Hybrid Lattice Boltzmann Model for Nonlinear Diffusion and Image Denoising
Abstract
:1. Introduction
2. Lattice Boltzmann Scheme for Nonlinear Diffusion
3. Applications of Image Denoising
3.1. The Hybrid Method
3.2. Numerical Experiments
4. Discussion
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
LB | Lattice Boltzmann |
MRT | Multiple relaxation time |
PSNR | Peak signal-to-noise ratio |
References
- Succi, S. The Lattice Boltzmann Equation: For Complex States of Flowing Matter; Oxford University Press: Oxford, UK, 2018. [Google Scholar]
- Succi, S. Lattice Fluid Dynamics: Thirty-five Years Down the Road. C. R. Méc. 2022, 350, 1–12. [Google Scholar] [CrossRef]
- Flekkøy, E. Lattice Bhatnagar–Gross–Krook models for miscible fluids. Phys. Rev. E 1993, 47, 4247–4257. [Google Scholar] [CrossRef] [PubMed]
- Wolf-Gladrow, D. Lattice Boltzmann Equation for Diffusion. J. Stat. Phys. 1995, 79, 1023–1032. [Google Scholar] [CrossRef]
- Suga, S. Numerical Schemes Obtained from Lattice Boltzmann Equations for Advection Diffusion Equations. Int. J. Mod. Phys. C 2006, 17, 1563–1577. [Google Scholar] [CrossRef]
- Suga, S. Stability and accuracy of lattice Boltzmann schemes for anisotropic advection-diffusion equations. Int. J. Mod. Phys. C 2009, 20, 633–650. [Google Scholar] [CrossRef]
- Holdych, D.; Noble, D.; Georgiadis, J.; Buckius, R. Truncation error analysis of lattice Boltzmann methods. J. Comput. Phys. 2004, 193, 595–619. [Google Scholar] [CrossRef]
- Zhao, F. Optimal relaxation collisions for lattice Boltzmann methods. Comput. Math. Appl. 2013, 65, 172–185. [Google Scholar] [CrossRef]
- Silva, G.; Semiao, V. Truncation errors and the rotational invariance of three-dimensional lattice models in the lattice Boltzmann method. J. Comput. Phys. 2014, 269, 259–279. [Google Scholar] [CrossRef]
- Bauer, M.; Silva, G.; Rúde, U. Letter to the Editor: Truncation errors of the D3Q19 lattice model for the lattice Boltzmann method. J. Comput. Phys. 2020, 405, 109111. [Google Scholar] [CrossRef]
- Wissocq, G.; Sagaut, P. Hydrodynamic limits and numerical errors of isothermal lattice Boltzmann schemes. J. Comput. Phys. 2022, 450, 110858. [Google Scholar] [CrossRef]
- Silva, G. Discrete effects on the source term for the lattice Boltzmann modelling of one-dimensional reaction–diffusion equations. Comput. Fluids 2023, 251, 105735. [Google Scholar] [CrossRef]
- Suga, S. An Accurate Multi-level Finite Difference Scheme for 1D Diffusion Equations Derived from the Lattice Boltzmann Method. J. Stat. Phys. 2010, 140, 494–503. [Google Scholar] [CrossRef]
- d’Humières, D. Generalized lattice-Boltzmann equations. In Proceedings of the 18th International Symposium, Rarefied Gas Dynamics, Vancouver, BC, Canada, 26–30 July 1992; Volume 159, pp. 450–458. [Google Scholar]
- Chai, Z.; Shi, B. Multiple-relaxation-time lattice Boltzmann method for the Navier-Stokes and nonlinear convection-diffusion equations: Modeling, analysis, and elements. Phys. Rev. E 2020, 102, 023306. [Google Scholar] [CrossRef] [PubMed]
- Servan-Camas, B.; Tsai, F. Lattice Boltzmann method with two relaxation times for advection–diffusion equation: Third order analysis and stability analysis. Adv. Water Res. 2008, 31, 1113–1126. [Google Scholar] [CrossRef]
- Servan-Camas, B.; Tsai, F.T.-C. Non-negativity and stability analyses of lattice Boltzmann method for advection–diffusion equation. J. Comput. Phys. 2009, 228, 236–256. [Google Scholar] [CrossRef]
- Ginzburg, I.; d’Humières, D.; Kuzmin, A. Optimal Stability of Advection-Diffusion Lattice Boltzmann Models with Two Relaxation Times for Positive/Negative Equilibrium. J. Stat. Phys. 2010, 139, 1090–1143. [Google Scholar] [CrossRef]
- Kuzmin, A.; Ginzburg, I.; Mohamad, A. The role of the kinetic parameter in the stability of two-relaxation-time advection–diffusion lattice Boltzmann schemes. Comput. Math. Appl. 2011, 61, 3417–3442. [Google Scholar] [CrossRef]
- Ginzburg, I. Truncation Errors, Exact and Heuristic Stability Analysis of Two-Relaxation-Times Lattice Boltzmann Schemes for Anisotropic Advection-Diffusion Equation. Commun. Comput. Phys. 2012, 11, 1439–1502. [Google Scholar] [CrossRef]
- Lin, Y.; Hong, N.; Shi, B.; Chai, Z. Multiple-relaxation-time lattice Boltzmann model-based four-level finite-difference scheme for one-dimensional diffusion equations. Phys. Rev. E 2021, 104, 015312. [Google Scholar] [CrossRef]
- Chen, Y.; Chai, Z.; Shi, B. Fourth-order multiple-relaxation-time lattice Boltzmann model and equivalent finite-difference scheme for one-dimensional convection-diffusion equations. Phys. Rev. E 2023, 107, 055305. [Google Scholar] [CrossRef]
- Ilyin, O. Lattice Boltzmann model for diffusion equation with reduced truncation errors: Applications to Gaussian filtering and image processing. Appl. Math. Comput. 2023, 456, 128123. [Google Scholar] [CrossRef]
- Perona, P.; Malik, J. Scale-space and edge detection using anisotropic diffusion. IEEE Trans. Pattern Anal. Mach. Intell. 1990, 12, 629–639. [Google Scholar] [CrossRef]
- Weickert, J. Anisotropic Diffusion in Image Processing; B.G. Teubner: Stuttgart, Germany, 1998. [Google Scholar]
- Jawerth, B.; Lin, P.; Sinzinger, E. Lattice Boltzmann Models for Anisotropic Diffusion of Images. J. Math. Imag. Vis. 1999, 11, 231–237. [Google Scholar] [CrossRef]
- Zhang, W.; Shi, B. Application of Lattice Boltzmann Method to Image Filtering. J. Math. Imag. Vis. 2012, 43, 135–142. [Google Scholar] [CrossRef]
- Chen, J.; Chai, Z.; Shi, B.; Zhang, W. Lattice Boltzmann method for filtering and contour detection of the natural images. Comput. Math. Appl. 2014, 68, 257–268. [Google Scholar] [CrossRef]
- Rudin, L.; Osher, S.; Fatemi, E. Nonlinear total variation based noise removal algorithms. Phys. D 1992, 60, 259–268. [Google Scholar] [CrossRef]
- Chang, Q.; Yang, T. A Lattice Boltzmann Method for Image Denoising. IEEE Trans. Image Process. 2009, 18, 2797–2802. [Google Scholar] [CrossRef]
- Michelet, J.; Tekitek, M.M.; Berthier, M. Multiple Relaxation Time Lattice Boltzmann Schemes for Advection-Diffusion Equations with Application to Radar Image Processing. J. Comput. Phys. 2022, 471, 111612. [Google Scholar] [CrossRef]
- Chen, Y.; Yan, Z.; Qian, Y. An Anisotropic Diffusion Model for Medical Image Smoothing by Using the Lattice Boltzmann Method. In Proceedings of the 7th Asian-Pacific Conference on Medical and Biological Engineering, Beijing, China, 22–25 April 2008; Volume 19, pp. 255–259. [Google Scholar]
- Chen, Y.; Yan, Z.; Shi, J. Application of Lattice Boltzmann Method to image segmentation. In Proceedings of the 29th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Lyon, France, 23–26 August 2007; pp. 6561–6564. [Google Scholar]
- Chen, Y.; Navarro, L.; Wang, Y.; Courbebaisse, G. Segmentation of the thrombus of giant intracranial aneurysms from CT angiography scans with lattice Boltzmann method. Med. Image Anal. 2014, 18, 1–8. [Google Scholar] [CrossRef]
- Nguyen, K.L.; Tekitek, M.M.; Delachartre, P.; Berthier, M. Multiple Relaxation Time Lattice Boltzmann Models for Multigrid Phase-Field Segmentation of Tumors in 3D Ultrasound Images. SIAM J. Image Sci. 2019, 12, 1324–1346. [Google Scholar] [CrossRef]
- Li, L.; Mei, R.; Klausner, J. Lattice Boltzmann models for the convection-diffusion equation: D2Q5 vs. D2Q9. Int. J. Heat Mass Transf. 2017, 108, 41–62. [Google Scholar] [CrossRef]
- Krüger, T.; Kusumaatmaja, H.; Kuzmin, A.; Shardt, O.; Silva, G.; Viggen, E. The Lattice Boltzmann Method. Principles and Practice; Springer: Cham, Switzerland, 2017. [Google Scholar]
- Tian, C.; Fei, L.; Zheng, W.; Xu, Y.; Zuo, W.; Lin, C.-W. Deep learning on image denoising: An overview. Neural Netw. 2020, 131, 251–275. [Google Scholar] [CrossRef] [PubMed]
- Chen, Q.; Montesinos, P.; Sun, Q.S.; Xia, D.S. Ramp preserving Perona–Malik model. Signal Process. 2010, 90, 1963–1975. [Google Scholar] [CrossRef]
- You, Y.-L.; Kaveh, M. Fourth-order partial differential equations for noise removal. IEEE Trans. Image Process. 2000, 9, 1723–1730. [Google Scholar] [CrossRef]
- Didas, S.; Weickert, J.; Burgeth, B. Properties of Higher Order Nonlinear Diffusion Filtering. J. Math. Imag. Vis. 2009, 35, 208–226. [Google Scholar] [CrossRef]
- Wang, Y.Q.; Guo, J.; Chen, W.; Zhang, W. Image denoising using modified Perona–Malik model based on directional Laplacian. Signal Process. 2013, 93, 2548–2558. [Google Scholar] [CrossRef]
- Wang, N.; Shang, Y.; Chen, Y.; Yang, M.; Zhang, Q.; Liu, Y.; Gui, Z. A Hybrid Model for Image Denoising Combining Modified Isotropic Diffusion Model and Modified Perona-Malik Model. IEEE Access 2018, 6, 33568–33582. [Google Scholar] [CrossRef]
- Ginzburg, I. Equilibrium-type and link-type lattice Boltzmann models for generic advection and anisotropic-dispersion equation. Adv. Water Res. 2005, 28, 1171–1195. [Google Scholar] [CrossRef]
- Li, Q.; Chai, Z.; Shi, B. Lattice Boltzmann model for a class of convection–diffusion equations with variable coefficients. Comput. Math. Appl. 2015, 70, 548–561. [Google Scholar] [CrossRef]
- Chai, Z.; Shi, B.; Guo, Z. A Multiple-Relaxation-Time Lattice Boltzmann Model for General Nonlinear Anisotropic Convection–Diffusion Equations. J. Sci. Comput. 2016, 69, 355–390. [Google Scholar] [CrossRef]
- Chen, Y.; Chai, Z.; Shi, B. A General Fourth-Order Mesoscopic Multiple-Relaxation-Time Lattice Boltzmann Model and Equivalent Macroscopic Finite-Difference Scheme for Two-Dimensional Diffusion Equations. arXiv 2023, arXiv:2308.05280. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ilyin, O. Hybrid Lattice Boltzmann Model for Nonlinear Diffusion and Image Denoising. Mathematics 2023, 11, 4601. https://doi.org/10.3390/math11224601
Ilyin O. Hybrid Lattice Boltzmann Model for Nonlinear Diffusion and Image Denoising. Mathematics. 2023; 11(22):4601. https://doi.org/10.3390/math11224601
Chicago/Turabian StyleIlyin, Oleg. 2023. "Hybrid Lattice Boltzmann Model for Nonlinear Diffusion and Image Denoising" Mathematics 11, no. 22: 4601. https://doi.org/10.3390/math11224601
APA StyleIlyin, O. (2023). Hybrid Lattice Boltzmann Model for Nonlinear Diffusion and Image Denoising. Mathematics, 11(22), 4601. https://doi.org/10.3390/math11224601