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1. Introduction

This present article is devoted to the study of the solution of a transmission problem
in a non-stationary regime in a 3D thin layer with Tresca’s friction law. More specifically
and for the ease of the reader, we give notations that specify our domain: we suppose
that the nonhomogeneous Q¢ is composed of two homogeneous bodies Qf and Q5 of R3.
Throughout this work, the index I indicates that a quantity is associated with the domain
0,1 = 1,2, where (0 < & < 1) is the thickness that becomes infinitely small, which will
tend to zero. Suppose also that the boundary dQ)f = w U U fgLI of the domain Q) is
partitioned into three disjoint measurable parts and belongs to C!, where w is a fixed
region in the plane x’ = (x1,x2) € R. The upper surface I'{ is defined by x3 = eh(x’),
and T’ is defined by x3 = —eh(x’). Additionally, & is a bounded continuous function with
0 < hy < h(x) < h* forall (x,0) € w, and FSZ, I = 1,2 is a lateral boundary. For any
function u® defined on )f, we designate by u] = (uj;)1<i<3 (resp.,u5 = (u5;)1<i<3) its
restriction on ()f (resp., on ()5).

During the last decades, many authors have studied the problems of contact with
the various laws of behavior as well as the various conditions of friction close to this
study. In [1-3], the authors devoted their studies to the convergence of the solutions of
the linearized elasticity system with different boundary conditions to generalized weak
equations in the plane. In [4,5], the authors show the reduction of the 3D-1D dimension
in anisotropic heterogeneous linearized elasticity. This work is devoted only to strong
solutions, with the absence of a friction law. This type of study, governed by the different
models of the mechanics of continuum in thin layers is essentially based on the theory of
variational inequalities which represents, in a very natural generalization of the theory
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of boundary problems, and makes it possible to consider new models from many areas
of applied mathematics. The variational analysis, existence, uniqueness, and regularity
results in the study of a new class of variational inequalities were proved in [6] (see also,
e.g., [7-9] and references therein). In the case of linear thin elasticity and in a non-stationary
regime, Benseridi et al., in [10,11], gave the asymptotic analysis of the solutions whose
influence (or not) of the heat on the model with friction did not increase the continuous
terms. Several studies of the asymptotic convergence of Newtonian and non-Newtonian
fluids are considered in [12-15], of which the authors have shown that the initial problems
are converging towards limit problems represented by weak forms (Reynolds equations).
A significant number of researchers have devoted their work to the study of transmission
problems in different functional spaces with several types of boundary conditions. For
example, Manaa et al., in [16], proved the reduction of the 3D-2D dimension of an interface
problem with a dissipative term in a dynamic regime. We would like readers to note that,
in this study, the authors are interested in a very particular body that follows Hooke’s law
(an isotropic case of elastic materials). The asymptotic study of a transmission problem
governed by an elastic body in a stationary regime with Tresca has been studied in [17].
Another work analogous to this present study, but relating only to the study of the existence
and uniqueness of the weak solution of a frictionless contact problem between an elastic
body and a rigid foundation, is given by [18]. Other recent works on the contact problems
are given in [19-23].

In this study, the objective is to make an extension of our previous works [16,17]. The
novelty of our study can be summarized in the following two major points. First, we take
into account a generalized stress tensor compared to what is given in [16]:

of = gle(uf) or (Uls)ij(uf) = 51’lqu elﬂq(u?)r

where £ is a bounded symmetric positive definite fourth-order tensor that describes the
elastic properties of the material and e(u) is the linearized strain tensor. Second, we study
the asymptotic behavior of the considered problem with the Tresca friction and the presence
of the nonlinear source terms in a non-stationary regime compared to what is given in [17].
This choice will create different difficulties in the next section of this study, especially in
Theorems 5-7 and the uniqueness theorem. Because the study of the asymptotic analysis
is more difficult since in general, the limit problem involves an equation that takes into
account the anisotropy of the medium, and it is therefore important to identify the elastic
components of (Eilj p q) that appear in the (2D) equation model.

The remainder of our paper is organized as follows: Section 2 will summarize the
description of the problem and the basic equations. Moreover, we introduce some notations
and preliminaries that will be used in other sections. Section 3 is reserved for the proof of
the related weak formulation. We also give the problem in transpose form, and we establish
some estimates of the displacement that do not depend on the parameter ¢ in Section 4. The
corresponding main convergence results are stated in different theorems in Section 5.

2. The Domain and Notations

We denote by Sj the space of the second-order symmetric tensor on R3, and |.| is the
inner product and the Euclidean norm on R3 and S;, respectively. In addition, V u, v € RS,
wv = u.v;|u| = (u.u)%, and 0.1 = 03T, [T] = (7.T) 5,Vo, T € S3. Throughout this
article, i, j, p,g = 1,2, 3, repeated indices are implied, and the index that follows a comma
represents the partial derivative with respect to the corresponding component of x.

Following the notations presented in the introduction, we denote by ()¢ the domain
Qf UQ5, where

x=(x",x3) €R3 (¥,0) cw, 0 <x3 < sh(x')},

2
[y
|
=

x = (¥, x3) €R3,(¥,0) € w, —eh(x') < x3 < 0}.
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We assume that the boundary 00} = wU T u Til of the domain Q) is partitioned into
three disjoint measurable parts and belongs to C!. We also use the usual notation for the
normal components and the tangential parts of vectors and tensors, respectively, by:

Vi, = Vi, Vio=vj—vyy, with v=v3 = -1

— e __ € £
p, = (Gfv)vi,  Of = 0V — ;.

For the displacement field, we use three Hilbert spaces

3 ax
H'(0f)° = {x € (LX) =2t e LZ(QT)},
3
W(Q) = {x c (Hl(Qf)) :x=0on[{UT},I= 1,2},
WE = {(x1,x2) € W(QE) x W(Q5) : x1.v1 + x2v2 = 0 on w},

where H!(Q)? is endowed with the inner products (., -)1,0¢ and the associated norms
[[-[l1,0s- W* is endowed with the canonical inner product (.,.)w: and the associated norm
[I-|lwe, which are defined by

Nl—

1G22 we = (I3 By + 122y )
For the stress, we use the real Hilbert space
Q= {T = (1ij) : Tij = Tji € L2(), Vi, j = 1,2,3},

endowed with the inner product

(0,T)g = /Q? 0ijTijdx = /Q? o.7dx,
Likewise, for the displacement variable, we use the real Hilbert space
H={u=(w) € 1X0f)* e(u) € Q}, 1=1,2
endowed with the inner product
(Wi, w2)y = (W1, W2) 12y + (e(w1), e(w2))

and the norm || | ;;, where the deformation operator e(u) = (e;j(u)) and e;;(u) = (u;; +u;;) /2.
We denote by Qc the real Banach space (see [6]):

Qoo = {& = (Eljyg) : Elipy = &

1 0 ..
iipa) * €ijpg = Eiipg = Epgij € LT(QY), 1,7, p,9=1,2,3,1=1,2}.

pqij
endowed with the norm
1 _ 1 o
H(‘: ||Qoo - 0§g%2?{;§3 ||gl']‘pq||Loo(Ql€), | = 1,2 (1)

and, moreover,

1€710 <3l aullTle,  VE'€Qw, TEQ =12 @
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Finally, for a real Banach space (X, ||.||x), we use the usual notation for the spaces
LP(0,T; X), where 1 < p < oo; we also denote by C(0, T; X) and CH0, T; X) the spaces of
continuous and continuously differentiable functions on [0, T] with values in X.

3. The Problem Statement and Weak Variational Formulation

We consider two bodies made of an elastic material that occupy the domain
QF = (Qf UQ3) of R® with a smooth boundary 90 = @ UT; UT}, and a unit outward nor-
mal v. For any displacement vectors u® defined on )¢, we designate by uj = (uj;)1<i<3 (resp.,
u§ = (u5;)1<i<3) its restriction on Q) (resp., on Q). The notation ¢f = ((Tf)l.j, 1<4,j<3,
I =1, 2, represents the stress tensor.

The stress—strain relation is expressed as

0f = Ee(uf) or (0F);:(u5) = Elyy epg(u5), 1 <1< 2,,and i,j,p,q € {1,2,3},

where the elasticity operator £’ is assumed to satisfy the conditions:

(Hy) &': O x S5 — Ss.
(Hz) There exists Lgi > 0 such that
|Eley — Elex)| < Lgi|er — ea|
Vey, e € S3, ae. x € ().
(H3) There exists mg > 0: Ve € S3
Ele.e> m51|€|2 a.e.in0f1=1,2.

(H4) The mapping x — 8l(x,e) is measurable on ()f, Ve € Ss,

(Hs) The mapping x — £'(x,0) € Q.

Next, we adopt these assumptions:

e OnTIj x]0, T[, the upper surface is assumed to be fixed:
uj=0, =12

* OnIj x]0,T], the displacement is known and parallel to the w-plane:
uj=0, =12

e  Onw x |0, T[, we suppose that the normal velocity is bilateral, that is:

uj.ry +us, =0 on w x 0, TJ.

Therefore,
v1 = —v and 0{.v; = —05.1p on w X |0, T[.

Consequently,
0'1€/ = ‘va = 0'51/ and U’f’ = Ufr = _UST on w X }O’T[‘

Let us suppose that we have the condition of the Tresca friction law on the part w x [0, T|
with «° being the friction coefficient:

{ 08| <x* = (uf), — (1), =5,

el _ e > on w x [0, T].
l0f] = x* = 31 >0, (uf)

T
i (05), =s— Aog,

Solving the problem posed is equivalent to finding u = (uj, u§) satisfying the constitutive
law and the boundary conditions, using the following initial conditions:

uj(x,0) = u?(x), uj(x,0) = ull(x), Vxe ), 1=1,2
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Finally, the dissipative terms g;; : R — R, i =1,2,3, [ = 1,2 are a continuous increasing
function and satisfy the following hypothesis:
1. g, [=1,2ismonotonous, i.e., (g/(u)—g/(v),u—0v) >0, Yu,0 € R3;
2. gl(03) = 03 for = 1,2;
3.  For all w;,wy; € R, there exists a positive constant Cq independent of wq and wy,
such that
181i (w1) — g1i(w2)| < cqlwy —wo|, i€ {1,2,3},1 <1 <2

For the given body forces f7,] = 1,2, the classical model for the process is as follows.

Problem 1 (P¢). Find a displacement field (uf,us) = ((u;, us,)1<i<3 : QO x Q5x]0, T[— R3
such that

i () — Div(&le(uf) ) + (65g1)ui (1) = £, in Q5 x]0, T], 3)
i (1) — Div(€%(u5) ) + ($582)45(1) = £, in Q5x]0, T @
of(uf) = Ele(uf), in Qfx]0,T], (5)
o(uh) = E%(up), in Q5x]0,T], (6)

u§ =0, on(I5UT )x]0,T], @)

uy =0, on (U)o, T], )

Wy —u5v =0 onwx|0,T] )

(0 (u§))v — (05(u)).v =0, onwx]o,T], (10)

ot <kt = (uf u)_ =s,

|oz] (af), — (a5), o wx]0,T], a1
lof] <x® =31 >0, (uf), — (1), =s—Ack,

uf(x,0) =u), uf(x,0)=u}(x,0), Ry, =12, (12)

Theorem 1. If (uj,u) solution of the problem P*, then it is also a solution of the following
variational problem:

Problem 2 (Pf). Find (uf,u) where (0i(t),u5(t)) € W¢, Vt € [0, T] such that

(0, v1 = 65(0)) + (@5(0) v2 — 65(0))+ X aluf, v — (1)

(578'1 (w5(£)), (vi =i (1)) + J*(va,va) = J*(ai(8), 65()) > L (£, (v — 4} (1)),
I

uf(x,0) =u?, af(x,0) =uf(x,0),

wmg, =
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where (v1,vy) € WE is the test function and

a(ui,v) = [ (0f())gey(v)dx'xs = [l epg(uey(vi)dx'ax,
! 1
i
(Grgi(w(t)),v) = /QC 85 g (t).v dx'dxs,
1
(£,v) = /Q £ov dx'dxs and J(vy,v2) :/ K V1e — v — s|d.
1 w

Remark 1. Using the previous properties and by Korn’s inequality (as in [6]), one easily checks
that the bilinear form a(.,.) is coercive and continuous, i.e.,

u(ul,ul) > Z/‘ZCK”VulHiz(Q?) Yu; € W(Qf), 1=1,2
(s, v0)| < MVl 2y |91l ) v € W),

where M = max ’ &
1<i,j,pq<3
1=1,2.

1 : by e 1€ T€
iipq Hmef) and Cg denoting a positive constant depends on Q)f, T, FLI,

Proof of Theorem 1. Let (uj, u5) be a solution to problem P¢. Multiply (3) by (vq —aj(t))
and (4) by (v, — u5(t)) where (vy,v2) € V¢ Using the integral by parts on ()] and Q, and
then using Green’s formula, the results of Remark 1, and (7)—(12), we obtain the variational
problem, (13). O

The existence and unique results of the weak solution to problem (13) are obtained in
the following Theorem.

Theorem 2. If the following assumptions are realized

JfE Jft 92 fE 2 f¢
Ui s (3 5) (S5E) e ro @ x og?);
Kt € C¥(w), «° >0 isindependent of t;
(ud, u)) € H2(QF)3 x H2(Q%)?, (u},u}) € H(QF)? x HL(Q)>.

(14)

There exists a unique solution (uj, u$) to problem P with

(uf,u3), (a§(h),u5(t)) € L¥(0,T;HI(Q])° x H'(Q))?),
(w§ (1), 65 (1)), (1§ (1), g205(1)ui (1) € L7(0,T;L3(Q)° x L*(05)%)

Proof. Since the function Jg is not regularized, then we will regularize it by Jz:

1

=13 +§|ﬁ|<1+5>, g>0.

JEv1,v) = [ K e (vie = var = s, with e (B)
Jw
Next, we formulate the associated approximate problem

1=2 =2

v oz (a5, (D) vi) + (09 (4 (0, 85, (0), (v, v2)) = £ (§,v),  (19)

I=1 =1
wj, (x,0) =), W, (t)(x,0) =uf(x,0), VveW, Vte[0,T]

For the rest of the proof, we apply Galerkin’s method as in ([24,25]), with hypothesis
(Hy) — (Hs). We begin to show that problem (15) admits a unique solution denoted by

ut = (u‘ig, ugg).
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In the last step, it is easy to verify that the limit of u to u® when 7 — 01is a solution
of (13). O

4. The Problem in a Fixed Domain

In this section, we use the dilatation in the variable x3 given by x3 = ez; then, our
problem will be defined on a domain ()¢, which is independent of ¢. So for (x, x3) in (),
1 =1,2, we have (x,z) in ();, where

O ={x=(,2) R (¥,0) cw, 0<z<h(x)},
Oy ={x=(x,2) eR?, (¥,0) ew, —h(x')<z<0},

with 00 = @ UT; UT}, being the boundary of (0,1 <1 < 2.

To simplify the notation, everywhere in the sequel, &, B, v, 0 = 1,2. According to this
convention, when an index variable appears twice in a single term and is not otherwise
defined, it implies summation of that term over all the values of the index.

So, we define the following functions in (),

w5, (x,z,t) = uj (¥, x3, 1), 1<1<2,
06, (&', z,t) = e ut, (x, x3, (16)
13 13 3t),
For the data of problems (3)-(12), it is assumed that they depend on ¢ as follows:

f,(x',z,t) = €5 (x/, x3),
R = ext
~ ! <I<
5 = 82515, 1<1<2, (17)

gAl (x,/ z, t) = 8f(x// X3, t)r

with f;,%,6;, and ¢, not depending on e. We introduce the following spaces:

W) = {$eHY(y)?:9¥=0 on T,UTy,l=12}
W = {(¥1,%2) e WD) x W(p) : 91.v—¥v =0 on w},
W) = {$=(P1$2) € H(Q1)> x H(M)*:$=0 on T;Uly,1<1<2},
Ho(Q) = {9 = (91, %) € L2(Oy)*: a;l"‘ €L*(Qy), ¥,=0onl;, 1<1<2},
HZ = HZ(Ql) X HZ(Qz),
H%zun,(nl) = {6, e H(Qy):vy=00onT;UT;,1<1<2},

endowed with the norms, respectively:

. 2 . AT
HVIH%JZ(QI) = 2(|Vli| L2(Qy) + || l ||L2(QI)>
i=

(91, 92) I3, = H‘h”%{z(nl) + H‘A’ZHHZ(QZ)'

Using the symmetry of £, the variational problem (13) is reformulated on the fixed

ijpq’
domain as follows:
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00§ 015
Problem 3 (P¢). Find ( ) € W, with <utl(t), ;2( )> € W, Vt € [0, T}, provided that
(2R (P o) |2 (P
er | gp Pt | TEL G ot
L2 2 (0 AN 2o (00 Ji,
z)—:m;l 1810\ =5, Pl — 3, g 1813 at =B, 5 — 5t
2 o)t N L[ 00 005
e A O PN 1 9N o (18)
+l§lﬂ(ul,¢l o ) +J(¢1, 92) ]( 5 ot ) >
2 2/, ont 2 [/, /]
X fwda——=2)+eX ( fi3 ¢ V(§1, ¢2)
1=1a= ot Joe ot
a¢ = af, al? (x,0) =l (x,0), =12,

where

tng A PPN L, PN 17,
agas, ¢) = € /Qz Enpyolne(8]) gD;:dx’alz—i—2£/ﬂl 5i379679(u18) agi'xdx’dz

. 3¢ . 3¢
+262 /Q Samg,évg,(ﬁf)%dx’dznuls /Q Ehayal (8) St iz
1 1

+2€ /Q (E/'\i333é33( ) agou dx,dz + 28 / 533“3ea3( ) ;03 dx/dz
1

-
™M
2
@
@
@
(SN
w
»
—
o>
)
N~—
Q..
H\
[
N

1w o -
&;(4f) = 5 axl]-l+axi]> bil=12
R WA .
s (05) = 65i(07) = 5 ge 5 T af ) L1=12 (Deféfj(u‘f))
u"E
&3 (0f) = 82{3 1=1,2

In the next section, we establish some estimates for the solutions to the variational problem (18).

Theorem 3. If the hypotheses of Theorem 2 hold, then there exists a positive constant C that does

not depend on ¢, such that we have:
2
£ (15 2L 52
a=1 az aZ O,Ql X Qz at at 0,01 XQZ
2
d z 2 o, 0
+Z . (au13 auz3) n Z E<au1a a”za)
a=1 Yo/ 1l001x0;  ap=1 g 9% ) o0, %0
oilf; 0il5, 0ilf; 0il5,
+H€<az'8z> €<8t'8t>
gl< ”13> My ydr<C, @0)
!

() )

+
O,Q] XQZ

<C (19)
O,Q] XQZ

Q
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2
O,Ql XQZ

2

—+
0,01 X QZ

. o%ag %15,
otz ot?

([ Ry

) 2
2 82(82u13 82u23> n i (azum 82”2a> 1)
1 0x,0t" 0x,0t 0, el 8xﬁat axﬁat 0,0, %0
) 2
o205, 9205, oty 9215,
< C.
+Hs<3zat ozot ¢ oz " ot =¢
O,Ql XQZ 0’01 XQZ

Proof. Suppose that the problem P} admits a solution denoted by (u‘i, ug), then we have

i B0y + 2 i)
+o] ) / @ifuf (1) Pdx'dxs < ((i(1), 65(1)), (v1,v2))

1<I<2

+ ) a(uj(t),vi) + ] (v, v2) +Z/ £(aj(t) —v))dx'dxs  (22)

1<I<2

For r € [0, t], by integration, we obtain
. 2
(H“i(f)ﬂm(ng) + [l (¢ ||L2 o) T Y a ))

1<1<2
2 t
+22§f// g6 (r) | Pdxdr
= J0 /0
< ||(u1 u1)||2 +3\@M||(Vuo Vuo) 2
> 1,42 ) 0,07 x 2y 12 vV 12 o,
t
2 [ (1), 65(01)), (w1, v2))ar

+22/ (w(r), vy)dr + 2TJ¢ (v1,v2)

1<I<2

X Q; (23)

+22 / / ££(r) (Ul (r) — vy )dxdr,
=170 /O
= L <l<2.
where M 135'}2,%3‘ E’JP‘?HLw(Qg)’ 1=1=2

We use Korn’s inequality and hypotheses (H1) — (Hs). There exists a constant C;, > 0
independent of ¢, such that

Y a(u (), u(6)) > 201 Cicl| Vi |3 e + 202G | V3 - 4)
1<I<2

On the other hand, when we apply the Young’s inequality

L Y5
ab <y E—i—ﬂ oX forevery n >0,
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in (13) fory = @ , we find

a(uj(t),vi(t))

1<I<2

C
< (VS lE () + 12l VoS lEa ) ) +

& (1910 ) + 2l v )

By integration of the last inequality between 0 and ¢, we have

2 3 [ atwi(@,wi@)a0 < 22 (1 9v1(0) oy + 12l Tv2(0) )

1<I<2

Ck t
5 mlquiHiz(Qﬁ) 02| Vs P2 o) )t

+z/ i (1), 65(r)), (v1, v2) )dr
< §||<u§<t>,u DR oyxer
51 (ud w3) By, + 172, 2) B0, 25)
as
2 (8105 0) ) = 2057(0),w5(0)) = 205700, w0) -2 f§ (G ()i Jar1 =12 @6)

Using Poincaré’s inequality [1],

[ufloqs < eh™[[Vufoa:, =12

one has

t t
| €@, 0D+ [ (60, 650)dr

1Ck 2Ck
< B9 (1) g + E2 190 (1) g

1 * 2 e ( ) e £ 2
= 2 6 () 0 + 5| (6 0), 50)) o
1
§H<Vu1rvuz)||onfxn€+ Zﬂl/ [V (r ||on€d7
* 2 2 afs
Z dr. (27)
CK l:1 O/Q[

Likewise, via Poincaré’s inequality, we give:

‘_ /Ot(fi(r),vi)dr_ /Of(fg(r),vg)dr

t 1
< G z [, 65 By

+§||(VV1/VV2)||%,Q§xQ; (28)

Substituting Formula (24)-(28) into (23), we find:
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1.
<2|<u§<> 3 (5) 3 g g + chK||Vuz<>||ms>+2251// gl () Pt
1<I<2
3
< Sl (ud ud) 130,00, + 271 (va,v2) |+ ()1 (85 (0), £5(0)) 13 o
2M
+(1+3v3 M)||(Vul,wz)umeme + (1+ C” )T||<Vv1,sz>|%,WQz
L c( 2(eh*)? & 1 off |7
‘ — =L £(r) |5 qedr | d
e ; 150 s + =G L o {5 0], o 16 g Jar
Loy 2
[ <2|(“§(V)/“§(V))||g,ogxog + chK||Vuf<r>||é,Q§>dr- (29)
1=1

By simple calculations of the change in scale with respect to the third component given by
Formula (17), we give

2Hf1 HOQS =& 1HfA1||%IQ[g,l = 1,2 and ]e(Vl,V2> = Silf(Vl,Vz).
Then, multlplymg (29) by &, we obtain:

1<I<2

1, ..
S<2|(t11() ())Hons ot X #zCKIIVuzOII%,Q;)

2 t
2e Yy 5¢ 1€(0)%dxdd < B 30
e300 ) [, ali0)Paxde <+ 0)

/Otecll(ﬁi() W) 05 + 1 mCkIVui(r >||5,Q§>dn

1<i<2

where p, = min(py, y2), p* = max(u1, p2) and B does not depend on ¢
B = || (ull )||o 0y x0p T (1 +3\[M) I (Vulf ﬁg) 16,006 <26
2M N . a
+ (14 BV 1101, Vol o, + 271051, 02)] +

. R R > 2 . R
(0021 (800, 2(0)) g + G (10 200 I

n ~ 2

2(ech*)? (afl afz)

Crtts I\ 979 ) 20 mizcanoxi2(0n))
(sh*)

2
Tk | (fl'fZ) I o m12(00 12000
Using Gronwall’s Lemma, we obtain (19) and (20).

The proof of (21) is based on the techniques used in the proof of inequalities (19)—(20).
Indeed, in a first step, we derive the associated approximate problem (15) with respect to
t. Then, we choose (v1,vy) = (u‘i (8, ﬁsg(t)) in the expression found, and, by applying
hypotheses (1)—(3) of the dissipative terms g; and Korn's inequality, we obtain the analogue

of (30). Finally, Gronwall’s Lemma assures the existence of a constant C that is independent
of ¢ and satisfies (21). The proof of Theorem 3 is complete. []
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5. Convergence Results and Limit Problem

Theorem 4. If the hypotheses of Theorem 2 hold, then there exists (uy,u}) = (uj,, u3,) in
L%(0,T,H,) N L®(0, T, H,), « = 1,2, such that

(uf\s Iﬁs )4 (M* ,u* ),
e weakly in L2(0, T; L2(Q1) x L2(())) -
Oy O\ (v weakly « in L®(0, T; L?>(Qq) x L2(0y))
’ (1113, )
ot ' ot ar e
e(8yp(115), 645(115)) — (0,0)
(Bup (1), a5 (23)) weakly in L2(0, T; L?(Q)) x L2(Q)) (32)
d N N d R R ; [« .72 2
S(atelxﬁ(ui)'atelxﬁ(us)> N (0,0) weakly* inL (O,T,L (Ql) X L (Qz))
<aa§a’ 8515“) (0,0)
ot = ot weakly in L(0, T; L2(Q) x L2())) 39
rag, Pas,\ | (0,0) weakly « in L®(0, T; L*(Qy) x L2(0y))
otz ' ot? ’
on, 915
2 9%z dUz ) |
¢ (axa " Oxy ) (0,0)
ons, 95
2 913 Otz |
¢ ( ot ' ot ) (0,0)
&2 < 32%, 32’% — (0,0) weakly in L2(0, T; L2(Q) x L2(0y)) (34)
Y x“At Ax”‘ - weakly x in L*(0, T; L?(Q)) x L2(Qy))
8(6383 13), 33(33)) —(0,0)
£ aég,g,(ﬁi),g%y,(ﬁi)) (O 0)
aZLAls aZﬁe
2 3 3\ _.
o o (0,0)
( CI auZN) N ( u;y, aum)
8lag v 825y e TR weakly in L2(0, T; L2(Q;) x L2(Q)) (35)
9il, oS, weakly * in L*(0, T; L2(Q) x L*())
(g13 5 88751 >4(O,0)
Proof. Using estimates (19)-(21) for « = 1,2, we obtain
o, o2ag, o%as, |
H( ultx Msz) <C ‘ < ultx u2a> <C. (36)
9z " 9z /lp0,x0, dzot ' oz 0.0 %0,

We apply Poincaré’s inequality in (03 U )y) x (0, T), with a simple comparison of the two
estimates given in (36). We deduce

an¢
AE lo * —
Wilimorazan = 7 9z |l (0,1,12(0)) she =t
2 A
‘ aula * a ullX Sh*c, l:1,2
ot 12(0,T;L2 () 0zot 12(0,T;L2(CY))

Since (i), . ,, is bounded in W'2(0,T; H;) N L*(0,T;H;), by the injection W'?
(0,T;H;) — C(0,T; H;) as in ([6], Lemma 2.2), we obtain convergence (31). Finally, by
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the expressions of éi,]'(ﬁ‘;) given in Deféij( i) weak convergences (32)—(35) follow from
(19)-(21) and (31). O

Theorem 5. If the hypotheses of Theorem 2 hold, the solution u* = (uj,u}) satisfies the limit
variational problem:

ou 0 . oury 1 ou J . oul
1le ( azl_“).az(vm a;“)deriz 1f02 ( aéa)-az(vh a?"‘)dx
au;(a R a”z*a NN N / Ak o / (37)
+szl 151 le Sia Uly — ot dx+fwK|V1T_V2T_s|dx _fwK|ulr_ulT_s|dx
X NP o
>Ya Ja, f1a (14 — Tta)dx + Y3 Ja, f2a (020 — T?“)dx, V(91,%2) € II(W),Vt € [0, T],

and the limit problem:

10 *'18u{ ¢ . [ou] 10 *'28u§ ouj A A
<_2az[‘9 0z ] +51g1< ot )'_28,2[8 0z +(5zgz( ot > = (B &) (38)

in 12(0,T;12(0n)? x (12(02))?),

)

u*(0) = (uf(0),u3(0)) = 6(0) = (uf, u). (39)

Remark 2. By convergences (31)-(35), the matrix’s g1=1,2 converges (for e — 0) to

; wd )
2 | €133 Eiaes
& = i

* 7 E 4

82313 52323

Proof of Theorem 5. By passage to the limit, when ¢ — 0 in the variational inequality (18)
and using the convergence results of Theorem 4 with the fact that | is convex and lower

semi-continuous, we obtain directly Formula (37).
* *

at il/)la, O = at
where (P14, P20) € HE(Q1) x H} (), Vt €10, T[,& = 1,2, we find

1 & ou, \ 0P, 1 *2 oz, \ 0o,

*2/91 (a;) d+2/ <z)azd
ouy, oul

+Z(51/ glzx( )l/)mdx+zf52/ g21x<1;

§a>1,l)2,xdx
= Z/ fAmllJladvaZ/ fratpradx.
a=17 a1’/

Using Green’s formula, we find

1 9 (1 uy, duz,
azA&G<£wa P2 L (€ (5 )
2 n a * a *
+ Z (5 / gluc < )lpmdx + Z 52 / gsz( g?‘" > lpmdx

2
- Z / flalpladx—i—E / Prathadx, V(1 o) € HY Q) x HY(Qw), ¥t € [0, T]

Now, for the proof of (38), we choose ([15]): 91, =

:t IPZOCI
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v

Therefore, we deduce

10 *18u1a
< 282[5 0z

= (f10, Fe) in L2 (o, T;H () x H*l(Qz)),

20z

Juf 190 |*?0u}
+(51g1“<al}a), [5 8213&

ou;
+ oo af“)) (0)

We know that if ( Frar fza) € L2(0, T; L2(0)) x L2(€)y)), then (40) is true in L2(0, T; L2(Qy) X
L?((),)). Condition (39) is an immediate consequence of the second equation of (18) and
@Gl). O

Theorem 6. If the hypotheses of Theorem 2 hold, we have the following equality

05 (', t) = 05(x',t) in L*(w)?, Vte]o,T| (41)
¢(py— o+ 2 90T |90 9% _ ()
/J‘(‘Pl R TR o ot )
1 ' * * 2
5 [ @ign =652’ = 0,1, 42 € (1)) Ve o Tl @)
w
d 995
o] <k = O % _
ot ot ot gk on w x )0, TJ.
x| — > o A2 *
6| = & = 3A >0, such that o 5 s+ AB7F,
(43)
where
2 oy
gr(x',t) =45 (x,0,t),  Of(x,t)=¢& (x’,O)—Zl(x’,O,t), 1=1,2.
ouy ou3;
Proof. Choosing in (37), 01; = gt + ¢15, 00 = ﬁ + ¢p; for i = 1,2, with (¢1;, i) €
HIlHUFL Q) H%zur ()’ then, we pass to the limit and applying Green’s formula. We obtain
1

1 ouy, (¥, t) , ,
E ( 12, t) aZ (Pllx(x 4 t)dx dz
1 ouz, (', 1) ' gt
E / ( ,2,b) . $oa(x', £)dx"dz

2
L
(el 2 * (x!
/ ( «,0) 208D 00y &7 (¢ 0) erz(x’,O))dX’

41 ou, (¥, £)

2 0z o0z
R o7 993|997  9q5 ]

+/"<"’1 L T T A T T D K

2 our (¥t 2. ous (x',t
Z / gla(ma(t))(l)la(x//t)dxle-l- 252/0 gAth(zét)>(P2a(xlzt)dxldz

a=1

2
Z/ flzx x' t(PllX(x t)dxldz+ Z/ f21x x' t)(PZa(x t)dx dz,



Mathematics 2023, 11, 4609 15 of 18

On the other hand, from (38), we deduce that:

LA

dq7  9q;
¢1_¢2+¥—¥

_% /w(ef(x’, t).(l)l(_x//()) — 95(3(/, t)~¢2<x/,0))dxl > 0.

o, I ,
o ot )4

This inequality remains valid for any ¢1, ¢, € (D(w))?, and, by the density of D(w)? in
L?(w)?, we have

97y _ 943
I T ot ot

LA

_|%n _9ar SD dx’

—% /w(Gf(x’,t).qbl (x',0) — 05 (x", t).¢2(x",0))dx’ >0, forall ¢y, ¢, € (L2 (w))?
In the particular case of ¢; = ¢ = +¢, we obtain

[ (61,0 ~ 3¢, )9, 0)dx’ = 0,¥ ¢ € (L2 ()2

which gives Formulas (41)—(42). For the proof of (43), we follow the same techniques as in
the fluids problem (as in [1]). O

1 %12
Theorem 7. If the components & 353 and & 353 are independent at the variable z for all o, p = 1,2,
then the initial problem converges toward the following weak form:

/w (/Oh [Fi(x,z,t) + B (x, —z,t)|dz — h[F (X, I, t) + B (¥, —h,t)]).th(x’)dx’
- /w (h [Gr(x ) + Ga(', =h, 1)] — /Oh (G1(x,2,t) + Go (', 2, t)]dz+> V(2 )dx’
2/(/}1*1 (thdz+/O*2x)u2(x Zt) )Vl/;( ) =0,

forall p(x') € HY(w), (44)

where

qur (2, 1)
F(x,zt) = / / B(x,0,)d0d., Gy(¥,zt) —51/ / ( ui (e, )dedg

, 8u2 X', t)
B(x,zt) = / / t2(x,6,)d6d7,  Ga(x',zt) _52/ / 46d7

Proof. By integrating twice the first equation of (38) over [0, z] and the second between z

* 7!
and 0, and taking into account €343, | = 1,2 depending only on x’, we infer

1*/1 1*11

= Fl(x’,z, i’), (45)

= FK(¥,z,t). (46)
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Now, for t € [0, T}, by setting z = h(x’)in (45) and z = —h(x") in (46),and as a5 (x', h(x'), t) =
a5 (x', —h(x'),t) = 0, we find

%1

SE G0 + SO0 G M) = B, @)
%2
15 (x’)qE(x’,t)—%h();(x',t)—|—G2(x’,—h(x’),t) = B, —h(x),).  (48)

Using (41), we have

1 ot * 2

2<5 (x")gi(x',t) + & (x')ﬁﬁ(x'rf)) = —Gi(x,h(x'),t) = Go(x', —h(x'),t) +
F(x',h(x'),t) + B (x', —h(x'), t) (49)

Now, we integrate (45) between 0 and (x") and (46) between —h(x") and 0, we obtain

%1 h(x") 1\ %1 2
) [ a2z = D) &7 gt by + 0D g
2 0 2 4

h(x") , h(x’)

n /0 Gy, 2, t)dz + /0 2,t)dz, (50)
1x7 o h(x') =2, W (x') .
55 (x’)/h( ) 05 (x',z,t)dz = >5 (x")g5 (2", 1) — EL )Gz(x’,t)
+/ xztdz+/ S (¥, 2, £)dz, 51)

From (50)—(51) and (49), we derive relation (44), which was needed. [

Theorem 8. Suppose that the assumptions of the previous theorem hold; then the solution
u* = (u}, u}) of the limit problems (37)~(39) is unique in L*>(0, T, H;) N L®(0, T, Hz).

Proof. Suppose that for t € [0,T], problems (37)—(39) have two different solutions:

0
u* = (uj,uj) and ¢* = (¢7,¢3). Taking v* = ( g;l ag?) in (37) and then v* =

Jdu 5
( E)tl , atz in the same inequality and summing the two new forms, we deduce for

Ty =uj —¢fand Tr = uj — ¢35 :
52/018 az(at ()) oz Tldx—F Z/ ( ())’aZTde
z . our a(P dux a(P
5 la \ _ & o o I <
+MZ_3151/QI [w( 5 > gm( 5 >H TRl ]dx_O. (52)
Now, using the assumption that §; is monotonous, we obtain

Z/ﬂ *1a< ())aa dx+2/ *28( (t))-aasz(t)dXSO (53)

Since T1(0) = T»(0) = 0, we integrate (53) between 0 and t. We find

2 /19 9 Z /%9 9
Z<5 ng ale(t)> Z<5 a*Tz aZTz(t)>Q <0 (54)
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i
We must now check the ellipticity of the matrix’s £ (hypothesis (Hz)). Let 77 = (1) ,,—1 , € R%.
We return, now, to hypotheses (2) and (Hz). By choosing symmetric tensors, e = (e,p) is given

0 0 /A1
bye=| 0 0 1#; |,and we will obtain
m om0
Elmeneii = 2 (eps) (eas) + 2E3333(033) (ea3) + 2E8303(ea3) (€33) + Exa (e33) (e33)
)
5“5%%, forw,B,1=1,2.

Consequently, as |e|* = 2|5|?, we obtain

oy
Eny> 2mgl|17|2, foralll = 1,2, 7 = (n1,12) € R~

Hence, inequality (54) becomes

2 2

3Tz(’v‘)

d
7’]1‘1 (t) Jz

2
I’l’lgl oz

+ 21’?152
0,0

<0.
0,0

As T1(0) = T2(0) =0, and mg1, mg> > 0, we have

Using Poincaré’s inequality, we obtain

0

2
L0

O,Ql O,Qz

(T2 (8), T2 T2 0,751,y = I1(T1(8), To () 70,7281,y = O-

where we give (uf,u3) = (¢7,¢3) in L?(0, T; H;) N L*®(0, T, H,), which concludes the
uniqueness of problems (37)—(39). O

6. Conclusions

The subject of this article falls within the framework of the study of a transmission
problem with friction law and increasing continuous terms in a thin layer. To obtain the
desired goal, and after the variational formulation of each problem using the change in
scale and new unknowns to conduct the study on a domain does not depend on ¢. Then,
we demonstrate different estimates of the displacement and the source term independently
of e. Finally, by passing to the limit, we obtain the limit problem and the generalized weak
equation of the problem considered.
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