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Abstract: In the domain of network security, intrusion detection systems (IDSs) play a vital role in
data security. While the utilization of the internet amongst consumers is increasing on a daily basis,
the significance of security and privacy preservation of system alerts, due to malicious actions, is
also increasing. IDS is a widely executed system that protects computer networks from attacks. For
the identification of unknown attacks and anomalies, several Machine Learning (ML) approaches
such as Neural Networks (NNs) are explored. However, in real-world applications, the classification
performances of these approaches are fluctuant with distinct databases. The major reason for this
drawback is the presence of some ineffective or redundant features. So, the current study proposes the
Network Intrusion Detection System using a Lion Optimization Feature Selection with a Deep Learn-
ing (NIDS-LOFSDL) approach to remedy the aforementioned issue. The NIDS-LOFSDL technique
follows the concept of FS with a hyperparameter-tuned DL model for the recognition of intrusions.
For the purpose of FS, the NIDS-LOFSDL method uses the LOFS technique, which helps in improving
the classification results. Furthermore, the attention-based bi-directional long short-term memory
(ABiLSTM) system is applied for intrusion detection. In order to enhance the intrusion detection per-
formance of the ABiLSTM algorithm, the gorilla troops optimizer (GTO) is deployed so as to perform
hyperparameter tuning. Since trial-and-error manual hyperparameter tuning is a tedious process,
the GTO-based hyperparameter tuning process is performed, which demonstrates the novelty of the
work. In order to validate the enhanced solution of the NIDS-LOFSDL system in terms of intrusion
detection, a comprehensive range of experiments was performed. The simulation values confirm
the promising results of the NIDS-LOFSDL system compared to existing DL methodologies, with a
maximum accuracy of 96.88% and 96.92% on UNSW-NB15 and AWID datasets, respectively.

Keywords: network intrusion detection system; network security; lion optimization algorithm;
feature selection; deep learning

MSC: 68-11

1. Introduction

Network security is the most interesting aspect that is responsible for the emergence
of internet applications. However, the number of cyberattacks has also increased on the
internet in the past decade. Therefore, it is essential to develop new approaches that can
effectively detect and prevent such attacks. This can be achieved by developing novel tech-
niques for intrusion detection [1]. In order to avoid these cyberattacks, key management,
access control, and intrusion detection systems (IDS) are necessary [2]. Amongst these, IDS
is the most commonly used system for ensuring network security. Presently, cyberattacks
pose a major issue for system and network security in the form of Denial of Service (DoS)
attacks, computer viruses, and data breaches [3]. To mitigate this problem, the IDSs are
frequently employed in different organizations. According to the identification techniques,
these detection methods are categorized as signature-based or misuse-based NIDS and
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anomaly-based NIDS. The objective of the current research is to determine the anomalies
by recognizing a clear abnormality between the existing actions and predetermined normal
actions, utilized for representing a normal activity or normal connection [4,5]. Automati-
cally, the anomaly-based detection techniques exhibit the ability to identify new (or 0-day)
attacks, whereas the misuse-based detection systems identify only the known attacks [6].

The researchers established IDSs for various platforms depending on the security
issues of diverse networks. The operations of the IDS involve data collection to analyze
every potential security attack from various fields within a network or computer [7].
In recent years, intrusion detection and other security technologies, namely, firewalls,
cryptography, and authentication, have significantly improved. Machine Learning (ML) is
the main assistant of Artificial Intelligence (AI) technology [8]. It enables the creation of
computers that can perform without precise programming. In these computers, the ML
techniques can perform the execution of tasks depending on generalized data or samples.
This characteristic helps these computers in improving themselves by learning from the
available information [9]. The ML technique is capable of identifying unknown attacks
in network traffic, thus sharing its ability to identify other types of attacks trained on
rare and general types of traffic. However, the effectiveness of the ML approaches does
not remain consistent when using various types of datasets, because of the presence of
higher-dimensional data [10]. For instance, redundant or inefficient features can increase
the computational period and reduce the identification outcome. In this context, Feature
Selection (FS) is a better approach to mitigate this problem.

For intrusion detection, FS and Deep Learning (DL) techniques are applied. FS is
highly needed nowadays, owing to the presence of numerous attributes of the network data,
which are repetitive and unrelated. With the application of the FS technique, the detection
model can focus primarily on highly useful features, reduce the dimensionality, enhance
the model’s interpretability, and increase the detection accuracy. On the other hand, the
DL technique can proficiently learn complex patterns and temporal dependencies from
the network traffic data. The DL models can learn intricate intrusion patterns that may be
challenging for traditional rule-based or statistical approaches to discern. By combining the
FS’s data pre-processing capabilities with DL’s pattern recognition prowess, the network
intrusion detection process can be significantly fortified. This outcome enables the timely
and accurate identification of both known and novel cyber threats in the ever-evolving
landscape of network security.

The current study proposes a Network Intrusion Detection System using a Lion
Optimization Feature Selection with Deep Learning (NIDS-LOFSDL) model. The NIDS-
LOFSDL technique uses the LOFS technique, which aids in improving the classification
performance. Furthermore, the study also used the attention-based bi-directional long
short-term memory (ABiLSTM) system for intrusion detection. In order to enhance the
intrusion detection performances of the ABiLSTM methodology, the gorilla troops optimizer
(GTO) is deployed for hyperparameter tuning. For validating the enhanced solution of the
NIDS-LOFSDL technique for intrusion detection, a comprehensive range of experiments
was conducted. The key contributions of the study are summarized herewith:

• A new NIDS-LOFSDL technique has been developed in this study, comprising LOFS,
ABiLSTM classifier, and GTO-based parameter tuning approaches for network intru-
sion detection. The rationale behind combining the FS and hyperparameter-tuned DL
model is to enhance the accuracy and efficiency of the intrusion detection systems;

• LOFS has been incorporated as an FS method that selects the most relevant and
informative features from a dataset. This characteristic helps in improving the accuracy
and interpretability of the intrusion detection models;

• The ABiLSTM network has been deployed for intrusion detection, and the model
is known for its ability to capture temporal dependencies in sequential data, thus
making it an appropriate choice for the detection of complex intrusion patterns in
network traffic;
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• To further enhance the performance of the ABiLSTM algorithm, the study used GTO
for hyperparameter tuning. It intends to determine the optimal hyperparameter con-
figuration for the ABiLSTM model to accomplish an enhanced detection performance.

2. Related Works

In the literature [11], a new anomaly-based IDS technique has been deployed for IoT
networks, utilizing the DL method. In particular, a filter-based FS-DNN technique was intro-
duced in the study, in which extremely correlated features were dropped. Additionally, this
technique was tuned with several parameters and hyperparameters. Mohy-eddine et al. [12]
developed an NIDS for IoT platforms by employing FS and KNN methods. The authors
created the NIDS with the help of the K-NN method to enhance the IDS Detection Rate
(DR) and accuracy (ACC). Also, the GA, univariate statistical test, and PCA were utilized
for the FS technique individually to increase the quality of the data and select ten better
effective features. In the study conducted earlier [13], a hybrid DL technique and shallow
learning method were presented for identifying the intrusions in the IoT devices. In the
developed method, the spider monkey optimization FS method was primarily employed
to select a greater number of relevant features. Secondarily, a Siamese NN-based approach
was presented for making the data highly classifiable. Syed et al. [14] suggested a new fog-
cloud-based IoT-IDS that integrates a distributed process by separating the database based
on the type of attacks and an FS stage on time-series IoT data. Then, a DL-Recurrent-NN
(Simple RNN and BiLSTM) was used to identify the attacks.

In the literature [15], a network intrusion detection classification (NIDS-CNNLSTM)
technique was presented based on DL. This technique was designed for the wireless sensing
environment of the Industrial IoT (IIoT) for the efficient differentiation and detection of
network traffic data, and to ensure the safety of the equipment and the functioning of
the IIoT. The NIDS-CNNLSTM technique integrated the robust learning capability of
LSTM-NNs in time series data, and classified and learnt the FS utilizing CNN. Further,
the efficiency was also confirmed based on multi-classification and binary classification
methods. Ravi et al. [16] recommended an endwise system for network attack classification
and identification by DL-based recurrent approaches. This method extracts the features
of v-layers present in the recurrent algorithms and uses a kernel-based PCA (KPCA)-FS
technique for the detection of the optimum features. Lastly, the optimum features of the
recurrent methods were incorporated, and classification was executed using an ensemble
meta-classifier.

Atefinia and Ahmadi [17] introduced a multi-architectural integrated DNN technique
to reduce the false positive rate of anomaly-based IDSs. This approach contains a feed-
forward method, a stack of limited Boltzmann machine methods and two recurrent methods.
The output weights of these methods were input into an aggregator method to generate
the solution for these models. In the literature [18], the authors introduced an efficient
network IDS based on Random Forest (RF) and Sparse-AE (SAE) to alleviate the issue. The
extraction feature ability of the SAE and identification and classification potential of the
RF were integrated to enhance the identification accuracy and performance. The SAE-RF
identification technique was developed.

With an increase in network-based threats and sophisticated intrusion techniques,
the requirement for highly robust and adaptive intrusion detection systems has grown
exponentially. A major research gap in the field of network intrusion detection lies in the
requirement for efficient models to perform FS and hyperparameter selection. Though
considerable developments have been made in ML and DL models to detect intrusions,
the intricate and high-dimensional nature of the network data continue to pose challenges.
The existing approaches find it challenging to deal with feature redundancy, irrelevant
attributes, and suboptimal hyperparameter configurations, thus resulting in low detection
performance. So, it is now necessary to design new models for the effective selection of
relevant features and the fine-tuning of the model hyperparameters to adapt to the dynamic
and evolving nature of network threats.
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3. The Proposed Model

In the current study, a novel NIDS-LOFSDL approach has been established for in-
trusion recognition so as to accomplish network security. The NIDS-LOFSDL technique
follows the concept of FS with a hyperparameter-tuned DL algorithm for the recognition
of the intrusions. The proposed model encompasses LOFS, ABiLSTM-based detection,
and GTO-based hyperparameter tuning. Figure 1 exhibits the entire procedure of the
NIDS-LOFSDL methodology.
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3.1. Feature Selection Using the LOFS Approach

For the feature selection process, the LOFS approach is used. The LO algorithm
is a population-based algorithm in which the lemurs set is mathematically modeled as
follows [19].

X =


l1
1 l2

1 · ld
1

l1
2 l2

2 · ld
2

...
...

...
...

l1
n l2

n · ld
n

, (1)

where n stands for the solution candidate and d indicates the decision variable. X shows
the matrix in n× d size. Figure 2 illustrates the flowchart of the LO algorithm. The steps
contained in the LOFS approach are given below.
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Step 1: Define the parameter N Population when Maxiter represents the maximum
iteration count. d corresponds to the dimensionality of the searching region over the
dataset size. In addition, UB and LB indicate the upper and lower boundaries of the
problem, respectively.

Step 2: Produce X decision parameters in the ith solution, according to Equation (2)

X j
i =

(
LB +

(
UBj − LBj

))
× r, (2)

where r implies the uniformly distributed random integer ∈ [0, 1].
Step 3: Inside the loop for all the iterations, evaluate the Free Risk Rate (FRR), a

co-efficient of LO,

FRR = HRR− t× (HRR− LRR)
Maxiter

, (3)

In Equation (3), t indicates the existing iteration counter. Maxiter shows the size
of the iteration. Low-Risk Rate (LRR) and High-Risk Rate (HRR) are two constant and
predefined values.

Step 4: Compute the fitness values for xj
i , as given below.

Fit (xj
i) = α× (1− Acc) + β×

( s
S

)
, (4)

In Equation (4), Acc represents the accuracy of the subset that can be extracted by the
ABiLSTM classification function in order to assess the selected subset in all the iterations.
Fit (xj

i) denotes the fitness values, s implies the number of features selected and S suggests
the maximal number of features selected.

Step 5: Lemurs are categorized into two dissimilar processes to increase their fitness
values. Initially, the best near lemurs (bnl) are recognized, which implies the selection of
the solution with a low fitness values. According to the FS objective, bnl provides a better
feature for the existing iteration. Then, the global best lemur (gbl) is selected in the whole
population, which represents the total optimum solution.

Step 6: Set the value of r1, a randomly generated value, to ∈ [0, 1], and compare it
with FRR. Later, the location is updated for the lemur, far from the risk-based position,
according to Equation (5).

X j
i =

{
x(i, j)+|(x(i, j)− x(bnl, j)| × (r3 − 0.5)× 2; r1 < FRR
x(i, j)+|(x(i, j)− x(gbl, j)| × (r3 − 0.5)× 2; r1 > FRR

, (5)

where r1 refers to the random integer ∈ [0, 1]. The present ith lemur of the Nth population
is (i, j), i.e., the solution candidate at the jth dimension.

The LO process begins by arbitrarily generating a swarm of lemurs. Next, it tries to
move towards the lemurs with low fitness value by dance hup. The optimization process
randomly generates a group of lemurs. The FRR value begins towards the LRR, thus
representing that the lemur starts with the move and moves near to the bnl through “dance
hup”. The purpose of LO, implementing these dance hup actions, is to decrease the value
of FRR near to the HRR. Next, it exploits the leap-up action to move the lemur towards
the global optimal performance. This process is repeated until the ending condition is met.

3.2. Intrusion Detection Using ABiLSTM Model

To detect the presence of the intrusions, the ABiLSTM model is applied. LSTM is a
revised edition of the classical RNN that exploits the specially adapted memory units to
effectively express the long-term dependency of the MTS dataset [20]. The LSTM model’s
design provides an effective solution to the gradient disappearing problem on the contrary
to the traditional RNN methods. According to the present input and the previous state of the
hidden units, the LSTM cell learns about the existing state of the hidden unit. Nevertheless,
it replaces the structure of the hidden unit with a memory cell that corresponds to the
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long-term dependency of the MTS signal. The LSTM model includes four controlled gates,
such as one self-loop memory cell, one input, one output, and one forget, for manipulating
the interaction of the data stream among different memory neurons. In the hidden layer
of the LSTM model, the forget gate is used to determine the data that need to be ignored
or preserved from the prior moment. Simultaneously, the entrance of the input neuron
decides whether the input signal needs to be injected with the information of the memory
unit. The output neuron gate decides whether the state of the memory unit should be
changed or not. Consider the input xt of MTS and the dynamic output state ht; the neuron
state, output of HL, and gate states are calculated using the subsequent formula.

it = σ(Uixt + Wiht−1 + bi), (6)

ft = σ(U f xt + W f ht−1 + b f ), (7)

ot = σ(Uoxt + Woht−1 + bo), (8)

∼
Ct = tanh(Ucxt + Wcht−1 + bc), (9)

ct = ft � ct−1 + it �
∼
Ct, (10)

ht = ot � tanh(ct). (11)

The recurrent weight matrices are represented as Wi, W f , Wo, and Wc, while the
weighted matrix for the input, forget, output and memory cell gates are denoted by Ui,
U f , Uo, and Uc, correspondingly. The gates bias is formulated by bi, b f , bo, and bc. The cell

state of the candidate
∼
Ct is used to update the original memory cell state, ct. At any time

step, ht represents the state of HL and ot denotes the output. The symbol � denotes the
element-wise multiplication operation. tanh denotes the hyperbolic tangent function and σ
shows the logistic sigmoid activation function.

The classical LSTM model may inadvertently discard the sequential information at the
time of training as it processes only the input signals in one direction. Therefore, the time
series data cannot be completely reviewed. In order to over this limitation, the BLSTM was
developed with a bidirectional structure to capture the representation of MTS information
via forward and backward directions. The BLSTM comprises two LSTM layers that are
carried out in parallel but opposite directions. In the case of the reverse propagation
direction, hb(t) represents the hidden layer, which comprises data from the future MTS
values. In forward propagation, h f (t) denotes the data of the hidden LSTM neuron, and it
retains the data from the prior sequence value. Both h f (t) and hb(t) are connected to each
other for creating the final output of the BiLSTM model. The tth hidden layer of BLSTM for
forward and backward states is computed using Equations (12) and (13):

h f (t) = ψ(W f hxt + Wbhhh f (t−1) + b f b), (12)

hb(t)=ψ(Wbhxt + Wbhhhb(t+1) + bb). (13)

In addition to these, b f b and bb correspond to biased data in two directions. The weight
matrices W f h and Wbh represent the forward and backward synapsis weight from the input
to the internal unit weight. Likewise, W f hh and Wbhh represent the forward and backward
feedback recurrent weights.

tanh indicates the activation function of the HLs ψ. Using this component, the output
of BiLSTM yt is defined herewith.

yt = σ(W f hyh f (t) + Wbhyhb(t) + by), (14)
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In Equation (16), the forward and backward weights of the resultant layers are denoted
by Wjhy and Wbhy, correspondingly. The activation function of the resultant layer σ is either
given as a linear function or sigmoidal function. Further, by represents the output bias.

In ABiLSTM, when the attention mechanism is utilized, it supports the model in
learning by assigning various weights. For an HL hi, its attention ai is expressed as in
Equation (15).

ui = tanh(W·hi + b),

ai =
euT

i ·uw

Σie
uT

i ·uw
,

(15)

whereas W signifies the weighted matrix, b implies the bias, and uw represents the global
context vector, and all three are learned in the training method.

3.3. Hyperparameter Tuning Using GTO Algorithm

Eventually, the hyperparameter values of the ABiLSTM methodology are chosen using
the GTO algorithm. The GTO approach is one of the main metaheuristic optimization
approaches, inspired by the intelligent behaviors of gorillas [21]. These behaviors are
explained using five major operators, as follows. Two of the operators represent the
exploitation stage, whereas the other three operators define the exploration stage. The three
operators are sometimes described as strategies or the exploration stage, and they can be
inferred from the movement to another gorilla, migration towards an unknown place, and
migration towards a known place. As mentioned before, the exploitation stage uses two
operators reflected by the competition for adult females, and follows the behavior of the
silverback. The competition is initiated between the adult females in such a way that they
follow the silverback.

Using the following equations, the three prior approaches of the exploration stage
are defined.

GX(t + 1) =


(UB− LB)× r1 + LB

(r2 − C)× Xr(t) + L× H

X(i)− L× (L× (X(t)− GXr(t))0,

+r3 × (X(t)− GXr(t)))

(16)

C = F×
(

1− it
MaxsIt

)
, (17)

F = cos(2× r4) + 1, (18)

L = C× l , (19)

H = Z× X(t), (20)

Z = [−C, C] , (21)

In this equation, the upper as well as lower boundaries are denoted using UB and LB,
respectively. Using X(it + 1), the position selected is defined in the iteration (it), whereas
the existing location is represented as X (it). Max−it is known by the maximum number of
iterations. The parameter p defines the probability of the migration that lies in the range of
0 to 1. Lastly, the exploration stage ends by enabling the outcome GX(it) to exchange X(it),
and these solutions are known if the silverback arises, when X(it) is greater than GX(it).

Using Equations (18)–(24), the following competition strategies are defined.

X(t + 1) = L×M× (X(t)− Xsilverback) + X(t), (22)
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M =

(∣∣∣∣∣ 1
N

N

∑
i=1

GXi(t)

∣∣∣∣∣
g) 1

g

, (23)

g = 2L, (24)

GX(i) = Xsilverback − (Xsilverback ×Q− X(t)×Q)× A, (25)

Q = 2× r5 − 1, (26)

A = β× E , (27)

E =

{
N1 rand ≥ 0.5
N2 rand < 0.5

, (28)

The GTO approach develops the following FF to make the best classification solutions.
It defines a positive integer to denote the good solution of the candidate’s performance. In
this case, the reduction in the classification errors is supposed to be the FF.

f itness(xi) = Classi f ierErrorRate(xi)

= No. o f misclassi f ied instances
Total no. o f instances ∗ 100,

(29)

4. Results and Discussion

The proposed model was simulated in the Python 3.8.5 tool configured on a PC with
specifications of i5-8600k, GeForce 1050Ti 4 GB, 16 GB RAM, 250 GB SSD, and 1 TB HDD.

The ID detection outcomes of the NIDS-LOFSDL methodology were validated using
two benchmark datasets, the UNSW-NB15 [22] and AWID [23]. Table 1 shows the details of
both datasets.

Table 1. Details of two datasets.

UNSW-NB15 Dataset

Class No. of Instances

Normal 15,000

Attack 15,000

Total Instances 30,000

AWID Dataset

Class No. of Instances

Normal 15,000

Attack 15,000

Total Instances 30,000

Figure 3 establishes the classification performances of the NIDS-LOFSDL system on
the UNSW-NB15 database. Figure 3a,b demonstrate the confusion matrices produced by
the NIDS-LOFSDL methodology on the 60:40 TR set/TS set. The outcome values show that
the NIDS-LOFSDL system detected and classified both the classes accurately. Afterwards,
Figure 3c reveals the PR outcomes of the NIDS-LOFSDL method. The simulation value
infers that the NIDS-LOFSDL methodology attained the maximum PR values on both
the classes. However, Figure 3d demonstrates the ROC outcomes of the NIDS-LOFSDL
methodology. The outcomes show that the NIDS-LOFSDL approach led to a proficient
solution with better ROC values on both the classes.
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Table 2 and Figure 4 highlight the recognition outcomes of the NIDS-LOFSDL system
upon the UNSW-NB15 database. The outcomes indicate the proficient recognition of
normal and attack instances. With the 60% TR set, the NIDS-LOFSDL technique achieved
an average accuy of 96.88%, a precn of 96.89%, a recal of 96.88%, and an Fscore of 96.88%.
Additionally, with the 40% TS set, the NIDS-LOFSDL algorithm attained an average accuy
of 96.83%, a precn of 96.84%, a recal of 96.83% and an Fscore of 96.83%.

Table 2. Recognition outcomes of the NIDS-LOFSDL technique applied to the UNSW-NB15 database.

Class Accuy Precn Recal F1Score

TR set (60%)

Normal 96.18 97.55 96.18 96.86

Attack 97.58 96.23 97.58 96.90

Average 96.88 96.89 96.88 96.88

TS set (40%)

Normal 96.08 97.54 96.08 96.81

Attack 97.59 96.15 97.59 96.86

Average 96.83 96.84 96.83 96.83
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Figure 5 illustrates the training accuracy values, i.e., TR_accuy and VL_accuy, attained
by the NIDS-LOFSDL technique on the UNSW-NB15 dataset. TL_accuy is determined by
evaluating the NIDS-LOFSDL method on the TR dataset, whereas the VL_accuy value is
computed by evaluating the outcomes on a separate testing dataset. The results imply
that both the TR_accuy and VL_accuy values increased with an upsurge in the number of
epochs. Accordingly, the performance of the NIDS-LOFSDL system is confirmed to achieve
the maximum performance on both TR and TS datasets, with an increase in the number
of epochs.
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In Figure 6, the TR_loss and VR_loss results of the NIDS-LOFSDL algorithm on
the UNSW-NB15 dataset are revealed. The TR_loss corresponds to the error between
the predictive performance and original values on the TR data. The VR_loss represents
the performance evaluation of the NIDS-LOFSDL technique on individual validation
data. The outcomes imply that both TR_loss and VR_loss values were reduced with an
increase in the number of epochs. This scenario portrays the enhanced performance of
the NIDS-LOFSDL approach and its ability to produce an accurate classification. The
minimal TR_loss and VR_loss values demonstrate the enhanced performance of the
NIDS-LOFSDL method in capturing the patterns and relationships.
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Figure 7 illustrates the classification outcomes of the NIDS-LOFSDL algorithm on the
AWID database. Figure 7a,b exhibit the confusion matrices generated by the NIDS-LOFSDL
methodology upon 60:40 of the TR set/TS set. The outcomes show that the NIDS-LOFSDL
system outperformed all other techniques and detected and classified both the classes
accurately. Then, Figure 7c depicts the PR outcomes of the NIDS-LOFSDL approach. The
simulation value shows that the NIDS-LOFSDL system reached increased PR values on both
the classes. Moreover, Figure 7d shows the ROC curve of the NIDS-LOFSDL methodology.
The outcome values demonstrate the superior capability of the NIDS-LOFSDL algorithm
with higher ROC values on both the classes.

Table 3 and Figure 8 demonstrate the recognition outcomes of the NIDS-LOFSDL
methodology on the AWID database. The simulation value refers to the proficient
recognition of both normal and attack samples. With the 60% TR set, the NIDS-LOFSDL
system attained an average accuy of 96.92%, precn of 96.92%, recal of 96.92%, and an Fscore
of 96.92%. Then, with the 40% TS set, the NIDS-LOFSDL methodology accomplished an
average accuy of 96.88%, precn of 96.89%, recal of 96.88%, and an Fscore of 96.88%.
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Table 3. Recognition outcomes of the NIDS-LOFSDL technique on the AWID dataset.

Class Accuy Precn Recal F1Score

TR set (60%)

Normal 97.29 96.56 97.29 96.93

Attack 96.55 97.29 96.55 96.92

Average 96.92 96.92 96.92 96.92

TS set (40%)

Normal 97.34 96.48 97.34 96.91

Attack 96.42 97.30 96.42 96.86

Average 96.88 96.89 96.88 96.88
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Figure 8. Average values of the NIDS-LOFSDL technique on the AWID dataset.

Figure 9 illustrates the training accuracy TR_accuy and VL_accuy values accomplished
by the NIDS-LOFSDL algorithm on the AWID dataset. TL_accuy is determined by evalu-
ating the NIDS-LOFSDL methodology on the TR dataset, whereas the VL_accuy value is
computed by calculating the outcome on a separate testing dataset. The outcomes show
that both the TR_accuy and VL_accuy values increased with an upsurge in the number of
epochs. Therefore, the performance of the NIDS-LOFSDL methodology enhances the TR
and TS datasets, with an increase in the number of epochs.
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In Figure 10, the TR_loss and VR_loss curves of the NIDS-LOFSDL approach on the
AWID dataset are shown. TR_loss corresponds to the error between the predictive solution
and the original values of the TR data. VR_loss signifies the performance outcomes of the
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NIDS-LOFSDL technique on individual validation data. The outcomes imply that both
TR_loss and VR_loss values tend to decrease with increasing numbers of epochs. The
outcomes represent the enhanced performance of the NIDS-LOFSDL technique and its
capability to produce accurate classification. The decreased TR_loss and VR_loss values
demonstrate the better solution of the NIDS-LOFSDL technique in terms of capturing the
patterns and relationships.
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To ensure better results of the NIDS-LOFSDL technique, an extensive comparative
analysis was conducted and the results are shown in Table 4 and Figure 11 [24,25]. The
simulation values state that the SVM, NB-Bagging, NB-Adaboost, GCHSE, and CNN-
Adaboost approaches achieved the worst performance. However, the BBAFS-DRL approach
demonstrated a considerable performance with an accuy of 95.04%, precn of 95.22%, recal of
95.06%, and an Fscore of 95.04%. Nevertheless, the NIDS-LOFSDL technique outperformed
all other models with a maximum accuy of 96.92%, precn of 96.92%, recal of 96.92%, and an
Fscore of 96.92%. These outcomes confirm the effective performance of the NIDS-LOFSDL
methodology on IDS.

Table 4. Comparative analysis outcomes of the NIDS-LOFSDL algorithm and other methods [24,25].

Methods Accuy Precn Recal F1Score

NIDS-LOFSDL 96.92 96.92 96.92 96.92

BBAFS-DRL 95.04 95.22 95.06 95.04

SVM 75.91 78.72 76.24 77.76

NB-Bagging 70.01 69.53 72.81 70.93

NB-Adaboost 71.34 74.44 73.13 74.07

GCNSE 80.17 80.01 81.28 80.82

CNN-Adaboost 74.16 69.28 71.53 68.16
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5. Conclusions

In the current study, a novel NIDS-LOFSDL technique has been developed for the
detection of intrusions so as to accomplish network security. The NIDS-LOFSDL technique
follows the concept of FS with a hyperparameter-tuned DL model for intrusion recognition.
For the purpose of FS, the NIDS-LOFSDL technique uses the LOFS technique, which helps
in improving the classification outcomes. Besides this, the ABiLSTM model is also executed
for intrusion detection. In order to enhance the intrusion detection results of the ABiLSTM
methodology, GTO is deployed for hyperparameter tuning. For validating the enhanced
solution of the NIDS-LOFSDL system upon intrusion detection, a comprehensive range
of experiments was conducted. The simulation values establish the promising results of
the NIDS-LOFSDL system compared to the recent state-of-the-art DL approaches, with an
improved accuracy of 96.88% and 96.92% on UNSW-NB15 and AWID datasets, respectively.
Future research works can extend the proposed model to accommodate the dynamic and
evolving nature of network threats. Besides this, continuous adaptation and learning
mechanisms within the model, such as online or semi-supervised learning, can also be
incorporated to enhance the capability of intrusion detection patterns proficiently. Finally,
the scalability issue of the NIDS-LOFSDL technique should be resolved in order to enable
it to be deployed in large-scale environments with high-speed data streams.

Funding: This research work was funded by Institutional Fund Projects under grant no. IFPIP:
194-611-1443. Therefore, the authors gratefully acknowledge the technical and financial support
provided by the Ministry of Education and Deanship of Scientific Research (DSR), King Abdulaziz
University (KAU), Jeddah, Saudi Arabia.

Data Availability Statement: Data sharing does not apply to this article as no datasets were generated
during the current study.

Conflicts of Interest: The author declares no conflict of interest.

References
1. Thakkar, A.; Lohiya, R. Fusion of statistical importance for feature selection in Deep Neural Network-based Intrusion Detection

System. Inf. Fusion 2023, 90, 353–363. [CrossRef]
2. Pranto, B.; Alam Ratul, H.; Rahman, M.; Diya, I.J.; Zahir, Z.-B. Performance of machine learning techniques in anomaly detection

with basic feature selection strategy—A network intrusion detection system. J. Adv. Inf. Technol. 2022, 13, 36–44. [CrossRef]

https://doi.org/10.1016/j.inffus.2022.09.026
https://doi.org/10.12720/jait.13.1.36-44


Mathematics 2023, 11, 4607 17 of 17

3. Katib, I.; Ragab, M. Blockchain-Assisted Hybrid Harris Hawks Optimization Based Deep DDoS Attack Detection in the IoT
Environment. Mathematics 2023, 11, 1887. [CrossRef]

4. Moizuddin, M.D.; Jose, M.V. A bio-inspired hybrid deep learning model for network intrusion detection. Knowl.-Based Syst. 2022,
238, 107894. [CrossRef]

5. Talukder, M.A.; Hasan, K.F.; Islam, M.M.; Uddin, M.A.; Akhter, A.; Yousuf, M.A.; Alharbi, F.; Moni, M.A. A de-pendable hybrid
machine learning model for network intrusion detection. J. Inf. Secur. Appl. 2023, 72, 103405.

6. Sah, G.; Banerjee, S.; Singh, S. Intrusion detection system over real-time data traffic using machine learning methods with feature
selection approaches. Int. J. Inf. Secur. 2023, 22, 1–27. [CrossRef]

7. Maabreh, M.; Obeidat, I.; Abu Elsoud, E.; Alnajjar, A.; Alzyoud, R.; Darwish, O. Towards Data-Driven Network Intrusion
Detection Systems: Features Dimensionality Reduction and Machine Learning. Int. J. Interact. Mob. Technol. 2022, 17, 123–135.
[CrossRef]

8. Ragab, M.; Alshammari, S.M.; Al-Ghamdi, A.S. Modified Metaheuristics with Weighted Majority Voting Ensemble Deep Learning
Model for Intrusion Detection System. Comput. Syst. Sci. Eng. 2023, 47, 2497–2512. [CrossRef]

9. Ragab, M.; Sabir, M.F.S. Outlier detection with optimal hybrid deep learning enabled intrusion detection system for ubiquitous
and smart environment. Sustain. Energy Technol. Assess. 2022, 52, 102311. [CrossRef]

10. Kocher, G.; Kumar, G. Analysis of machine learning algorithms with feature selection for intrusion detection using unsw-nb15
dataset. Int. J. Netw. Secur. Its Appl. 2021, 13, 21–31. [CrossRef]

11. Sharma, B.; Sharma, L.; Lal, C.; Roy, S. Anomaly based network intrusion detection for IoT attacks using deep learning technique.
Comput. Electr. Eng. 2023, 107, 108626. [CrossRef]

12. Mohy-Eddine, M.; Guezzaz, A.; Benkirane, S.; Azrour, M. An efficient network intrusion detection model for IoT security using
K-NN classifier and feature selection. Multimed. Tools Appl. 2023, 82, 23615–23633. [CrossRef]

13. Hosseini, S.; Sardo, S.R. Network intrusion detection based on deep learning method in the internet of thing. J. Reliab. Intell.
Environ. 2023, 9, 147–159. [CrossRef]

14. Syed, N.F.; Ge, M.; Baig, Z. Fog-cloud based intrusion detection system using Recurrent Neural Networks and feature selection
for IoT networks. Comput. Netw. 2023, 225, 109662. [CrossRef]

15. Du, J.; Yang, K.; Hu, Y.; Jiang, L. NIDS-CNNLSTM: Network intrusion detection classification model based on deep learning.
IEEE Access 2023, 11, 24808–24821. [CrossRef]

16. Ravi, V.; Chaganti, R.; Alazab, M. Recurrent deep learning-based feature fusion ensemble meta-classifier approach for intelligent
network intrusion detection system. Comput. Electr. Eng. 2022, 102, 108156. [CrossRef]

17. Atefinia, R.; Ahmadi, M. Network intrusion detection using multi-architectural modular deep neural network. J. Supercomput.
2021, 77, 3571–3593. [CrossRef]

18. Wang, Z.; Jiang, D.; Huo, L.; Yang, W. An efficient network intrusion detection approach based on deep learning. Wirel. Netw.
2021, 1–14. [CrossRef]

19. Ra’ed, M.; Al-qudah, N.E.A.; Jawarneh, M.S.; Al-Khateeb, A. A Novel Improved Lemurs Optimization Algorithm for Feature
Selection Problems. J. King Saud Univ. -Comput. Inf. Sci. 2023, 35, 101704.

20. Jiang, K.; Huang, Z.; Zhou, X.; Tong, C.; Zhu, M.; Wang, H. Deep belief improved bidirectional LSTM for multivariate time series
forecasting. Math. Biosci. Eng. 2023, 20, 16596–16627. [CrossRef]

21. Ghith, E.S.; Tolba, F.A.A. Tuning PID Controllers Based on Hybrid Arithmetic Optimization Algorithm and Artificial Gorilla
Troop Optimization for Micro-Robotics Systems. IEEE Access 2023, 11, 27138–27154. [CrossRef]

22. UNSW_NB15. 2023. Available online: https://www.kaggle.com/datasets/mrwellsdavid/unsw-nb15 (accessed on 26 August 2023).
23. Bee-Mar. AWID Intrusion Detection. 2023. Available online: https://github.com/Bee-Mar/AWID-Intrusion-Detection/blob/

master/final_documents/resources/dataset-headers-reduced-removed-null.zip (accessed on 26 August 2023).
24. Wang, A.; Wang, W.; Zhou, H.; Zhang, J. Network intrusion detection algorithm combined with group convolution network and

snapshot ensemble. Symmetry 2021, 13, 1814. [CrossRef]
25. Priya, S.; Kumar, K.P.M. Binary bat algorithm based feature selection with deep reinforcement learning technique for intrusion

detection system. Soft Comput. 2023, 27, 10777–10788. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.3390/math11081887
https://doi.org/10.1016/j.knosys.2021.107894
https://doi.org/10.1007/s10207-022-00616-4
https://doi.org/10.3991/ijim.v16i14.30197
https://doi.org/10.32604/csse.2023.041446
https://doi.org/10.1016/j.seta.2022.102311
https://doi.org/10.5121/ijnsa.2021.13102
https://doi.org/10.1016/j.compeleceng.2023.108626
https://doi.org/10.1007/s11042-023-14795-2
https://doi.org/10.1007/s40860-021-00169-8
https://doi.org/10.1016/j.comnet.2023.109662
https://doi.org/10.1109/ACCESS.2023.3254915
https://doi.org/10.1016/j.compeleceng.2022.108156
https://doi.org/10.1007/s11227-020-03410-y
https://doi.org/10.1007/s11276-021-02698-9
https://doi.org/10.3934/mbe.2023739
https://doi.org/10.1109/ACCESS.2023.3258187
https://www.kaggle.com/datasets/mrwellsdavid/unsw-nb15
https://github.com/Bee-Mar/AWID-Intrusion-Detection/blob/master/final_documents/resources/dataset-headers-reduced-removed-null.zip
https://github.com/Bee-Mar/AWID-Intrusion-Detection/blob/master/final_documents/resources/dataset-headers-reduced-removed-null.zip
https://doi.org/10.3390/sym13101814
https://doi.org/10.1007/s00500-023-08678-9

	Introduction 
	Related Works 
	The Proposed Model 
	Feature Selection Using the LOFS Approach 
	Intrusion Detection Using ABiLSTM Model 
	Hyperparameter Tuning Using GTO Algorithm 

	Results and Discussion 
	Conclusions 
	References

