracy index δ based on the above decision variable D. Let the value of φ be between
zero and 0.5, then the fuzzy test rules and improvement measures are made as follows:

1. When D ≤ φ, then reject H0 and conclude δ > 0, thus indicating that the process mean
µ is shifted to the right. Thus, the process must be adjusted, and the mean must be
moved to the left to lift the accuracy of the process.

2. When φ ≤ D ≤ 1− φ, then do not reject H0 and conclude δ = 0, which means that the
process mean µ is not deviated from the target value T; as such, the process does not
need to be adjusted.
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3. When D > 1− φ, then reject H0 and conclude δ < 0, thus showing that the process
mean µ is shifted to the left. Therefore, the process must be adjusted, and the mean
must be moved to the left to increase the accuracy of the process.

According to the above fuzzy test rules, the machining industry can deviate the
process mean µ from the target value T to a relatively small degree in order to cut down
process losses.

3. Confidence Interval-Based Fuzzy Test of Process Expected Loss

As mentioned in the previous section, in the era of industrial smart manufacturing,
the Internet of Things and Big Data analysis technology have gradually matured, and
the process offset that can be stably controlled is seen as a quantity, even if the value of
accuracy index δ is quite close to 0. When the value of accuracy index δ is close to 0,
the process expected loss (θL) is the only remaining process variation that needs to be
controlled. Therefore, this section develops the fuzzy test of the process expected loss based
on this premise.

As mentioned before, the machining industry can make the process mean µ deviate
from the target value T to a minimal degree in the environment of smart manufacturing. In
addition, according to the abovementioned fuzzy test rules, the industry can tell whether
the degree to which the process mean µ is shifted from the target value T is relatively
small [9]. At the same time, through the mechanism of improvement and adjustment, the
deviation of the process mean µ from the target value T can be minimized. Based on this
condition, we proposed a confidence interval-based fuzzy test of the process expected loss
that is investigated in this paper. As noted above, when the process quality reaches the
k-sigma quality level, then the required value of γ is smaller than or equal to 1/k. When
the process mean µ deviates from the target value T to a relatively low degree, i.e., δ = 0,
then the required value of the process expected loss is smaller than or equal to 1/k2. Then,
the null hypothesis and alternative hypothesis can be shown as below:

H′0 : θL ≤ 1/k2; (23)

H′1 : θL > 1/k2. (24)

Let a random variable be K = nθ̂2
L/θ2

L as follows:

K =
1
n

n

∑
j=1

Y2
j /θ2

L , (25)

where Yj =
(
Xj − T

)
/d is distributed as a normal distribution with a mean δ and standard

deviation γ. Then, K is distributed as a chi-square distribution with an n− 1 degree of
freedom with δ = 0, which is denoted as K∼ χ2

n−1. Similar to δ, this study first uses
a confidence interval-based fuzzy testing model for the process expected loss θL. Then,
this study derives the 100 × (1− α)% confidence limits of the process expected loss θL
as follows:

p

(
χ2

α/2;n−1 ≤
1

nθ2
L

n
∑

j=1
Y2

j ≤ χ2
1−α/2;n−1

)
= 1− α

⇒ p

( √
∑n

j=1 Y2
j√

nχ2
1−α/2;n−1

≤ θL ≤
√

∑n
j=1 Y2

j√
nχ2

α/2;n−1

)
= 1− α.

(26)
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Therefore, [LθL, UθL] represents the 100 × (1− α)% confidence interval of the process
expected loss θL as follows:

[LθL, UθL] =


√

∑n
j=1 Y2

j√
nχ2

1−α/2;n−1

,

√
∑n

j=1 Y2
j√

nχ2
α/2;n−1

. (27)

As noted by some studies, the α-cuts of the triangular fuzzy number ˜̂θL is illustrated
as follows [10,13]:

θ̂L[α] =
[
θ̂L1(α), θ̂L2(α)

]
for 0.01 ≤ α ≤ 1. (28)

When 0 ≤ α ≤ 0.01, then set θ̂L[α] =
[
θ̂L1(0.01), θ̂L2(0.01)

]
, where

θ̂L1(α) =

√
∑n

j=1 Y2
j√

nχ2
1−α/2;n−1

and θ̂L2(α) =

√
∑n

j=1 Y2
j√

nχ2
α/2;n−1

. (29)

Based on the above, the triangular fuzzy number of ˜̂θL is ˜̂θL = (Lθ, Mθ, Rθ), where

Lθ =

√
∑n

j=1 Y2
j√

nχ2
0.995;n−1

; (30)

Mθ =

√
∑n

j=1 Y2
j√

nχ2
0.5;n−1

; (31)

Rθ =

√
∑n

j=1 Y2
j√

nχ2
0.05;n−1

. (32)

Therefore, the membership function of fuzzy number ˜̂δ is

<(y) =



0 i f y < Lθ

χ1 i f Lθ ≤ y < Mθ

1 i f y = Mθ

χ2 i f Mθ < x ≤ Rθ

0 i f Rθ < x

, (33)

where χ1 is determined by

y =

√
∑n

j=1 Y2
j√

nχ2
1−χ1/2;n−1

, (34)

and χ2 is determined by

y =

√
∑n

j=1 Y2
j√

nχ2
χ2/2;n−1

. (35)

Let set G′T be the area in the graph of membership function <(y), as displayed below:

G′T =
{
(y, α)|θ̂L1(α) ≤ y ≤ θ̂L2(α), 0 ≤ α ≤ 1

}
. (36)
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In addition, let set G′R be the area in the graph of membership function <(y) but to the
right of the vertical line y 1/k, as expressed below:

G′R =
{
(y, α)|θ̂L1(α) ≤ y ≤ 1/k2, 0 ≤ α ≤ b

}
, (37)

where α = b such that θ̂L1(α) = 1/k2. As noted by Chen et al. [21], let ∆′T = Rθ − Lθ, then

∆′T= Rθ − Lθ=

√
∑n

j=1 Y2
j√

nχ2
0.005;n−1

−

√
∑n

j=1 Y2
j√

nχ2
0.995;n−1

. (38)

Let ∆′R = 1/k2 − Lθ, then

∆′R =
1
k2 −

√
∑n

j=1 Y2
j√

nχ2
0.995;n−1

. (39)

The membership function <(y) relative to ∆′T and ∆′R is shown as follows (Figure 2):
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According to Chen and Yu [22], let the decision variable be D′ = ∆′R/∆′T , which is
depicted as follows:

D′ =
∆′R
∆′T

=

1
k2 −

√
∑n

j=1 Y2
j√

nχ2
0.995;n−1√

∑n
j=1 Y2

j√
nχ2

0.005;n−1

−
√

∑n
j=1 Y2

j√
nχ2

0.995;n−1

.

Then, in this study, test rules and improvement measures for the process expected
loss θL were proposed based on the above decision variable D′. Let the value of φ fall
between zero and 0.5. Then, the fuzzy test rules and improvement measures are to be made
as follows:

1. When D′ ≤ φ, then reject H0 and conclude that the process expected loss does not
meet the required level (θL > 1/k2), thus indicating that process variation must be
reduced to cut down process losses.

2. When D′ > φ, then do not reject H0 and conclude that the process expected loss meets
the required level (θL ≤ 1/k2), thus showing that the process does not require any
improvement or adjustment.
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According to the above two fuzzy test rules, the machining industry can make the
process mean µ deviate from the target value T to a relatively low degree. Meanwhile, the
process variation can be lowered to reduce the process loss.

4. Practical Application

As mentioned earlier, Taiwan is ranked fifth in the world’s export and seventh in global
production of machinery and machine tools. For the machining industry, boosting the
process quality of processed products can decrease the rework and scrap rates of processed
products in the stage of production [23]. In addition, according to the concept of the Taguchi
loss function, the mean time between failures of the product is longer as the measured value
of the processed product is closer to the target value T. Since central Taiwan is a stronghold
of the machinery and machine tool industry, it has not only the manufacturers of machinery
and machine tools, but also many component processing factories in its surrounding area.
In order to diminish the process losses of these components, this study takes the inner
diameter of a gear processed by a machining factory in central Taiwan as an example
through which to demonstrate the application of the two fuzzy testing models proposed
in this paper. First, this study uses the confidence interval-based fuzzy test proposed in
Section 2 to test and monitor the process mean so as to ensure that the quantity of the
process mean deviating from the target value T is relatively small. Next, when the process
mean is shifted from the target value T to a relatively low degree, then the confidence
interval-based fuzzy test of the process expected loss proposed in Section 3 is employed to
test and evaluate whether the process expected loss can meet the required level.

4.1. Fuzzy Test of δ

When aiming to minimize the process expected loss, engineers require that the de-
viation of the mean µ from the target value T must be small in the gear inner diameter
machining process. Thus, the null hypothesis and alternative hypothesis H1 are defined
as below:

H0 : δ = 0;

H1 : δ 6= 0.

In order to pursue a mechanism of rapid responses, the Taiwanese industry usually
takes 15 or 16 samples from the production line for measurement and sampling. In order
to perform the above fuzzy test, 16 samples were randomly selected from the processed
product of a certain type of gear. The data of these 16 samples are listed as follows:

x1 = 3.508, x2 = 3.506, x3 = 3.533, x4 = 3.506,
x5 = 3.499, x6 = 3.467, x7 = 3.500, x8 = 3.515
x9 = 3.477, x10 = 3.501, x11 = 3.505, x12 = 3.516,
x13 = 3.478, x14 = 3.500, x15 = 3.490, x16 = 3.512

The tolerance of the inner diameter for this type of gear was found to be 3.5 ± 0.05,
that is, target T = 3.5 and d = 0.05. Then, the maximum likelihood estimators of δ and γ
are respectively displayed as follows:

δ̂ =
X− T

d
=

3.501− 3.5
0.05

= 0.02

and
γ̂ =

S
d
=

0.017
0.05

= 0.34.

Therefore,

δ̂L = δ̂− t0.005;15√
16

γ̂ = 0.02− 2.947
4
× 0.34 = 0.233,
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δ̂R = δ̂ +
t0.005;15√

16
γ̂ = 0.02 +

2.947
4
× 0.34 = 0.273,

and the triangular fuzzy number is presented as ˜̂δ = (−0.233, 0.02, 0.273). According to
Equations (20) and (21), ∆R and ∆T are calculated as follows:

∆R = δ̂R − 0 = 0.273;

∆T = δ̂R − δ̂L = 0.273− (−0.233) = 0.506.

Thus, D = ∆R/∆T = 0.273/0.506 = 0.540. Let φ = 0.2, and, according to the fuzzy test
rule (2), when 0.2 ≤ D ≤ 0.8, then do not reject H0 and conclude δ = 0. This represents that
the process mean µ does not deviate from the target value T; as such, the process does not
need to make any adjustment.

4.2. Fuzzy Test of Process Expected Loss

According to the abovementioned fuzzy test results, it was revealed that the process
mean µ that shifted from the target value T was extremely small, i.e., δ = 0. As noted above,
when the process quality reaches the Six Sigma quality level, then the required value of γ is
smaller than or equal to 1/6. Thus, the required value of the process expected loss θL is
smaller than or equal to 1/36. As such, the null hypothesis and alternative hypothesis are
shown below:

H′0 : θL ≤ 1/36;

H′1 : θL > 1/36.

In order to pursue a mechanism of rapid responses, the Taiwanese industry usually
takes 15 or 16 samples from the production line for measurement and sampling. Let
Yj =

(
Xj − 3.5

)
/0.05, then 16 samples, after variable transformation is applied, are listed

as follows:

y1 = 0.154 y2 = 0.129 y3 = 0.656 y4 = 0.127
y5 = −0.018 y6 = −0.664 y7 = 0.008 y8 = 0.299
y9 = −0.460 y10 = 0.017, y11 = 0.106 y12 = 0.322
y13 = −0.443 y14 = −0.007 y15 = −0.209 y16 = 0.246

Therefore, the sum of the squares of these 16 samples is denoted as ∑16
j=1 y2

j = 1.646,
and the values of Lθ, Mθ, and Rθ are calculated as follows:

Lθ =

√
∑16

j=1 y2
j√

16× χ2
0.995;15

=

√
1.646√

16× 32.801
= 0.003;

Mθ =

√
∑16

j=1 y2
j√

16× χ2
0.5;15

=

√
1.646√

16× 14.339
= 0.085;

Rθ =

√
∑16

j=1 y2
j√

16× χ2
0.005;15

=

√
1.646√

16× 4.601
= 0.150.

Based on the above, the triangular fuzzy number of ˜̂θL is denoted as ˜̂θL = (0.003, 0.085,
and 0.150). According to Equations (38) and (39), ∆′R and ∆′T are calculated as follows:

∆′R = 1/36−Lθ = 0.028− 0.003 = 0.025;
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∆′T= Rθ − Lθ = 0.150− 0.003 = 0.147.

Thus, D′ = ∆′R/∆′T = 0.025/0.147 = 0.170. Let φ = 0.2, and, according to the fuzzy
test rule (1) of the process expected loss, when D′≤ 0.2, then reject H0 and conclude that
the process expected loss does not meet the required level (θL > 1/36). This means that the
process variation must be dwindled so as to lessen the process loss.

Based on the above evaluation results, the process engineers carried out improvement
measures to lower the process variation. After collecting the improved 16 variables, the
transformed sample data were written as follows:

y′1 = 0.114 y′2 = −0.027 y′3 = −0.168 y′4 = −0.175
y′5 = −0.064 y′6 = 0.358 y′7 = −0.246 y′8 = 0.275
y′9 = −0.299 y′10 = 0.046 y′11 = 0.021 y′12 = −0.152
y′13 = −0.109 y′14 = 0.130 y′15 = 0.156 y′16 = 0.368

Therefore, the sum of the squares of these 16 improved pieces of sample data was
denoted as ∑16

j=1 y′j
2 = 0.644, and the values of Lθ′, Mθ′, and Rθ′ were computed as follows:

Lθ′ =

√
∑16

j=1 y′j
2√

16χ2
0.995;15

=

√
0.644√

16× 32.801
= 0.004;

Mθ′ =

√
∑16

j=1 y′j
2√

16× χ2
0.5;15

=

√
0.644√

16× 14.339
= 0.053;

Rθ′ =

√
∑16

j=1 y′j
2√

16× χ2
0.005;15

=

√
0.644√

16× 4.601
= 0.094.

Based on the above, the triangular fuzzy number of ˜̂θL was expressed as ˜̂θL = (0.004,
0.053, and 0.094). According to Equations (38) and (39), ∆′R and ∆′T were calculated as fol-
lows:

∆′R = 1/36−Lθ= 0.028− 0.004 = 0.024

∆′T= Rθ − Lθ = 0.094− 0.004 = 0.090

Thus, D′ = ∆′R/∆′T = 0.024/0.090 = 0.267. According to the fuzzy test rule (2) of the
process expected loss with φ = 0.2, when D′ > 0.2, then do not reject H0 and conclude that
the process expected loss meets the required level (θL ≤ 1/36). This indicates the process
improvement has a remarkable effect.

5. Conclusions

Governments and enterprises must take into account economic growth, as well as
the natural environment, when dealing with the issue of global warming [2,3]. Under this
thinking, we must shoulder the responsibility for the social and ecological environment; as
such, corporate social responsibility (CSR) has now become a common business philosophy
urged on by the state of the world [5]. The expected value of the Taguchi loss function is
δ2 + γ2, and δ and γ are two key factors that affect the expected values of process losses.
In addition, the product process yield is a function of δ and γ [9]. As the process mean µ
is closer to the target value T (the value of δ is closer to 0), or as the value of the process
variation is smaller (the value of γ is smaller), then the process expected loss is lower,
whereas the process yield is higher. It is clear that decreasing the process expected loss can
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ensure an increase in process yield. In addition to a decrease in the rework and scrap of the
processed product in the stage of production, MTBF can also be extended after the product
is sold, thereby achieving the effect of energy saving and carbon reduction [9]. Therefore,
in this paper, the expected value of the Taguchi loss function was adopted as an evaluation
index of the machining process loss. Since the process expected loss θL contained unknown
parameters, the misjudgment caused by sampling errors may be incurred if only the point
estimates are used to assess the evaluation index θL of the machining process loss [16].
Furthermore, enterprises emphasize the mechanism of quick responses, and—given costs
and timeliness—the sample size is usually not large. Consequently, statistical tests will
vary due to the sample size, such that inconsistent decisions will be generated. As a result,
this study first derived a 100 × (1− α)% confidence interval of δ, as well as developed a
confidence interval-based fuzzy test for this index [13]. Next, this study derived a 100%
confidence interval of the process expected loss, as well as established a confidence interval-
based fuzzy test for the process expected loss. Numerous studies have suggested that
the confidence interval-based fuzzy testing model can integrate past accumulated data
with experts’ experiences, such that the accuracy of the test can be maintained in the
case of small samples [11,13]. It is clear that the model proposed in this paper has the
following advantages:

1. The expected value of the Taguchi loss function is used as an evaluation index, in
which the accuracy index and the precision index can help the machining industry
find the correct direction for improvement.

2. In addition to reflecting the process expected loss, this index can also reflect the
process yield.

3. Since the fuzzy evaluation model based on the confidence interval can integrate
experts’ experiences with past data, the evaluation accuracy can still be maintained
in small samples in order to meet the requirements of enterprises for the purpose of
rapid responses.

4. Apart from assisting machining manufacturers in boosting the quality of the ma-
chining process, the model can also effect energy saving and carbon reduction at the
same time, such that machining manufacturers can reach their goals of fulfilling their
corporate social responsibilities.

Overall, the evaluation model of the process loss built in this paper can help machining
manufacturers review and enhance their own machining process capabilities through
accuracy index δ and the fuzzy test of the process expected loss θL, thus achieving the
effects of cost reduction, energy saving, and carbon reduction. The benefits of cost reduction
and energy saving, as well as carbon reduction, are concepts; as such, they can be further
explored in future research. In addition, an evaluation model could be established for the
benefits of cost and carbon reduction so as to improve process capabilities.
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