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Abstract: In this article, the problem of solving a strongly monotone variational inequality problem
over the solution set of a monotone inclusion problem in the setting of real Hilbert spaces is considered.
To solve this problem, two methods, which are improvements and modifications of the Tseng splitting
method, and projection and contraction methods, are presented. These methods are equipped
with inertial terms to improve their speed of convergence. The strong convergence results of the
suggested methods are proved under some standard assumptions on the control parameters. Also,
strong convergence results are achieved without prior knowledge of the operator norm. Finally,
the main results of this research are applied to solve bilevel variational inequality problems, convex
minimization problems, and image recovery problems. Some numerical experiments to show the
efficiency of our methods are conducted.
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1. Introduction

Let K be a nonempty, closed, and convex subset of a real Hilbert space H with inner
product 〈·, ·〉 and induced norm ‖ · ‖. Let F : K → H be an operator. The classical
variational inequality problem (VIP) is derived as follows: Find p? ∈ K, such that

〈Fp?, q− p?〉 ≥ 0, ∀q ∈ K. (1)

We denote by V(K,F) the solution set of the VIP (1). Problem (1) has a wide range
of applications; several methods for solving this problem have been developed by many
researchers (see [1–3] and the references in them).

On the other hand, the monotone inclusion problem (MIP) is formulated as follows:
Find p? ∈ H, such that

0 ∈ (D + E)p?, (2)

where H is a real Hilbert space, E : H → H is a single-valued monotone operator, and
D : H → 2H is a maximal monotone operator. We denote by (D + E)−1(0) the solution
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set of the MIP (2); it is referred to as the set of zero points of D + E. Several optimization
problems can be reformulated into the MIP (2). Some of these problems include convex
minimization problems, equilibrium problems, image/signal processing problems, DC
programming problems, split feasibility problems, and variational inequality problems;
see [4–6]. The numerous applications of this problem have attracted the attention of a large
number of researchers in the last few years, and many methods for solving the problem
have also been developed; see [7–9]. One of the first methods for solving this problem is the
forward–backward algorithm (FBA), which is defined by sequence {pk} as follows:

pk+1 = (I + λkE)−1(I − λkD)pk, (3)

where λk > 0 is the step size, and (I − λkD) and (I + λkE)−1 are denoted as forward
and backward operators (also referred to as resolvent operators), respectively. The FBA
for solving the MIP was independently studied by Lion and Mercier [6], and Passty [10].
In recent years, the convergence analysis and modifications of this method have been
deeply exploited by many authors; see [4,11,12] and the references in them. We should note
that the weak convergence result of method (3) requires the operator (D) to be strongly
monotone; that is a strong assumption. In order to weaken this restriction, several methods
have been developed by a large number of researchers; see [6,11,13] and the reference
therein. One of the first methods considered to weaken this assumption was introduced
by Tseng [13]. This method is called the Tseng splitting algorithm; it is also known as the
forward–backward–forward method. Precisely, this method is defined as follows:

p1 ∈ H,
qk = (I + λkE)−1(I − λkD)pk,
pk+1 = qk + λk(Dpk − Dqk),

(4)

where {λk} is the step size, which can be updated automatically by the Armijo-type line-
search technique. The author proves the weak convergence result of method (4) when
operator D is Lipschitz continuous and monotone, and operator E is a maximal monotone
operator. In [14], Zhang and Wang merge the FBA (3) and the projection and contraction
method to obtain an iterative method that also surmounts the limitations of the FBA.
Precisely, this method is defined as follows:

p1 ∈ H,
qk = (I + λkE)−1(I − λkD)pk,
pk+1 = pk − γδkmk,

(5)

where mk = pk − qk − λk(Dpk − Dqk), δk =
〈pk−qk ,mk〉
‖mk‖2 , γ ∈ (0, 2); {λk} is a control sequence,

operator D is monotone–Lipschitz continuous, and E denotes the maximal monotone operator.
It is important to note that algorithms (4) and (5) only converge weakly in infinite

dimensional spaces. However, in machine learning and CT reconstruction, strong conver-
gence is more desirable in infinite dimensional spaces [12]. Therefore, it is necessary to
modify (3), such that it can achieve strong convergence in real Hilbert spaces. In the last two
decades, so many modifications of the forward–backward method have been constructed to
obtain strong convergence results in real Hilbert spaces; see [11,12,15,16] and the references
in them.

In recent years, the construction of inertial-based algorithms has attracted massive
interest from researchers. The idea of including inertial terms in iterative methods for
solving optimization problems was initiated by Polyak [17] and it has been confirmed by
numerous authors that the inclusion of an inertial term in a method acts as a boost to the
convergence speed of the method. A common feature of the inertial-type algorithm is that
the next iteration depends on the combination of two previous iterates; for more details,
see [3,18,19]. Many inertial-type algorithms have been studied and numerical tests have
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demonstrated that the inertial effects on these methods greatly improve their performances;
see [1,3,20]. Recently, Lorenz and Pock [17] introduced and studied the following inertial
FBA to solve the MIP (2): {

wk = pk + θk(pk − pk−1),
qk = (I + λkE)−1(I − λkD)pk.

(6)

Note that method (6) only convergences weakly in real Hilbert spaces; numerical tests
by the authors proved that their method outperforms several existing methods without
inertial terms.

Several mathematical problems, such as variational inequality problems, equilibrium
problems, split feasibility problems, and split minimization problems, are all special MIP
cases. These problems have been applied to solve diverse real-world problems, such as
modeling inverse problems arising from phase retrieval, modeling intensity-modulated
radiation therapy planning, sensor networks in computerized and data compression,
optimal control problems, and image/signal processing problems [21–23].

The bilevel programming problem is a constrained optimization problem in which
the constrained set is a solution set of another optimization problem. This problem is
enriched with many applications in modeling Stackelberg games, the convex feasibility
problem, determination in Wardrop equilibria for network flow, domain decomposition
methods for PDEs, optimal control problems, and image/signal processing problems [23].
When the first-level problem is a VIP and the second-level problem is a fixed point set of
a mapping, then the bilevel problem is known as the hierarchical variational inequality
problem. In [24–26], Yamada introduced the following method, called the hybrid steepest-
descent iterative method, to solve the hierarchical VIP:

pk+1 = (I − αk$F)S pk, (7)

where F is a strongly monotone–Lipschitz continuous operator and S is a nonexpan-
sive mapping.

In this paper, we consider the problem of solving a VIP over the solution set of the
MIP in a real Hilbert space. This problem is formulated as follows:

Find p? ∈ (D + E)−1(0) such that 〈Fp?, q− p?〉 ≥ 0, ∀q ∈ (D + E)−1(0), (8)

where F is a strongly monotone–Lipschitz continuous operator, D is a monotone–Lipschitz
continuous operator, and E is a maximal monotone operator.

Inspired by the inertial technique, the Tseng splitting algorithm, projection, and con-
traction method, and hybrid steepest decent method, we introduce two efficient iterative
algorithms to solve problem (8). We prove the strong convergence results of the suggested
method under some standard assumptions on the control parameters. Also, the strong con-
vergence results are achieved without prior knowledge of the operator norm. Instead, the
stepsizes are self-adaptively updated. Furthermore, we apply our main results to solve the
bilevel variational inequality problem, convex minimization problem, and image recovery
problem. We conduct numerical experiments to show the practicability, applicability, and
efficiency of our methods. Our results improve, generalize, and unify the results presented
in [4,12,13,27], as well as several others in the literature.

This article is organized as follows: In Section 2, we present some established defini-
tions and lemmas that will be useful in deriving our main results. In Section 3, we present
the proposed method and establish its convergence analysis. In Section 4, we show the
applications of our main results to real-world problems. In Section 5, several numerical tests
are carried out in finite and infinite dimensional spaces to demonstrate the computational
efficiency of the proposed methods. Lastly, in Section 6, a summary of the obtained results
is given.
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2. Preliminaries

LetK be a nonempty, closed, and convex subset of a real Hilbert space H. We represent
the weak and strong convergence of {pk} to p by pk ⇀ p and pk → p, respectively. For every
point p ∈ H, the unique nearest point, which is denoted by PKp, exists in K, such that
‖p−PKp‖ ≤ ‖p− q‖, ∀q ∈ K. The mapping PK is called the metric projection of H onto
K and it is known to be nonexpansive.

Lemma 1 ([28]). Let H be a real Hilbert space and K a nonempty closed convex subset of H.
Suppose p ∈ H and q ∈ K. Then q = PKp ⇐⇒ 〈p− q, q− w〉 ≥ 0, ∀w ∈ K.

Lemma 2 ([28]). Let H be a real Hilbert space. Then for every p, q ∈ H and σ ∈ R, we have

(i) ‖p + q‖2 ≤ ‖p‖2 + 2〈q, p + q〉;
(ii) ‖p + q‖2 = ‖p‖2 + 2〈p, q〉+ ‖q‖2;
(iii) ‖σu + (1− σ)v‖2 = σ‖p‖2 + (1− σ)‖q‖2 − σ(1− σ)‖p− q‖2.

Lemma 3 ([29]). Let {ak} be a sequence of non-negative real numbers, such that

ak+1 ≤ (1− νk)ak + νkbk, ∀ k ≥ 1,

where {νk} ⊂ (0, 1) with ∑∞
k=0 νk = ∞. If lim sup

k→∞
bk ≤ 0 for every subsequence {akj

} of {ak},

the following inequality holds:
lim inf

j→∞
(akj+1

− akj
) ≥ 0,

then lim
k→∞

ak = 0.

Definition 1. Let H be a real Hilbert space and F : H→ H be a mapping. Then, F is called

(1) L-Lipschitz continuous, if L > 0 exists, such that

‖Fp− Fq‖ ≤ L‖p− q‖, ∀p, q ∈ H.

If L ∈ [0, 1), then F is a contraction.
(2) η-strongly monotone, if there exists a constant η > 0, such that

〈p− q,Fp− Fq〉 ≥ η‖p− q‖2, ∀p, q ∈ H.

(3) η-inverse strongly monotone (η-co-coercive), if there exists a constant η > 0, such that

〈p− q,Fp− Fq〉 ≥ η‖Fp− Fq‖2, ∀p, q ∈ H.

(4) Monotone, if
〈Fp− Fq, p− q〉 ≥ 0, ∀p, q ∈ H.

Definition 2. Let E : H→ 2H be a multi-valued operator. Then

(a) The graph of E is defined by

Graph(E) = {(p, q) ∈ H×H : p ∈ H, q ∈ E(p)}.

(b) Operator E is said to be monotone if

〈p− q, y− z〉 ≥ 0, ∀y, z ∈ H, p ∈ E(y), q ∈ E(z).

(c) Operator E is said to be maximal monotone if E is monotone and its graph is not a proper
subset of the graph of any of the monotone operators.
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(d) For all p ∈ H, the resolvent of E is a single-valued mapping JE
λ : H→ H defined by

JE
λ (p) = (I + λE)−1(p),

where λ > 0 and I is an identity operator on H.

Lemma 4 ([30]). Let E : H → 2H be a maximal monotone mapping and D : H → H be a
monotone and L-Lipschitz continuous operator. Then, the mapping D + E is a maximal mono-
tone mapping.

Lemma 5 ([31]). Suppose that $ > 0, α ∈ (0, 1), and F : H → H is η-strongly monotone and
L1 continuous, such that 0 < η ≤ L1. Then for any nonexpansive mapping S : H → H, we
can associate a mapping S$ : H → H defined by S$ p = (I − α$F)S pk, ∀p ∈ H. Then, S$ is a
contraction provided $ < 2η

L2
1
; that is,

‖S$ p− S$q‖ ≤ (1− αχ)‖p− q‖,

where χ = 1−
√

1− $(2η − $L2
1) ∈ (0, 1).

3. Main Results

In this section, we construct two methods for approximating the solution of the
variational inequality problem over the solution set of the monotone inclusion problem.
We establish the strong convergence results of the methods in the settings of real Hilbert
spaces. The following assumptions will be useful in achieving our main results:

Assumption 1. (A1) Operator D : H → H is monotone and L2-Lipschitz continuous, and
E : H→ 2H is a maximal monotone operator.

(A2) The solution set denoted by Ω = {p? ∈ (D + E)−1(0) : 〈Fp?, q− p?〉 ≥ 0, ∀q ∈ (D +

E)−1(0)} 6= ∅.
(A3) F : H→ H is η-strongly monotone and L1-Lipschitz continuous.
(A4) {αk} ⊂ (0, 1), such that limk→∞ αk = 0 and ∑∞

k=1 αk = ∞. The positive sequence {εk}
satisfies limk→∞

εk
αk

= 0.
(A5) Let 0 < s < s′ < 1, {tk} ⊂ [0, ∞) with limk→∞ tk = 0, {sk} ⊂ [0, ∞) with limk→∞ sk = 0,

and qk ⊂ [0, ∞) with ∑∞
k=0 qk < ∞.

Remark 1. From (9) and assumption (A4), it is not hard to see that

lim
k→∞

φk‖pk − pk−1‖ = 0 and lim
k→∞

φk
αk
‖pk − uk−1‖ = 0.

Remark 2. Obviously, the step size (16) properly contains some well-known step sizes considered
in [12,18,32] and many others.

Lemma 6. Assume that Assumption 1 holds and {pk} is the sequence generated by Algorithm 1,
then {λk} defined by (16) is well-defined, and limk→∞ λk = λ > 0.

Proof. Since D is L2-Lipschitz continuous, such that L1 > 0, sk ≥ 0, then by (16), if
Dwk 6= Dvk for all k ≥ 1, we obtain

(sk + s)‖wk − vk‖
‖Dwk − Dvk‖

≥ (sk + s)‖wk − vk‖
L2‖wk − vk‖

≥ µ

L2
.

The remaining part of the proof of this lemma is similar to that in [33], so we omit
it here.
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Algorithm 1 A modified accelerated projection and contraction method.

Initialization: Choose φ > 0, λ1 > 0, 0 < c1 < c′1 < 2 and $ ∈
(

0, 2η

L2
1

)
. Let p0, p1 ∈ H

and set k = 1.
Iterative steps: Calculate the next iteration point pk+1 as follows:
Step 1: Choose φk, such that φk ∈ [0, φ̄k], where

φ̄k =

{
min

{
φ, εk
‖pk−pk−1‖

}
, if pk 6= pk−1,

φ, otherwise.
(9)

Step 2: Compute

wk = pk + φk(pk − pk−1), (10)

vk = (I + λkE)−1(I − λkD)wk. (11)

Step 3: Compute

zk = wm −mkrk, (12)

where

rk = wk − vk − λk(Dwk − Dvk) (13)

and

mk =

{
(c1 + tk)

〈wk−vk ,rk〉
‖rk‖2 , if rk 6= 0,

0, otherwise.
(14)

Step 4: Compute

pk+1 = (I − αk$F)zk, ∀k ≥ 1. (15)

Update

λk+1 =

{
min

{
(sk+s)‖wk−vk‖
‖Dwk−Dvk‖

, λk + qk

}
, if Dwk 6= Dvk,

λk + qk, otherwise.
(16)

Put k := k + 1 and return to Step 1.

Lemma 7. If assumption (A5) is performed, then a positive integer K exists, such that

c1 + tk ∈ (0, 2) and
λk(sk + s)

λk+1
∈ (0, 1), ∀k ≥ K.

Proof. Since 0 < c1 < c′1 < 2 and limk→∞ tk = 0, then a positive integer K1 exists, such that

0 < c1 + tk ≤ c′1 < 2, ∀k ≥ K1.

For 0 < s < s′ ≤ 1, limk→∞ sk = 0 and limk→∞ λk = λ, we have

lim
k→∞

(
1− λk(sk + s)

λk+1

)
= 1− s > 1− s′ > 0,

and this means that a positive integer K2 exists, such that

1− λk(sk + s)
λk+1

> 0, ∀k ≥ K2.
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Setting K = max{K1, K2}, which means that

c1 + tk ∈ (0, 2) and
λk(sk + s)

λk+1
∈ (0, 1), ∀k ≥ K.

Lemma 8. Suppose that Assumption 1 holds and {zk} is the sequence generated from
Algorithm 1. Then, for p? ∈ Ω, the following inequality holds:

‖zk − p?‖2 ≤ ‖wk − p?‖2 +

(
1− 2

c1 + tk

)
‖zk − wk‖2, ∀k ≥ 1. (17)

Proof. Since vk = (I + λkE)−1(I − λkD)wk, we have that wk − λkDwk − vk ∈ λkEvk. Since
p? ∈ (D + E)−1(0), it follows that

−λkDp? ∈ λkEp?.

Now, due to the maximal monotonicity of E, we have that

〈wk − λkDwk − vk + λkDp?, vk − p?〉 ≥ 0.

Thus,

〈wk − vk − λk(Dwk − Dp? + Dvk − Dvk), vk − p?〉 ≥ 0.

From (13), it implies that

〈rk − λk(Dvk − Dp?), vk − p?〉 ≥ 0. (18)

By the monotonicity of D, it follows that

〈rk, vk − p?〉 ≥ λk〈Dvk − Dp?, vk − p?〉 ≥ 0. (19)

By (19), it follows that

〈wk − p?, rk〉 = 〈wk − vk, rk〉+ 〈vk − p?, rk〉
≥ 〈wk − vk, rk〉. (20)

Since zk = wk −mkrk, we have that ‖mk · rk‖2 = ‖zk − wk‖2. From (14), if rk 6= 0, we
have mk‖rk‖2 = (c1 + tk)〈wk − vk, rk〉. From Lemma 2 and (20), we obtain

‖zk − p?‖2 = ‖wk −mkrk − p?‖2

= ‖wk − p?‖2 + m2
k‖rk‖2 − 2mk〈wk − p?, rk〉

≤ ‖wk − p?‖2 + m2
k‖rk‖2 − 2mk〈wk − vk, rk〉

= ‖wk − p?‖2 + m2
k‖rk‖2 − 2

c1 + tk
mk ·mk‖rk‖2

= ‖wk − p?‖2 +

(
1− 2

c1 + tk

)
‖zk − wk‖2. (21)

Lemma 9. Let {wk} and {vk} be sequences generated by Algorithm 1. Let {wkj
} and {vkj

} be
subsequences of {wk} and {vk}, respectively. If wkj

⇀ x∗ ∈ H and limj→∞ ‖wkj
− vkj

‖ = 0,
then x∗ ∈ (D + E)−1(0).
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Proof. The proof is similar to that of Lemma 7 in [5]. Thus, we omit it here.

Lemma 10. Let {pk} be the sequence generated by Algorithm 1. Then, {pk} is bounded.

Proof. Let p? ∈ Ω. From (10) and Assumption 1 (A4), we have φk‖pk − pk−1‖ ≤ εk,
∀k ∈ N, and this implies that

φk
αk
‖pk − pk−1‖ ≤

εk
αk
→ 0, as k→ ∞. (22)

It implies from (22) that there exists K3 > 0, such that

φk
αk
‖pk − pk−1‖ ≤ K3, ∀k ∈ N. (23)

Using (10) and (23), we have

‖wk − p?‖ = ‖uk + φk(pk − pk−1)− p?‖
≤ ‖pk − p?‖+ φk‖pk − pk−1‖

≤ ‖pk − p?‖+ αk
φk
αk
‖pk − pk−1‖

≤ ‖pk − p?‖+ αkK3. (24)

By Lemma 7, we know that a positive integer K exists, such that 0 < c1 + tk < 2.
Therefore, from (21), we have

‖zk − p?‖ ≤ ‖wk − p?‖. (25)

Combining (24) and (25), we have

‖zk − p?‖ ≤ ‖wk − p?‖ ≤ ‖pk − p?‖+ αkK3. (26)

By Lemma 5, (15) and (26), we obtain

‖pk+1 − p?‖ = ‖(I − αk$F)zk − (I − αk$F)p? − αk$Fp?‖
≤ ‖(I − αk$F)zk − (I − αk$F)p?‖+ αk$‖Fp?‖
≤ (1− αkχ)‖zk − p?‖+ αk$‖Fp?‖

≤ (1− αkχ)‖pk − p?‖+ αkχ · K3

χ
+ αkχ · $

χ
‖Fp?‖

= (1− αkχ)‖pk − p?‖+ αkχ

[
K3 + $‖Fp?‖

χ

]
≤ max

{
‖pk − p?‖, K3 + $‖Fp?‖

χ

}
...

≤ max
{
‖p1 − p?‖, K3 + $‖Fp?‖

χ

}
, (27)

where χ = 1−
√

1− $(2η − $L2
1) ∈ (0, 1).

This implies that {pk} is bounded. Consequently, we have that {wk}, {vk}, {zk} and
Fzk are also bounded sequences.

Theorem 1. Suppose that Assumption 1 holds and {pk} is the sequence defined by Algorithm 1.
Then, {pk} converges strongly to the unique solution of problem (8).
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Proof. The proof of the theorem will be divided into three steps.
Claim 1:(

2
c1 + tk

− 1
)
‖zk − wk‖2 ≤ ‖pk − p?‖2 − ‖pk+1 − p?‖2 + αkK6, ∀k ≥ 1, for some K6 > 0. (28)

Indeed, by (15), Lemma 2, and Lemma 5, we have

‖pk+1 − p?‖2 = ‖(I − αk$F)zk − (I − αk$F)p? − αk$Fp?‖2

≤ ‖(I − αk$F)zk − (I − αk$F)p?‖2 − 2αk$〈Fp?, pk+1 − p?〉
≤ (1− αkχ)2‖zk − p?‖2 + 2αk$〈Fp?, p? − pk+1〉
≤ ‖zk − p?‖2 + αkK4, (29)

for some K4 > 0. By (24), we have

‖wk − p?‖2 ≤ (‖pk − p?‖+ αkK3)
2

= ‖pk − p?‖2 + αk(2K3‖pk − p?‖+ αkK2
3)

= ‖pk − p?‖2 + αkK5, (30)

for some K5 > 0. Now, using (21), (29), and (30), we have

‖pk+1 − p?‖2 ≤ ‖wk − p?‖2 +

(
1− 2

c1 + tk

)
‖zk − wk‖2 + αkK4

≤ ‖pk − p?‖2 + αkK5 +

(
1− 2

c1 + tk

)
‖zk − wk‖2 + αkK4. (31)

From (31), it implies that(
2

c1 + tk
− 1
)
‖zk − wk‖2 ≤ ‖pk − p?‖2 − ‖pk+1 − p?‖2 + αkK6, ∀k ≥ 1,

for some K6 = K4 + K5 > 0.
Claim 2:

‖pk+1 − p?‖2 ≤ (1− αkχ)‖pk − p?‖2 + αkχ

[
2$

χ
〈Fp?, p? − pk+1〉+

3K∗φk
αkχ

‖pk − pk−1

]
, ∀k ≥ 1. (32)

for some K∗ > 0.
Indeed, from (10), we have

‖wk − p?‖2 = ‖pk + φk(pk − pk−1)− p?‖2

≤ ‖pk − p?‖2 + 2φk‖pk − p?‖pk − pk−1‖+ φ2
k‖pk − pk−1‖2

≤ ‖pk − p?‖2 + 3K∗φk‖pk − pk−1‖, (33)

where K∗ = sup
k∈N
{‖pk − p?‖, φ‖pk − pk−1‖} > 0. Now, using (15), Lemma 2, Lemma 5, (25),

and (33), we have

‖pk+1 − p?‖2 = ‖(I − αk$F)zk − (I − αk$F)p? − αk$Fp?‖2

≤ ‖(I − αk$F)zk − (I − αk$F)p?‖2 − 2αk$〈Fp?, pk+1 − p?〉
≤ (1− αkχ)2‖zk − p?‖2 + 2αk$〈Fp?, p? − pk+1〉
≤ (1− αkχ)‖zk − p?‖2 + 2αk$〈Fp?, p? − pk+1〉
≤ (1− αkχ)‖wk − p?‖2 + 2αk$〈Fp?, p? − pk+1〉
≤ (1− αkχ)‖pk − p?‖2 + 3K∗φk‖pk − pk−1‖+ 2αk$〈Fp?, p? − pk+1〉
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= (1− αkχ)‖pk − p?‖2 + αkχ

[
2$

χ
〈Fp?, p? − pk+1〉+

3K∗φk
αkχ

‖pk − pk−1‖
]

, ∀k ≥ 1. (34)

Claim 3: sequence {‖pk − p?‖2} converges to zero. For this, recalling Lemma 3 and
Remark 1, it suffices to show that lim supk→∞〈Fp?, p? − pk+1〉 ≤ 0 for every subsequence
{‖pkj

− p?‖} of {‖pk − p?‖} satisfying

lim inf
j→∞

(‖pkj+1 − p ? ‖ − ‖pkj
− p?‖) ≥ 0. (35)

Now, we assume that ‖pkj
− p?‖2 is a subsequence of ‖pk − p?‖2, such that (35)

holds. Then

lim inf
j→∞

(‖pkj+1 − p?‖2 − ‖pkj
− p?‖2)

= lim inf
j→∞

[(‖pkj+1 − p?‖ − ‖pkj
− p?‖)(‖pkj+1 − p?‖+ ‖pkj

− p?‖)] ≥ 0.

Owing Claim 1, limj→∞ αkj
= 0 and limj→∞ tkj

= 0, we have

lim sup
j→∞

(
2

c1 + tkj

− 1

)
‖zkj
− wkj

‖2 ≤ lim sup
j→∞

[‖pkj
− p?‖2 − ‖pkj+1 − p?‖2 + αkj

K6]

= lim sup
j→∞

[‖pkj
− p?‖2 − ‖pkj+1 − p?‖2] + lim sup

j→∞
αkj

K6

= − lim inf
j→∞

[‖pkj
− p?‖2 − ‖pkj+1 − p?‖2] ≤ 0.

Consequently, we have

lim
j→∞
‖zk − wk‖ = 0. (36)

By (15), we have

‖pkj+1 − zkj
‖ = ‖(I − αkj

$F)zkj
‖ = αkj

$‖Fzkj
‖ → 0 as j→ ∞. (37)

Also, by (10) and Remark 1

‖wkj
− pkj

‖ = αkj

φk
αkj

‖pk − pk−1‖ → 0 as j→ ∞. (38)

‖pkj+1 − pkj
‖ ≤ ‖pkj+1 − zkj

‖+ ‖zkj
− wkj

‖+ ‖wkj
− pkj

‖ → 0 as j→ ∞. (39)

Using (13) and (16), we have

〈wkj
− vkj

, rkj
〉 = 〈wkj

− vkj
, wkj
− vkj

− λkj
(Dwkj

− Dvkj
)〉

= ‖wkj
− vkj

‖2 − 〈wkj
− vkj

, λkj
(Dwkj

− Dvkj
)〉

≥ ‖wkj
− vkj

‖2 − λkj
‖wkj

− vkj
‖‖Dwkj

− Dvkj
‖

≥
(

1−
λkj

(skj
+ s)

λkj+1

)
‖wkj

− vkj
‖2. (40)
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By Lemma 7, a positive integer K exists, such that 1−
λkj

(skj
+s)

λkj+1
> 0, for all k > K. Now,

if rkj
= 0, then following the Lipschitz continuity of D, (12)–(14) and (40), we have that

‖wkj
− vkj

‖2 ≤ 1(
1−

λkj
(skj

+s)

λkj+1

) 〈wkj
− vkj

, rkj
〉

=
1

(1 + tkj
)

(
1−

λkj
(skj

+s)

λkj+1

)mk‖rkj
‖2

=
1

(1 + tkj
)

(
1−

λkj
(skj

+s)

λkj+1

)mk‖rkj
‖‖wkj

− vkj
− λkj

(Dwkj
− Dvkj

)‖

≤ 1

(1 + tkj
)

(
1−

λkj
(skj

+s)

λkj+1

)mk‖rkj
‖(‖wkj

− vkj
‖+ λkj

‖Dwkj
− Dvkj

‖)

≤ 1

(1 + tkj
)

(
1−

λkj
(skj

+s)

λkj+1

)mk‖rkj
‖(‖wkj

− vkj
‖+ λkj

L2‖wkj
− vkj

‖)

≤
(1 + λkj

L2)

(1 + tkj
)

(
1−

λkj
(skj

+s)

λkj+1

)mk‖rkj
‖wkj

− vkj
‖

≤
(1 + λkj

L2)

(1 + tkj
)

(
1−

λkj
(skj

+s)

λkj+1

)‖wkj
− zkj

‖‖wkj
− vkj

‖. (41)

This implies that

‖wkj
− vkj

‖ ≤
(1 + λkj

L2)

(1 + tkj
)

(
1−

λkj
(skj

+s)

λkj+1

)‖wkj
− zkj

‖. (42)

By Lemma 6, we have that limj→∞ λkj
= λ, and this implies that

λkj
λkj+1

= 1. Further-

more, by assumption (A4), we have that limj→∞ tkj
= 0 = limj→∞ skj

and 0 < s < s′1 < 1.
Due to (36) and (42), we have that

lim
j→∞
‖wkj

− vkj
‖ = 0. (43)

Next, if rkj
= 0, then due to (14), we know that limj→∞ ‖wkj

− vkj
‖ = 0 also holds.

Now, by the boundedness of {pkj
}, then there exists a subsequence {pkji

} of {pkj
}, which

is weakly convergent to some q ∈ H; furthermore,

lim sup
j→∞

〈Fp?, p? − pkj
〉 = lim

j→∞
〈Fp?, p? − pkji

〉 = 〈Fp?, p? − q〉. (44)

From (38), we have that wkj
⇀ q as j→ ∞. This implies from Lemma 9 and (43) that

q ∈ (D + E)−1(0). By (44) and the assumption that p? is the unique solution to problem (8),
we have

lim sup
j→∞

〈Fp?, p? − pkj
〉 = 〈Fp?, p? − q〉 ≤ 0. (45)
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The combination of (39) and (45) yields

lim sup
j→∞

〈Fp?, p? − pkj+1〉 = lim sup
j→∞

〈Fp?, p? − pkj
〉 = 〈Fp?, p? − q〉 ≤ 0. (46)

Using Remark 1 and (46), we obtain

lim sup
j→∞

[
2$

χ
〈Fp?, p? − pk+1〉+

3K∗φkj

αkj
χ
‖pkj
− pkj−1‖

]
≤ 0. (47)

Thus, from Claim 2, assumption (A4), (47), and Lemma 3, it follows that ‖pk − p?‖ = 0,
as required.

Next, we present the second method in Algorithm 2.

Algorithm 2 A modified accelerated Tseng splitting method

Initialization: Choose φ > 0, λ1 > 0, $ ∈
(

0, 2η

L2
1

)
and {ϑk} ⊂ [a, b] ⊂ (0, 1]. Let

p0, p1 ∈ H and set k = 1.

Iterative Steps: Calculate the next iteration point pk+1 as follows:

Step 1: Choose φk, such that φk ∈ [0, φ̄k], where

φ̄k =

min
{

k−1
k+φ−1 , εk

‖pk−pk−1‖

}
, if pk 6= pk−1,

k−1
k+φ−1 , otherwise.

(48)

Step 2: Set

wk = pk + φk(pk − pk−1), (49)

and compute

vk = (I + λkE)−1(I − λkD)wk, (50)

Step 3: Compute

zk = (1− ϑk)wk + ϑk(vk + λk(Dwk − Dvk)). (51)

Step 4: Compute

pk+1 = (I − αk$F)zk, ∀k ≥ 1. (52)

Update

λk+1 =

{
min

{
(sk+s)‖wk−vk‖
‖Dwk−Dvk‖

, λk + qk

}
, if Dwk 6= Dvk,

λk + qk, otherwise.
(53)

Put k := k + 1 and return to Step 1.

Remark 3. From (48), and Assumption 1 (A4), we observe that

lim
k→∞

φk‖pk − pk−1‖ = 0 and

lim
k→∞

φk
αk
‖pk − pk−1‖ = 0.



Mathematics 2023, 11, 4643 13 of 28

Lemma 11. If assumption (A5) is performed, then a positive integer K exists, such that

(sk + s)2λ2
k

λ2
k+1

∈ (0, 1), ∀k ≥ K.

Proof. The proof is similar to the proof of Lemma 7.

Lemma 12. Suppose Assumption 1 holds and {pk} is the sequence defined by Algorithm 2. Then,
for all p? ∈ Ω, we have the following inequality:

‖zk − p?‖2 ≤ (1− ϑk)‖wk − p?‖2 − ϑk

(
1−

(sk + s)2λ2
k

λ2
k+1

)
‖wk − vk‖2

−ϑk(1− ϑk)‖hk − wk‖2. (54)

Proof. From the definition of {λk}, it is obvious that

‖Dwk − Dvk‖ ≤
(sk + s)

λk+1
‖wk − vk‖, ∀ k ∈ N. (55)

Observe that (55) holds if Dwk = Dvk. If Dwk 6= Dvk, we have

λk+1 = min
{
(sk + s)‖wk − vk‖
‖Dwk − Dvk‖

, λk + qk

}
≤ (sk + s)‖wk − vk‖
‖Dwk − Dvk‖

,

this implies that ‖Dwk − Dvk‖ ≤
(sk+s)
λk+1
‖wk − vk‖. Thus, we have that (55) holds for

Dwk 6= Dvk and Dwk = Dvk. Now, let hk = vk + λk(Dwk − Dvk). Then, from Lemma 2
and (55), we have

‖hk − p?‖2 = ‖vk + λk(Dwk − Dvk)− q‖2

= ‖vk − p?‖2 + λ2
k‖Dwk − Dvk‖2 + 2λk〈vk − p?, Dwk − Dvk〉

= ‖vk + wk + wk − p?‖2 + λ2
k‖Dw?

p − Dv?p‖2 + 2λk〈vk − p?, Dwk − Dvk〉

= ‖vk − wk‖2 + ‖wk − p?‖2 + 2〈vk − wk, wk − p?〉
+λ2

k‖Dwk − Dvk‖2 + 2λk〈vk − p?, Dwk − Dvk〉
= ‖vk − wk‖2 + ‖wk − p?‖2 + λ2

k‖Dwk − Dvk‖2

+2〈vk − wk, vk − p?〉+ 2〈vk − wk, wk − vk〉+ 2λk〈vk − p?, Dwk − Dvk〉
= ‖vk − wk‖2 + ‖wk − p?‖2 + λ2

k‖Dwk − Dvk‖2

+2〈vk − wk, vk − p?〉 − 2〈vk − wk, vk − wk〉 − 2λk〈Dwk − Dvk, p? − vk〉
= ‖vk − wk‖2 + ‖wk − p?‖2 + λ2

k‖Dwk − Dvk‖2

+2〈vk − wk, vk − p?〉 − 2‖vk − wk‖2 − 2λk〈Dwk − Dvk, p? − vk〉
= ‖wk − p?‖2 − ‖vk − wk‖2 + λ2

k‖Dwk − Dvk‖2

−2〈wk − vk − λk(Dwk − Dvk), vk − p?〉

≤ ‖wk − p?‖2 −
(

1−
(sk + s)2λ2

k
λ2

k+1

)
‖wk − vk‖2

−2〈wk − vk − λk(Dwk − Dvk), vk − p?〉. (56)

Next, we show that

〈wk − vk − λk(Dwk − Dvk), vk − p?〉 ≥ 0. (57)
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From (50), we have that (I−λkD)wk ∈ (I +λmE)vk. Due to the maximal monotonicity
of D, we know that there exists gm ∈ Fvm, such that

(I − λkD)wk = vk + λkgm,

which means that

gk = λ−1
k (wk − vk − λkDwk). (58)

From the definition of p?, we have 0 ∈ (D + E)p?. Using the fact that Dvk + gk ∈
(D + E)gk and that (D + E) is a maximal monotone operator, we obtain

〈Dvk + gk, gk − p?〉 ≥ 0. (59)

Combining (58) and (59), we have

λ−1
k 〈wk − vk − λkDwk + λkDvk, vk − p?〉 ≥ 0,

this means that (57) holds. By (56) and (57), we have

‖hk − p?‖2 ≤ ‖wk − p?‖2 −
(

1−
(sk + s)2λ2

k
λ2

k+1

)
‖wk − vk‖2. (60)

Moreover, from (52), (60) and Lemma 2, we have

‖zk − p?‖ = ‖(1− ϑk)wk + ϑkhk − p?‖2

= ‖(1− ϑk)(wk − p?) + ϑk(hk − p?)‖2

= (1− ϑk)‖wk − p?‖2 + ϑk‖hk − p?‖2 − ϑk(1− ϑk)‖hk − wk‖2

≤ (1− ϑk)‖wk − p?‖2 + ϑk

[
‖wk − p?‖2 −

(
1−

(sk + s)2λ2
k

λ2
k+1

)
‖wk − vk‖2

]
−ϑm(1− ϑk)‖hk − wk‖2

= ‖wk − p?‖2 − ϑk

(
1−

(sk + s)2λ2
k

λ2
k+1

)
‖wk − vk‖2

−ϑk(1− ϑk)‖hk − wk‖2. (61)

Lemma 13. Let {wk} and {vk} be sequences generated by Algorithm 2. Let {wkj
} and {vkj

} be
subsequences of {wk} and {vk}, respectively. If wkj

⇀ x∗ ∈ H and limj→∞ ‖wkj
− vkj

‖ = 0,
then x∗ ∈ (D + E)−1(0).

Proof. The proof is similar to the proof of Lemma 9.

Lemma 14. Let {pk} be the sequence generated by Algorithm 2. Then, {pk} is bounded.

Proof. Now, due to the boundedness of {ϑk} and Lemma 11, there exists K ∈ N, such that

ϑk

(
1− (sm+s)2λ2

k
λ2

k+1

)
> 0, for all k ≥ K. This, together with (61), yields

‖zk − p?‖ ≤ ‖wk − p?‖.

The remaining part of the proof is similar to that of Lemma 10. Therefore, we omit it
here and this completes the proof of the Lemma.
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Theorem 2. Suppose that Assumption 1 holds and {pk} is the sequence defined by Algorithm 2.
Then, {pk} converges strongly to the unique solution of problem (8).

Proof. The proof of the theorem will be divided into three steps.
Claim (i):

ϑk

(
1−

(sk + s)2λ2
k

λ2
k+1

)
‖wk − vk‖2 − ϑk(1− ϑk)‖hk − wk‖2

≤ ‖pk − p?‖2 − ‖pk+1 − p?‖2 + αkK6, ∀k ≥ 1, for some K6 > 0. (62)

Indeed, using (29), (30) and (61), we have

‖pk+1 − p?‖2 ≤ ‖wk − p?‖2 − ϑk

(
1−

(sk + s)2λ2
k

λ2
k+1

)
‖wk − vk‖2 − ϑk(1− ϑk)‖hk − wk‖2 + αkK4

≤ ‖pk − p?‖2 + αkK5 − ϑk

(
1−

(sk + s)2λ2
k

λ2
k+1

)
‖wk − vk‖2

− ϑk(1− ϑk)‖hk − wk‖2 + αkK4. (63)

From (63), it implies that

ϑk

(
1−

(sk + s)2λ2
k

λ2
k+1

)
‖wk − vk‖2 − ϑk(1− ϑk)‖hk − wk‖2

≤ ‖pk − p?‖2 − ‖pk+1 − p?‖2 + αkK4, ∀k ≥ 1, for some K6 = K4 + K5 > 0.

Claim (ii):

‖pk+1 − p?‖2 ≤ (1− αkχ)‖pk − p?‖2 + αkχ

[
2$

χ
〈Fp?, p? − pk+1〉+

3K∗φk
αkχ

‖pk − pk−1

]
, ∀k ≥ 1. (64)

for some K∗ > 0.

The proof of Claim (ii) is similar to that of Claim 2 of Theorem 1. Therefore, we omit
it here.

Claim (iii): sequence {‖pk − p?‖2} converges to zero. For this, recalling Lemma 3 and
Remark 3, it suffices to show that lim supk→∞〈Fp?, p? − pk+1〉 ≤ 0 for every subsequence
{‖pkj

− p?‖} of {‖pk − p?‖}, satisfying

lim inf
j→∞

(‖pkj+1 − p ? ‖ − ‖pkj
− p?‖) ≥ 0. (65)

Now, we assume that ‖pkj
− p?‖2 is a subsequence of ‖pk − p?‖2, such that (65)

holds. Then

lim inf
j→∞

(‖pkj+1 − p?‖2 − ‖pkj
− p?‖2)

= lim inf
j→∞

[(‖pkj+1 − p?‖ − ‖pkj
− p?‖)(‖pkj+1 − p?‖+ ‖pkj

− p?‖)] ≥ 0.

Owing to Claim (i), limj→∞ αkj
= 0 and limj→∞ skj

= 0 and the boundedness of {ϑkj
},

we have

lim sup
j→∞

ϑkj

1−
(skj

+ s)2λ2
kj

λ2
kj+1

‖wkj
− vkj

‖2 − ϑkj
(1− ϑkj

)‖hkj
− wkj

‖2
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≤ lim sup
j→∞

[‖pkj
− p?‖2 − ‖pkj+1 − p?‖2 + αkj

K6]

= lim sup
j→∞

[‖pkj
− p?‖2 − ‖pkj+1 − p?‖2] + lim sup

j→∞
αkj

K6

= − lim inf
j→∞

[‖pkj
− p?‖2 − ‖pkj+1 − p?‖2] ≤ 0.

Consequently, we have

lim
j→∞
‖wkj

− vkj
‖ = 0 and lim

j→∞
‖hkj
− wkj

‖ = 0. (66)

Using (51), (66), and the boundedness of {ϑkj
}, we have

‖zkj
− wkj

‖ = ϑkj
‖hkj
− wkj

‖ → 0 as j→ ∞. (67)

Again, by (52), we have

‖pkj+1 − zkj
‖ = ‖(I − αkj

$F)zkj
‖ = αkj

$‖Fzkj
‖ → 0 as j→ ∞. (68)

Also, by (10) and Remark 1

‖wkj
− pkj

‖ = αkj

φk
αkj

‖pk − pk−1‖ → 0 as j→ ∞. (69)

‖pkj+1 − pkj
‖ ≤ ‖pkj+1 − zkj

‖+ ‖zk − wk‖+ ‖wkj
− pkj

‖ → 0 as j→ ∞. (70)

The remaining part of the proof is similar to Claim 3 of Theorem 1. Hence, we omit it
here and complete the proof of the theorem.

4. Applications

In this section, we consider the applications of our methods to the bilevel variational
inequality problem, convex minimization problem, and image recovery problem.

4.1. Application to the Bilevel Variational Inequality Problem

Let H be a real Hilbert space and K be a nonempty closed convex subset of H. Let
D,F : H → H be two single-valued operators. Then, the bilevel variational inequality
problem (BVIP) is formulated as follows:

find p? ∈ VI(K, D) such that 〈Fp?, q− p?〉 ≥ 0, ∀q ∈ VI(K, D), (71)

where VI(K, D) denotes the solution set of the variational inequality problem (VIP):

find p? ∈ K such that 〈Dp?, w− p?〉 ≥ 0, ∀w ∈ K. (72)

Assume that VI(K, D) 6= ∅, the VIP (72) is equivalent to the following inclusion problem:

find p? ∈ K such that 0 ∈ (D + E)p?, (73)

where E : H → 2H is the sub-differential of the indicator function and it is a maximal
monotone operator [34]. In this case, according to [35], the resolvent of E is the metric
projection PK; that is, (I + λkE)−1(p). Thus, the following corollaries follow immediately
from Theorem 1 and Theorem 2, respectively:

Corollary 1. Let H be a real Hilbert space and K a nonempty closed convex subset of H; let
D : H → H be a monotone and L-Lipschitz continuous operator, F : H → H be a strongly
monotone and L1 monotone operator, and PK : H → 2H be a maximal monotone operator. Assume
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that {p? ∈ VI(K, D) : 〈Fp?, q − p?〉 ≥ 0, ∀q ∈ VI(K, D)} 6= ∅ and that assumptions
(A4)–(A5) hold. If {pk}, a sequence generated by Algorithm 3:

Algorithm 3 A modified accelerated projection and contraction method.

Initialization: Choose φ > 0, λ1 > 0, 0 < c1 < c′1 < 2 and $ ∈
(

0, 2η

L2
1

)
. Let p0, p1 ∈ H

and set k = 1.

Iterative steps: Calculate the next iteration point pk+1 as follows:

Step 1: Choose φk, such that φk ∈ [0, φ̄k], where

φ̄k =

{
min

{
φ, εk
‖pk−pk−1‖

}
, if pk 6= pk−1,

φ, otherwise.

Step 2: Compute

wk = pk + φk(pk − pk−1),
vk = PK(wk − λkDwk).

Step 3: Compute

zk = wm −mkrk,

where

rk = wk − vk − λk(Dwk − Dvk)

and

mk =

{
(c1 + tk)

〈wk−vk ,rk〉
‖rk‖2 , if rk 6= 0,

0, otherwise.

Step 4: Compute

pk+1 = (I − αk$F)zk, ∀k ≥ 1.

Update

λk+1 =

{
min

{
(sk+s)‖wk−vk‖
‖Dwk−Dvk‖

, λk + qk

}
, if Dwk 6= Dvk,

λk + qk, otherwise.

Put k := k + 1 and return to Step 1.

Then, sequence {pk} converges strongly to a unique solution of the (BVIP) (71).

Corollary 2. Let H be a real Hilbert space and K be a nonempty closed convex subset of H; let
D : H → H be a monotone and L-Lipschitz continuous operator, F : H → H be a strongly
monotone and L1 monotone operator, and PK : H → 2H be a maximal monotone operator. Assume
that {p? ∈ VI(K, D) : 〈Fp?, q − p?〉 ≥ 0, ∀q ∈ VI(K, D)} 6= ∅ and that assumptions
(A4)–(A5) hold. If {pk}, a sequence generated by Algorithm 4:
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Algorithm 4 A modified accelerated Tseng splitting method.

Initialization: Choose φ > 0, λ1 > 0, $ ∈
(

0, 2η

L2
1

)
and {ϑk} ⊂ [a, b] ⊂ (0, 1]. Let

p0, p1 ∈ H and set k = 1.

Iterative steps: Calculate the next iteration point pk+1 as follows:

Step 1: Choose φk, such that φk ∈ [0, φ̄k], where

φ̄k =

min
{

k−1
k+φ−1 , εk

‖pk−pk−1‖

}
, if pk 6= pk−1,

k−1
k+φ−1 , otherwise.

Step 2: Set

wk = pk + φk(pk − pk−1),

and compute

vk = PK(I − λkD)wk,

Step 3: Compute

zk = (1− ϑk)wk + ϑk(vk + λk(Ewk − Evk)).

Step 4: Compute

pk+1 = (I − αk$F)zk, ∀k ≥ 1.

Update

λk+1 =

{
min

{
(sk+s)‖wk−vk‖
‖Dwk−Dvk‖

, λk + qk

}
, if Dwk 6= Dvk,

λk + qk, otherwise.

Put k := k + 1 and return to Step 1.

Then, sequence {pk} converges strongly to a unique solution of the (BVIP) (71).

4.2. Application to the Convex Minimization Problem

Let h : H→ R be a convex differentiable function and g : H→ R be a proper lower-
semi-continuous and convex function. Then, the convex minimization problem (CMP) is
formulated as follows:

find p? ∈ H such that h(p?) + g(p?) = lim
p∈H
{h(u) + g(u)}. (74)

It is well-known that problem (74) is a special case of the MIP; that is, it is equivalent
to the problem: 0 ∈ Oh(p?) + ∂g(p?). It is a known fact that if Oh is ( 1

L )-Lipschitz con-
tinuous, then it is L-inverse strongly monotone and ∂g is a maximal monotone operator.
The solution set of the CMP (74) is denoted by (Oh + ∂g)−1(0). In Theorems 1 and 2, we
set D = Oh and E = ∂g, F(p) = p− f (p), where f : H → H is a γ-contraction mapping.
It is not hard to see that F : H→ H is (1 + γ) Lipschitz continuous and (1− γ)-strongly
monotone. Consequently, if we take $ = 1, then, we obtain the following corollaries from
Theorems 1 and 2, respectively.
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Corollary 3. Let H be a real Hilbert space, Oh : H → H be a L-Lipschitz continuous operator,
and ∂g : H→ 2H be a maximal monotone operator. Assume that (Oh + ∂g)−1(0) 6= ∅ and that
assumptions (A4)–(A5) hold. If {pk}, a sequence generated by Algorithm 5:

Algorithm 5 A Modified Accelerated Projection and Contraction Method

Initialization: Choose φ > 0, λ1 > 0, 0 < c1 < c′1 < 2 and γ ∈ [0, 5 −
√

2). Let
p0, p1 ∈ H and set k = 1.

Iterative steps: Calculate the next iteration point pk+1 as follows:

Step 1: Choose φk, such that φk ∈ [0, φ̄k], where

φ̄k =

{
min

{
φ, εk
‖pk−pk−1‖

}
, if pk 6= pk−1,

φ, otherwise.

Step 2: Compute

wk = pk + φk(pk − pk−1),

vk = (I + λk∂g)−1(wk − λkOhwk).

Step 3: Compute

zk = wm −mkrk,

where

rk = wk − vk − λk(Ohwk −Ohvk)

and

mk =

{
(c1 + tk)

〈wk−vk ,rk〉
‖rk‖2 , if rk 6= 0,

0, otherwise.

Step 4: Compute

pk+1 = (I − αk)zk + αk f (zk), ∀k ≥ 1.

Update

λk+1 =

{
min

{
(sk+s)‖wk−vk‖
‖Ohwk−Ohvk‖

, λk + pk

}
, if Ohwk 6= Ohvk,

λk + pk, otherwise.

Put k := k + 1 and return to Step 1.

Then, sequence {pk} converges strongly to an element in (Oh + ∂g)−1(0).

Corollary 4. Let H be a real Hilbert space, Oh : H → H be a L-Lipschitz continuous operator,
and ∂g : H→ 2H be a maximal monotone operator. Assume that (Oh + ∂g)−1(0) 6= ∅ and that
assumptions (A4)–(A5) hold. If {pk}, a sequence generated by Algorithm 6:
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Algorithm 6 A modified accelerated Tseng splitting method.

Initialization: Choose φ > 0, λ1 > 0, $ ∈
(

0, 2η

L2
1

)
and {ϑk} ⊂ [a, b] ⊂ (0, 1]. Let

p0, p1 ∈ H and set k = 1.

Iterative steps: Calculate the next iteration point pk+1 as follows:

Step 1: Choose φk, such that φk ∈ [0, φ̄k], where

φ̄k =

min
{

k−1
k+φ−1 , εk

‖pk−pk−1‖

}
, if pk 6= pk−1,

k−1
k+φ−1 , otherwise.

Step 2: Set

wk = pk + φk(pk − pk−1),

and compute

vk = (I + λk∂g)−1(I − λkOh)wk,

Step 3: Compute

zk = (1− ϑk)wk + ϑk(vk + λk(Ohwk −Ohvk)).

Step 4: Compute

pk+1 = (I − αk)zk + αk f (zk), ∀k ≥ 1.

Update

λk+1 =

{
min

{
(sk+s)‖wk−vk‖
‖Ohwk−Ohvk‖

, λk + qk

}
, if Ohwk 6= Ohvk,

λk + qk, otherwise.

Put k := k + 1 and return to Step 1.

Then, sequence {pk} converges strongly to an element in (Oh + ∂g)−1(0).

4.3. Application to the Image Restoration Problem

The general image recovery problem can be formulated by the inversion of the obser-
vation model defined by

z = Dp + h, (75)

where h is the unknown additive random noise, p ∈ Rk is the known original image, D
is the linear operator involved in the considered image recovery problem, and z is the
known degraded observation. Model (75) is closely equivalent to different concepts of
optimization problems. In recent years, the l1 norm has been widely used by many authors
in these kinds of problems. The l1 regularization, which can be employed to remove noise
in the recovery process, is defined by

min
p∈Rk
{λk‖p‖1 +

1
2
‖z− Dp‖2

2}, (76)
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where p ∈ Rk, z ∈ Rm, D is a m× k matrix and λk > 0. Next, we use various algorithms, as
listed above, to find the solution to the following CMP:

find p ∈ Argminp∈Rk{λk‖p‖1 +
1
2
‖z− Dp‖2

2}, (77)

where D is an operator representing the mask and g is the degraded image.
In this numerical experiment, g(p) = ‖p‖1, h(p) = 1

2‖z− Dp‖2
2, and in all the algo-

rithms, set D = Oh and E = ∂g. We define the gradient by

Oh(p) = D∗(z− Dp).

Moreover, we compare the image recovery efficiency of method Algorithms 5 (in
short, OAURN3) and 6 (in short, OAURN4) with Algorithm 3.3 by Adamu et al. [36] (in
short, ADIA Alg. 3.3) and Algorithm 3.1 by Alakoya et al. [15] (in short, AOM Alg. 3.1).
For all algorithms, we use the stopping criterion Ek = ‖pk+1 − pk‖ < 10−6 and choose the
following parameters for all the methods:

• In OAURN2 and OAURN3, we set φ = 0.73, λ1 = 3.5, s = 0.66, c1 = 0.99, ϑk = 0.68,
αk =

1
k+1 , εk =

100
(k+1)2 , sk =

1
k , $ = 1.8η

L2
1

and qk =
1

(k+1)1.1 .

• In ADIA Alg. 3.3, we set τk = 1
k+1 , σk = µk = 0.5(1− τk), εk = γk = sk = 100

(k+1)2 ,

u = 1
2 , λk =

1
4 and a = 0.8.

• In AOM Alg. 3.1, we set αk = 1
k+1 , δk = ξk = 0.5(1− αk), εk = 100

(k+1)2 , θ = 0.89,

λ1 = 3.5, φ = 0.89, α = 0.145, β = 0.895, Sp = 2
3 p, Tp = 3

4 p, f (p) = 1
3 p and

φk =
1

(k+1)1.1 .

The test images are a hand X-ray and an apple. The performances of the algorithms
are measured via the signal-to-noise ratio (SNR), defined by

SNR = 20 log10

(
‖p‖2

‖p− p∗‖2

)
, (78)

where p∗ is the restored image and p is the original image. We consider the blur function in
MATLAB “special (‘motion‘, 40, 70)” and add random noise. All numerical simulations
were performed using MATLAB R2020b and carried out on a PC Desktop with an Intel®

Core™ i7-3540M CPU @ 3.00GHz × 4 and 400.00GB memory. The numerical results are
presented in Figures 1–4 and Table 1.

Table 1. Numerical comparison for the methods OAURN1, OAURN2, ADIA Alg. 3.3, and AOM
Alg. 3.1.

Images k OAURN1 OAURN2 ADIA Alg. 3.3 AOM Alg 3.1.

SNR SNR SNR SNR
Apple 300 23.8342 23.5978 20.8637 11.7830

Size = 350× 600 600 23.3478 23.04771 20.9999 11.9876
1600 224.9893 24.5673 22.6738 16.3562
2000 24.7839 24.3435 22.8246 16.8673

300 23.9984 23.6374 21.2243 11.7803
Hand X-ray 600 23.9999 23.8563 21.6754 11.8587

Size = 520× 750 1600 24.9738 24.8973 22.7437 16.3478
2500 24.99989 24.94555 22.5467 17.8495
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Original Apple Blurred Apple

OAURN3 OAURN4

 ADIA Alg. 3.3 AOM Alg. 3.1

Figure 1. Comparison of restored images via various methods when the number of iterations
is 2000 for the apple image.

Original Hand X-ray Blurred Hand X-ray

Figure 2. Cont.
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OAURN3 OAURN4

ADIA Alg. 3.3 AOM Algl. 3.1

Figure 2. Comparison of restored images via various methods when the number of iterations is 2500
for the hand X-ray image.
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Figure 3. Graphs of SNR for the methods OAURN1, OAURN2, ADIA Alg. 3.3, and AOM Alg 3.1 for
the apple image.
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Figure 4. Graphs of SNR for the methods OAURN1, OAURN2, ADIA Alg. 3.3, and AOM Alg 3.1 for
the Hand X-ray image.

Remark 4. From Figures 1–4 and Table 1, one can see that the qualities of the recovered images are
better with higher SNR values. Thus, it is evident that Algorithms 1 and 2 are more efficient than
the other compared algorithms.

5. Numerical Experiments

In this section, we present some numerical experiments to illustrate the numerical
behavior of Algorithms 1 (in short, OAURN1) and 2 (in short, OAURN2). Moreover, we
compare them with Algorithm 3.3 by Adamu et al. [36] (in short, ADIA Alg. 3.3) and
Algorithm 3.1 by Alakoya et al. [15] (in short, AOM Alg. 3.1). We choose the parameters of
all the methods as follows:

• In the proposed Algorithms 1 and 2, we set φ = 0.73, λ1 = 2.5, s = 0.59, c1 = 0.67,
ϑk = 0.89, αk =

1
2k+1 , εk =

1
(2k+1)3 , sk =

1
k+1 , $ = 1.7η

L2
1

and qk =
1

(k+1)1.1 .

• In ADIA Alg. 3.3, we set τk = 1
2k+1 , σk = µk = 0.5(1− τk), εk = γk = sk = 1

(2k+1)2 ,

u = 1
2 , λk =

1
6 and a = 0.9.

• In AOM Alg. 3.1, we set αk = 1
2k+1 , δk = ξk = 0.5(1− αk), εk = 1

(2k+1)3 , θ = 0.73,

λ1 = 2.5, φ = 0.59, α = 0.145, β = 0.465, Sp = 2
3 p, Tp = 2

3 p, f (p) = 1
2 p and

φk =
1

(k+1)1.1 .

Example 1. Let H = L2([0, 1]) and let the operators D, E, F : H→ H be defined by

D(p) = 3p(t), E(p) = 6p(t), and F(p) = 0.5p(t), ∀t ∈ [0, 1].

It is not hard to verify that D is 1
2 -inverse strongly monotone, E is a maximal monotone

operator, and F is 0.5-strongly monotone and 0.5-Lipschitz continuous. For this experiment, we
take the stopping Ek = ‖pk+1 − pk‖ < 10−5 and consider the following cases:

Case I: p0(t) = t and p1(t) = 1 + t2;
Case II: p0(t) = 2s and p1(t) = sin(t);
Case III: p0(t) = t3 + t and p1(t) = t3 + 3t,
Case IV: p0(t) = t + 2 and p1(t) = cos(t).
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The obtained numerical results are presented in the following Table 2 and Figure 5. It can be
seen that our method outperforms the compared methods.

Table 2. Numerical results of Example 1.

Cases OAURN1 OAURN2 ADIA A1g.
3.3 AOM Alg. 3.1

Case I CPU time (s) 0.0354 0.0385 0.058834 0.7367
No. of Iter. 15 15 17 55

Case II CPU time (s) 0.00456 0.005687 0.0864 0.2673
No. of Iter. 15 15 18 98

Case III CPU time (s) 0.0853 0.0987 0.1343 0.4536
No. of Iter. 14 14 17 57

Case IV CPU time (s) 0.1637 0.1856 0.35468 0.9637
No. of Iter. 16 16 17 18 88
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Figure 5. Example 1, Case I (top left); Case II (top right); Case III (bottom left); Case IV
(bottom right).

Example 2. Let H = (`2(R), ‖ · ‖`2), where `2(R) = {p = (p1, p2, p3, · · · ), pj ∈ R :

∑∞
j=1 |uj| < ∞} and ‖p‖`2 = (∑∞

j=1 |pj|2)
1
2 , ∀p ∈ `2(R). We now define the operators

D, E,F : `2(R)→ `2(R) by

Dp = 0.5p, Ep = 8p, and F(p) = 0.8p, ∀p ∈ H.

It is easy to check that D is 2-inverse strongly monotone, E is a maximal monotone operator,
and F is 0.8-strongly monotone and 0.8-Lipschitz continuous. For this experiment, we take the
stopping Ek = ‖pk+1 − pk‖ < 10−8 and consider the following cases:

Case A: p0 =
(

1
4 , 1

8 , 1
9 , · · ·

)
and p1 =

(
1, 1

2 , 1
3 , · · ·

)
.

Case B: p0 =
(

1
5 , 1

7 , 1
10 , · · ·

)
and p1 =

(
1, 1

3 , 1
5 , · · ·

)
.

Case C: p0 =
(

1, 1
8 , 1

10 , · · ·
)

and p1 =
(

1
6 , 1

5 , 1
7 · · ·

)
.
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Case D: p0 =
(

1
2 , 1

6 , 1
8 , · · ·

)
and p1 =

(
1, 1

5 , 1
10 , · · ·

)
.

The obtained numerical results are shown in Table 3 and Figure 6; it can be seen that our
method outperformed the compared methods.

Table 3. Numerical results of Example 2.

Cases OAURN1 OAURN2 ADIA Alg. 3.3 AOM Alg. 3.1

Case A CPU time (s) 0.0060 0.0061 0.0099 0.0187
No of Iter. 48 49 70 89

Case B CPU time (s) 0.0073 0.0075 0.0167 0.0376
No of Iter. 46 49 73 90

Case C CPU time (s) 0.0038 0.0041 0.0562 0.0876
No of Iter. 47 50 60 72

Case D CPU time (s) 0.0052 0.0054 0.2536 0.4667
No of Iter. 58 61 77 97
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Figure 6. Example 2, Case A (top left); Case B (top right); Case C (bottom left); Case D
(bottom right).

6. Conclusions

In this work, two efficient iterative methods for solving the strongly monotone varia-
tional inequality problem over the solution set of the monotone inclusion problem have
been introduced. These methods are accelerated by the inertial technique. The new methods
use self-adaptive step sizes rather than depending on prior knowledge of the operator norm
and the Lipschitz constants of the operators involved. We obtained the strong convergence
results of these methods under some mild conditions on the control parameters. We applied
our results to solve the variational inequality problem, bilevel variational inequality prob-
lem, convex minimization problem, and image recovery problems. Numerical experiments
were carried out to authenticate the applicability of our methods and to further show the
superiority of the proposed method over some existing methods. The new results improve,
extend, complement, and unify some existing results in [4,12,13,27] and several others.
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