Next Article in Journal
High-Speed Wavelet Image Processing Using the Winograd Method with Downsampling
Next Article in Special Issue
Cohen–Macaulayness of Vertex Splittable Monomial Ideals
Previous Article in Journal
A Deep Joint Network for Monocular Depth Estimation Based on Pseudo-Depth Supervision
Previous Article in Special Issue
Free Resolutions and Generalized Hamming Weights of Binary Linear Codes
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

Depth and Stanley Depth of the Edge Ideals of r-Fold Bristled Graphs of Some Graphs

1
Software Engineering Institute of Guangzhou, Guangzhou 510980, China
2
Institute of Computing Science and Technology, Guangzhou University, Guangzhou 510006, China
3
School of Natural Sciences, National University of Sciences and Technology Islamabad, Sector H-12, Islamabad 24090, Pakistan
4
Mathematics Department, College of Science, King Saud University, Riyadh 11495, Saudi Arabia
5
Department of Natural Sciences and Humanities, University of Engineering and Technology, Lahore 54000, Pakistan
*
Authors to whom correspondence should be addressed.
Mathematics 2023, 11(22), 4646; https://doi.org/10.3390/math11224646
Submission received: 19 October 2023 / Revised: 8 November 2023 / Accepted: 11 November 2023 / Published: 14 November 2023
(This article belongs to the Special Issue Combinatorics and Computation in Commutative Algebra)

Abstract

:
In this paper, we find values of depth, Stanley depth, and projective dimension of the quotient rings of the edge ideals associated with r-fold bristled graphs of ladder graphs, circular ladder graphs, some king’s graphs, and circular king’s graphs.

1. Introduction

Let F : = K [ x 1 , x 2 , , x υ ] be a polynomial ring over a field K with standard grading, that is, deg ( x i ) = 1 , for all i. Let M be a finitely generated graded F -module. Suppose that M admits the following minimal free resolution:
0 j Z F ( j ) β p , j ( M ) j Z F ( j ) β p 1 , j ( M ) j Z F ( j ) β 0 , j ( M ) M 0 .
The projective dimension of M is defined as pdim ( M ) = max { i : β i , j ( M ) 0 } . The d e p t h of M is defined to be the common length of all maximal M-sequences in the unique graded maximal ideal ( x 1 , x 2 , , x υ ) . Let M be a finitely generated Z υ -graded F -module. For a homogeneous element u M and a subset A { x 1 , x 2 , , x n } , u K [ A ] denotes the K-subspace of M generated by all homogeneous elements of the form u v , where v is a monomial in K [ A ] . The K-subspace, u K [ A ] , is called a Stanley space of dimension | A | if it is a free K [ A ] -module, where | A | denotes the number of indeterminates in A. A Stanley decomposition D of M is a presentation of the K-vector space M as a finite direct sum of Stanley spaces:
D : M = s i = 1 a i K [ A i ] .
The Stanley depth of decomposition D is defined as sdepth ( D ) = min { | A i | : i = 1 , 2 , , s } . The Stanley depth of M is defined as
sdepth ( M ) = max { sdepth ( D ) : D is a Stanley decomposition of M } .
Stanley conjectured in [1] that sdepth ( M ) depth ( M ) ; this conjecture was later disproved by Duval et al. [2] in 2016. However, it is still important to prove Stanley’s inequality for some special classes of ideals. Herzog et al. gave a method in [3] to compute the Stanley depth of modules of the form I / J , where J I are monomial ideals. But in general, it is still too hard to compute Stanley depth even using their method. For further details, we refer the reader to [4,5,6].
Let G = ( V ( G ) , E ( G ) ) be a graph, where V ( G ) = { x 1 , x 2 , , x υ } is the vertex set and E ( G ) is the edge set of graph G. All graphs considered in this paper are simple and undirected. The edge ideal I ( G ) of the graph G is the ideal generated by all monomials of the form x i x j such that { x i , x j } E ( G ) . In the last decade, the study of edge ideals has gained considerable attention. Various findings on these ideals have demonstrated how combinatorial and algebraic aspects interact; see, for instance, [7,8]. The algebraic invariant depth, Stanley depth, and projective dimension have significant importance in the field of commutative algebra. Establishing the relationship of these invariants with other invariants of commutative algebra and invariants of graph theory are current trends in research.
In general, the invariant depth, Stanley depth, and projective dimension are hard to compute. There are very few classes of ideals for which the formulae of these invariants are known; see, for instance, [4,9,10]. We prove that when we consider the r-fold graph of a ladder graph, circular ladder graph, some king’s graphs, and some circular king’s graphs, then the value of depth, Stanley depth, and projective dimension of the quotients rings of the edge ideals of these graphs are functions of r. We also prove that Stanley’s inequality also holds for these quotient rings. Furthermore, our results give strong motivation for further studies in this direction. For our main results, see Theorem 3, Corollary 4, Theorem 4, Theorem 6, Corollary 4, and Theorem 7.

2. Preliminaries

In this section, we will recall some definitions and notations from graph theory. For terminology and definitions from graph theory, we refer the reader to [11,12,13,14]. Some known results related to depth and Stanley depth are also given in this section. If I is a monomial ideal then G ( I ) denotes its unique minimal set of monomial generators. If u is a monomial of F , then supp ( u ) : = { x i : x i | u } , and for a monomial ideal I, we define supp ( I ) : = { x i : x i | u , for some u G ( I ) } . The degree of a vertex x i denoted by deg ( x i ) is the number of edges that are incident to x i . Let υ 1 , a path of length υ 1 , denoted by P υ , be a graph with V ( P υ ) = { x 1 , x 2 , , x υ } and E ( P υ ) = { { x i , x i + 1 } : 1 i < υ } (if υ = 1 , then E ( P 1 ) = ). Let υ 3 , a cycle of length υ denoted by C υ , be a graph with V ( C υ ) = { x 1 , x 2 , , x υ } and E ( C υ ) = { { x i , x i + 1 } : 1 i < υ } { { x 1 , x υ } } . A graph is said to be a tree if it is acyclic. A vertex x i is called a pendant vertex if deg ( x i ) = 1 . For r 2 , an r-star denoted by S r is a tree with ( r 1 ) leaves and a single vertex with degree r 1 . A caterpillar is a tree in which the removal of all pendants leaves a path.
Definition 1
([15]). Let G be a graph and r 1 be an integer. The graph obtained by attaching r pendant vertices to each vertex of G is called the r-fold bristled graph of G. The r-fold bristled graph of G is denoted by B r s r ( G ) .
Definition 2
([16]). The Cartesian product G 1 G 2 of graphs G 1 and G 2 is a graph with vertex set V ( G 1 ) × V ( G 2 ) and { ( t 1 , u 1 ) , ( t 2 , u 2 ) } E ( G 1 G 2 ) , whenever
1. 
{ t 1 , t 2 } E ( G 1 )  and  u 1 = u 2 ;
2. 
t 1 = t 2  and  { u 1 , u 2 } E ( G 2 ) .
Definition 3
([16]). The strong product G 1 G 2 of graphs G 1 and G 2 is a graph with vertex set V ( G 1 ) × V ( G 2 ) and { ( t 1 , u 1 ) , ( t 2 , u 2 ) } E ( G 1 G 2 ) , whenever
1. 
{ t 1 , t 2 } E ( G 1 )  and  u 1 = u 2 ;
2. 
t 1 = t 2  and  { u 1 , u 2 } E ( G 2 ) ;
3. 
{ t 1 , t 2 } E ( G 1 )  and  { u 1 , u 2 } E ( G 2 ) .
Here we introduce some notations that will be used throughout the paper. For υ 1 , let D υ : = P υ P 2 and L υ : = P υ P 2 be graphs. The graph D υ is known as a ladder graph, whereas the graph L υ is called ( υ × 2 )-king’s graph. See Figure 1 for examples of D υ and L υ . For υ 3 , let H υ : = C υ P 2 and T υ : = C υ P 2 ; the graph H υ is called a circular ladder graph. We define the graph T υ as circular ( υ × 2 )-king’s graph.
Now we recall some known results that are frequently used in this paper. The following lemma, which is also known as the Depth Lemma, has a crucial role in all proofs of our results concerning depth.
Lemma 1
([17]). If 0 U M N 0 is a short exact sequence of modules over a local ring F , or a Noetherian graded ring with F 0 local, then
1. 
depth ( M ) min { depth ( N ) , depth ( U ) } .
2. 
depth ( U ) min { depth ( M ) , depth ( N ) + 1 } .
3. 
depth ( N ) min { depth ( U ) 1 , depth ( M ) } .
A similar result for Stanley depth as given in the subsequent lemma is proved by Rauf.
Lemma 2
([18]). Let 0 U V W 0 be a short exact sequence of Z υ -graded F -module. Then sdepth ( V ) min { sdepth ( U ) , sdepth ( W ) } .
Here is a list of some preliminary lemmas that are referred to many times in the proofs of our results.
Lemma 3
([3]). Let I F be a monomial ideal. If F = F K K [ x υ + 1 ] F [ x υ + 1 ] , then depth ( F / I F ) = depth ( F / I ) + 1 and sdepth ( F / I F ) = sdepth ( F / I ) + 1 .
Lemma 4
([19]). If I = I ( S υ ) F is an edge ideal of υ-star, then
depth ( F / I ) = sdepth ( F / I ) = 1 .
Lemma 5
([20]). Let I F = K [ x 1 , , x r ] , J F = K [ x r + 1 , , x υ ] be monomial ideals, where 1 r < υ and F = F K F . Then
depth ( F / I K F / J ) = depth ( F / ( I F + J F ) ) ) = depth F ( F / I ) + depth F ( F / J ) .
Lemma 6
([20]). Let I F = K [ x 1 , , x r ] and J F = K [ x r + 1 , , x υ ] be monomial ideals, where 1 r < υ and F = F K F . Then
sdepth ( F / I K F / J ) = sdepth ( F / ( I F + J F ) ) ) depth F ( F / I ) + depth F ( F / J ) .
The following results are useful in finding upper bounds for depth and Stanley depth.
Corollary 1
([18]). Let I F be a monomial ideal. Then depth ( F / ( I : u ) ) depth ( F / I ) for all monomials u I .
Proposition 1
([21]). Let J F be a monomial ideal. Then for all monomials u J ,
sdepth ( F / J ) sdepth ( F / ( J : u ) ) .
Lemma 7
([22]). Let I F be a squarefree monomial ideal with supp ( I ) = { x 1 , x 2 , , x υ } , let μ : = x i 1 x i 2 x i q F / I , such that x h μ I , for all x h { x 1 , x 2 , , x υ } supp ( μ ) . Then sdepth ( F / I ) q .
The following result says that once the value of depth of a module is know then one can find its projective dimension.
Theorem 1
([17]). (Auslander–Buchsbaum formula) If F is a commutative Noetherian local ring and M is a non-zero finitely generated F -module of finite projective dimension, then
pdim ( M ) + depth ( M ) = depth ( F ) .
For r 1 and υ 1 , if P υ , r : = B r s r ( P υ ) , then clearly P υ , r is a caterpillar and we have the following values for depth and Stanley depth.
Theorem 2
([23]). Let r 1 and υ 1 . Then
depth ( K [ V ( P υ , r ) ] / I ( P υ , r ) ) = sdepth ( K [ V ( P υ , r ) ] / I ( P υ , r ) ) = υ 1 2 r + υ 2 .
Throughout this paper, we set F υ , r : = K [ i = 1 υ { x i , y i } j = 1 r { x 1 j , x 2 j , x υ j , y 1 j , y 2 j , , y υ j } ] , where r and υ are positive integers. Also, | V ( F υ , r ) | = 2 υ ( 1 + r ) .

3. Depth and Stanley Depth of r-Fold Bristled Graph of Ladder Graph and Some King’s Graph

In this section, we determine depth, projective dimension, and Stanley depth of the quotient rings associated with edge ideals of r-fold bristled graphs of graphs D υ and L υ . See Figure 2a and Figure 3 for 2-fold bristled graph of graphs D 4 and L 4 , respectively. We label the vertices of B r s r ( D υ ) and B r s r ( L υ ) , as shown in Figure 2a and Figure 3, respectively. For υ , r 1 , let I υ , r : = I ( B r s r ( D υ ) ) and L υ , r : = I ( B r s r ( L υ ) ) . If G ( I ) denotes the minimal set of monomial generators of the monomial ideal I, using our labeling, we have
G ( I 1 , r ) = { x 1 y 1 } j = 1 r { x 1 x 1 j , y 1 y 1 j } ,
and
G ( L 1 , r ) = { x 1 y 1 } j = 1 r { x 1 x 1 j , y 1 y 1 j } .
If υ 2 , then we have
G ( I υ , r ) = i = 1 υ 1 { x i x i + 1 , y i y i + 1 } i = 1 υ { x i y i } j = 1 r { y 1 y 1 j , , y υ y υ j , x 1 x 1 j , , x υ x υ j } ,
and
G ( L υ , r ) = i = 1 υ 1 { x i x i + 1 , y i y i + 1 } j = 1 r { x 1 x 1 j , . . , x υ x υ j , y 1 y 1 j , . . , y υ y υ j } i = 1 υ { x i y i } { y 1 x 2 , y υ x υ 1 } i = 2 υ 1 { y i x i 1 , y i x i + 1 } .
Note that B r s r ( D 1 ) B r s r ( L 1 ) P 2 , r and F 1 , r / I 1 , r F 1 , r / L 1 , r K [ V ( P 2 , r ) ] / I ( P 2 , r ) . We also define a modified graph of B r s r ( D υ ) denoted by A υ , r with the set of vertices V ( A υ , r ) = V ( B r s r ( D υ ) ) { y υ + 1 } { y ( υ + 1 ) 1 , y ( υ + 1 ) 2 , , y ( υ + 1 ) r } and E ( A υ , r ) = E ( I υ , r ) { { y υ , y υ + 1 } } j = 1 r { { y υ , y ( υ + 1 ) 1 } , { y υ , y ( υ + 1 ) 2 } , { y υ , y ( υ + 1 ) r } } . See Figure 3b for an example of graph A υ , r and labeling of vertices of this graph. We set F υ , r * : = F υ , r [ y υ + 1 , y ( υ + 1 ) 1 , y ( υ + 1 ) 1 , , y ( υ + 1 ) r ] and I * : = I ( A υ , r ) . Clearly, G ( I υ , r * ) = G ( I υ , r ) { y υ y υ + 1 , y υ y ( υ + 1 ) 1 , y υ y ( υ + 1 ) 2 , , y υ y ( υ + 1 ) r } . Note that A υ , r P 3 , r , F 1 , r * / I 1 , r * = K [ V ( P 3 , r ) ] / I ( P 3 , r ) and | V ( F υ , r * ) | = ( 2 υ + 1 ) ( 1 + r ) . To determine depth and Stanley depth of F υ , r / I υ , r , we shall first determine the depth and Stanley depth of F υ , r * / I * .
Remark 1.
Let I be a squarefree monomial ideal of F whose monomial generators have degrees of at most 2. We associate a graph G I to the ideal I with V ( G I ) = supp ( I ) and E ( G I ) = { { x i , x j } : x i x j G ( I ) } . Let x u F be a variable of the polynomial ring F such that x u I . Then ( I : x u ) and ( I , x u ) are monomial ideals of F such that G ( I : x u ) and G ( I , x u ) are subgraphs of G I . See Figure 4a and Figure 4b for graphs G ( I 4 , 2 * : y 5 ) and G ( L 3 , 2 , x 3 ) , respectively.
Remark 2.
While proving our results by induction on υ , the special cases, say F 0 , r / L 0 , r and F 0 , r * / I 0 , r * , that might appear in the proofs need to be addressed first. We define F 0 , r / L 0 , r : = K and F 0 , r * / I 0 , r * : = K [ V ( S r + 1 ) ] / I ( S r + 1 ) . Thus, we have depth ( F 0 , r / L 0 , r ) = sdepth ( F 0 , r / L 0 , r ) = 0 , and by Lemma 4, we have depth ( F 0 , r * / I 0 , r * ) = sdepth ( F 0 , r * / I 0 , r * ) = 1 .
Lemma 8.
Let υ , r 1 . Then depth ( F υ , r * / I υ , r * ) = sdepth ( F υ , r * / I υ , r * ) = ( r + 1 ) υ + 1 .
Proof. 
First we will prove the result for depth. We will prove this by induction on υ . We consider the following short exact sequence:
0 F υ , r * / ( I υ , r * : y υ ) · y υ F υ , r * / I υ , r * F υ , r * / ( I υ , r * , y υ ) 0 .
By the Depth Lemma,
depth ( F υ , r * / I υ , r * ) min { depth ( F υ , r * / ( I υ , r * : y υ ) ) , depth ( F υ , r * / ( I υ , r * , y υ ) ) } .
If υ = 1 , then by Theorem 2, depth ( F 1 , r * / I 1 , r * ) = depth ( K [ V ( P 3 , r ) ] / I ( P 3 , r ) ) = r + 2 , as required. Let υ 2 . After renumbering the variables, we have
F υ , r * / ( I υ , r * : y υ ) F υ 2 , r * / I υ 2 , r * K K [ y υ , j = 1 r { x υ j , y ( υ 1 ) j , y ( υ + 1 ) j } ] .
Thus, by induction and Lemma 3,
depth ( F υ , r * / ( I υ , r * : y υ ) ) = depth ( F υ 2 , r * / I υ 2 , r * ) + 3 r + 1 = ( r + 1 ) ( υ 2 ) + 1 + 3 r + 1 = ( r + 1 ) υ + r .
Also,
F υ , r * / ( I υ , r * , y υ ) F υ 1 , r * / I υ 1 , r * K K [ V ( S r + 1 ) ] / I ( S r + 1 ) K K [ y υ 1 , y υ 2 , , y υ r ] .
By Lemmas 3 and 5,
depth ( F υ , r * / ( I υ , r * , y υ ) ) = depth ( F υ 1 , r * / I υ 1 , r * ) + depth ( K [ V ( S r + 1 ) ] / I ( S r + 1 ) ) + r .
Using induction and Lemma 4,
depth ( F υ , r * / ( I υ , r * , y υ ) ) = ( r + 1 ) ( υ 1 ) + 1 + 1 + r = ( r + 1 ) υ + 1 .
By Equation (1), we have depth ( F υ , r * / ( I υ , r * ) ) ( r + 1 ) υ + 1 . Now we prove the other inequality. We have F υ , r * / ( I υ , r * : y υ + 1 ) F υ 1 , r * / I υ 1 , r * K K [ y υ + 1 , y υ 1 , y υ 2 , , y υ r ] , by Lemma 3, depth ( F υ , r * / ( I υ , r * : y υ + 1 ) ) = depth ( F υ 1 , r * / I υ 1 , r * ) + r + 1 . By induction, we have
depth ( F υ , r * / ( I υ , r * : y υ + 1 ) ) = ( r + 1 ) ( υ 1 ) + 1 + r + 1 = ( r + 1 ) υ + 1 .
As y υ + 1 I υ , r * , so by Corollary 1 depth ( F υ , r * / I υ , r * ) depth ( F υ , r * / ( I υ , r * : y υ + 1 ) ) = ( r + 1 ) υ + 1 . This completes the proof for depth.
Now we prove the result for Stanley depth. If υ = 1 , then by Theorem 2, sdepth ( F 1 , r * / I 1 , r * ) = r + 2 . For υ 2 , the required result follows by applying Lemma 2 instead of the Depth Lemma, Lemma 6 instead of Lemma 5, and Proposition 1 instead of Corollary 1. □
Corollary 2.
Let υ , r 1 . Then pdim ( F υ , r * / I υ , r * ) = r ( υ + 1 ) + υ .
Proof. 
The required result follows by using Lemma 8 and Theorem 1. □
Now using the previous lemma, we are able to prove one of the main results of this section.
Theorem 3.
Let υ , r 1 . Then depth ( F υ , r / I υ , r ) = sdepth ( F υ , r / I υ , r ) = ( r + 1 ) υ .
Proof. 
First we will prove the result for depth. Consider the following short exact sequence:
0 F υ , r / ( I υ , r : x υ ) · x υ F υ , r / I υ , r F υ , r / ( I υ , r , x υ ) 0 .
When υ = 1 , it is clear from Theorem 2 that depth ( F 1 , r / I 1 , r ) = depth ( K [ V ( P 2 , r ) ] / I ( P 2 , r ) ) = r + 1 . Let υ 2 . We have F υ , r / ( I υ , r : x υ ) ( F υ 2 , r * / I υ 2 , r * ) K K [ { x υ } j = 1 r { y υ j , x ( υ 1 ) j } ] . By Lemma 3, we have
depth ( F υ , r / ( I υ , r : x υ ) ) = depth ( F υ 2 , r * / I υ 2 , r * ) + 2 r + 1 .
By Lemma 8, depth ( F υ , r / ( I υ , r : x υ ) ) = ( r + 1 ) ( υ 2 ) + 1 + 2 r + 1 = ( r + 1 ) υ . Now clearly G ( I υ , r , x υ ) = { G ( I υ 1 * ) , x υ } and F υ , r / ( I υ , r , x υ ) F υ 1 , r * / I υ 1 , r * K K [ x υ 1 , x υ 2 , , x υ r ] , and using Lemma 3, depth ( F υ , r / ( I υ , r , x υ ) ) = depth ( F υ 1 , r * / I υ 1 , r * ) + r . By Lemma 8,
depth ( F υ , r / ( I υ , r , x υ ) ) = ( r + 1 ) ( υ 1 ) + 1 + r = ( r + 1 ) υ .
Applying the Depth Lemma, depth ( F υ , r / I υ , r ) = ( r + 1 ) υ .
Now we prove the result for Stanley depth. If υ = 1 , then by Theorem 2, we have
sdepth ( F 1 , r / I 1 , r ) = sdepth ( K [ V ( P 2 , r ) ] / I ( P 2 , r ) ) = r + 1 .
Let υ 2 . Applying Lemma 2 on the short exact sequence, we obtain
sdepth ( F υ , r / I υ , r ) min { sdepth ( F υ , r / ( I υ , r : x υ ) ) , sdepth ( F υ , r / ( I υ , r , x υ ) ) } .
Proceeding on the same lines as we did for the depth, we obtain sdepth ( F υ , r / ( I υ , r : x υ ) ) υ ( r + 1 ) and sdepth ( F υ , r / ( I υ , r , x υ ) ) υ ( r + 1 ) and by Equation (2), we have sdepth ( F υ , r / I υ , r ) υ ( r + 1 ) . For the other inequality, since x υ I υ , r and sdepth ( F υ , r / ( I υ , r : x υ ) ) = sdepth ( F υ 2 , r * / I υ 2 , r * ) + 2 r + 1 , by Lemma 8,
sdepth ( F υ , r / ( I υ , r : x υ ) ) = ( r + 1 ) ( υ 2 ) + 1 + 2 r + 1 = ( r + 1 ) υ .
By Proposition 1, we have
sdepth ( F υ , r / I υ , r ) sdepth ( F υ , r / ( I υ , r : x υ ) ) = ( r + 1 ) υ .
This completes the proof for Stanley depth. □
Corollary 3.
Let υ , r 1 . Then pdim ( F υ , r / I υ , r ) = ( r + 1 ) υ .
Proof. 
The required result follows by using Theorem 3 and Theorem 1. □
Now we find the depth and Stanley depth of F υ , r / L υ , r .
Theorem 4.
Let υ , r 1 . Then depth ( F υ , r / L υ , r ) = sdepth ( F υ , r / L υ , r ) = 3 υ 2 r + υ 2 .
Proof. 
First we will prove the result for depth. We will prove this by induction on υ . Consider the following short exact sequence:
0 F υ , r / ( L υ , r : x υ ) · x υ F υ , r / L υ , r F υ , r / ( L υ , r , x υ ) 0 .
By the Depth Lemma,
depth ( F υ , r / L υ , r ) min { depth ( F υ , r / ( L υ , r : x υ ) ) , depth ( F υ , r / ( L υ , r , x υ ) ) } .
When υ = 1 , it is clear from Theorem 2 that depth ( F 1 , r / L 1 , r ) = depth ( K [ V ( P 2 , r ) ] / I ( P 2 , r ) ) = r + 1 .
Let υ 2 , F υ , r / ( L υ , r : x υ ) F υ 2 , r / L υ 2 , r K K [ { x υ } j = 1 r { y υ j , x ( υ 1 ) j , y ( υ 1 ) j } ] . Using Lemma 3 and induction on υ , clearly
depth ( F υ , r / ( L υ , r : x υ ) ) = depth ( F υ 2 , r / L υ 2 , r ) + 3 r + 1 = 3 ( υ 2 ) 2 r + υ 2 2 + 3 r + 1
= 3 υ 2 r + υ 2 .
Now let J : = ( L υ , r , x υ ) and G ( J ) = G ( L υ 1 , r ) { y υ x υ 1 , y υ y υ 1 , x υ } { y υ y υ 1 , y υ y υ 2 , , y υ y υ r } . Consider the following short exact sequence:
0 F υ , r / ( J : y υ ) · y υ F υ , r / J F υ , r / ( J , y υ ) 0 .
Again, using the Depth Lemma, we have
depth ( F υ , r / J ) min { depth ( F υ , r / ( J : y υ ) ) , depth ( F υ , r / ( J , y υ ) ) } .
Here F υ , r / ( J : y υ ) F υ 2 , r / L υ 2 , r K K [ { y υ } j = 1 r { y ( υ 1 ) j , x ( υ 1 ) j , x υ j } ] . Using Lemma 3 and induction on υ , we have
depth ( F υ , r / ( J : y υ ) ) = depth ( F υ 2 , r / L υ 2 , r ) + 3 r + 1 = 3 ( υ 2 ) 2 r + υ 2 2 + 3 r + 1
= 3 υ 2 r + υ 2 .
As G ( ( J , y υ ) ) = G ( L υ 1 , r ) { x υ , y υ } and F υ , r / ( J , y υ ) F υ 1 , r / L υ 1 , r K K [ j = 1 r { y υ j , x υ j } ] . By Lemma 3 and induction on υ , we obtain
depth ( F υ , r / ( J , y υ ) ) = depth ( F υ 1 , r / L υ 1 , r ) + 2 r = 3 ( υ 1 ) 2 r + υ 1 2 + 2 r
= 3 υ + 1 2 r + υ 1 2 .
By Equation (4), we have
depth ( F υ , r / J ) min { 3 υ 2 r + υ 2 , 3 υ + 1 2 r + υ 1 2 } = 3 υ 2 r + υ 2 .
Now by using Equation (3), we obtain
depth ( F υ , r / L υ , r ) min { 3 υ 2 r + υ 2 , 3 υ 2 r + υ 2 } = 3 υ 2 r + υ 2 .
For upper bound as x υ F υ , r and depth ( F υ , r / ( L υ , r : x υ ) ) = 3 υ 2 r + υ 2 . By Corollary 1, depth ( F υ , r / L υ , r ) depth ( F υ , r / ( L υ , r : x υ ) ) = 3 υ 2 r + υ 2 . This completes the proof for depth. Now we prove the result for Stanley depth. When υ = 1 , it is clear from Theorem 2 that sdepth ( F 1 , r / L 1 , r ) = r + 1 . For υ 2 , the required result follows by applying Lemma 2 instead of the Depth Lemma and Proposition 1 instead of Corollary 1. □
Corollary 4.
Let υ , r 1 . Then pdim ( F υ , r / L υ , r ) = υ 2 r + 3 υ 2 .
Proof. 
The result follows by using Theorem 4 and Theorem 1. □
Example 1.
If υ = 9 and r = 4 , then by Theorem 4, we have depth ( F 9 , 4 / L 9 , 4 ) = sdepth ( F 9 , 4 / L 9 , 4 ) = 3 ( 9 ) 2 ( 4 ) + 9 2 = 52 + 5 = 57 . Also, by Corollary 4, we have pdim ( F 9 , 4 / L 9 , 4 ) = 9 2 ( 4 ) + 3 ( 9 ) 2 = 20 + 13 = 33 .

4. Depth and Stanley Depth of r-Fold Bristled Graph of Circular Ladder Graph and Some Circular King’s Graph

In this section, we determine the depth and Stanley depth of the quotient rings associated with the edge ideal of r-fold bristled graph of circular ladder graph and T υ graph. Figure 5a,b are examples of 2-fold bristled graphs of a circular ladder graph and T 6 graph, respectively. For positive integers r , υ such that r 1 and υ 3 , the minimal set of monomial generators of the edge ideal C υ , r = I ( B r s r ( H υ ) ) is given as G ( C υ , r ) = G ( I υ , r ) { x 1 x υ , y 1 y υ } . For υ 1 , we also define a new graph A υ , r with V ( A υ , r ) = i = 1 υ { x i , y i } { y υ + 1 , y υ + 2 } i = 1 r { x 1 i , , x υ i , y 1 i , , y ( υ + 2 ) i } and
E ( A υ , r ) = i = 1 υ 1 { { x i , x i + 1 } } i = 1 υ + 1 { { y i , y i + 1 } } i = 1 υ { { x i , y i + 1 } } i = 1 υ + 2 { { y i , y i 1 } , { y i , y i 2 } , , { y i , y i r } } i = 1 υ { { x i , x i 1 } , { x i , x i 2 } , { x i , x i r } } .
See Figure 6 for an example of A υ , r graph. We set F υ , r * * : = F υ , r [ { y υ + 1 , y υ + 2 } j = 1 r { y ( υ + 1 ) j , y ( υ + 2 ) j } ] and | V ( F υ , r * * ) | = 2 ( υ + 1 ) ( 1 + r ) . Let E υ , r : = I ( A υ , r ) and C υ , r : = I ( B r s r ( T υ ) ) . Clearly, G ( C υ , r ) = G ( L υ , r ) { x 1 x υ , y 1 y υ , x 1 y υ , x υ y 1 } .
To determine the depth and Stanley depth of the quotient rings associated with the edge ideal of the r-fold bristled graph of the circular ladder graph, we shall first determine the depth and Stanley depth of the quotient ring associated with the edge ideal of A υ , r graph. In Figure 7 we give examples of graphs associated to squarefree monomial ideals ( E 1 , 2 : y 3 ) , ( E 1 , 2 , y 3 ) , ( C 6 , 2 : x 6 ) and ( C 6 , 2 , x 6 ) , as discussed in Remark 1. These examples will be helpful in understanding the proofs of our next results.
Remark 3.
While proving our results by induction on υ, we have special case F 0 , r * * / E 0 , r , so we define F 0 , r * * / E 0 , r : = K [ V ( P 2 , r ) ] / I ( P 2 , r ) . By using Theorem 2, depth ( F 0 , r * * / E 0 , r ) = sdepth ( F 0 , r * * / E 0 , r ) = r + 1 .
Theorem 5.
Let r , υ 1 . Then
depth ( F υ , r * * / E υ , r ) = sdepth ( F υ , r * * / E υ , r ) = ( υ + 1 ) ( r + 1 ) , if υ is even ; υ ( r + 1 ) + 2 , if υ is odd .
Proof. 
First we will prove the result for depth by using induction on υ . Consider the following short exact sequence:
0 F υ , r * * / ( E υ , r : y υ + 2 ) · y υ + 2 F υ , r * * / E υ , r F υ , r * * / ( E υ , r , y υ + 2 ) 0 .
Let υ = 1 . We have F 1 , r * * / ( E 1 , r : y 3 ) i = 1 2 K [ V ( S r + 1 ) ] / I ( S r + 1 ) K K [ y 3 , y 21 , y 22 , , y 2 r ] , and by Lemmas 3–5, we have
depth ( F 1 , r * * / ( E 1 , r : y 3 ) ) = 2 · depth ( K [ V ( S r + 1 ) ] / I ( S r + 1 ) ) + r + 1 = 2 + r + 1 = r + 3 .
Also, we can see that F 1 , r * * / ( E 1 , r , y 3 ) K [ V ( P 3 , r ) ] / I ( P 3 , r ) K K [ y 31 , y 32 , , y 3 r ] . By Lemma 3 and Theorem 2, we have
depth ( F 1 , r * * / ( E 1 , r , y 3 ) ) = depth ( K [ V ( P 3 , r ) ] / I ( P 3 , r ) ) + r = r + 2 + r = 2 r + 2 .
Since depth ( F 1 , r * * / ( E 1 , r : y 3 ) ) depth ( F 1 , r * * / ( E 1 , r , y 3 ) ) , then by then Depth Lemma,
depth ( F 1 , r * * / E 1 , r ) = depth ( F 1 , r * * / ( E 1 , r : y 3 ) ) = r + 3 .
This prove the result for υ = 1 .
Let υ 2 , and J * : = ( E υ , r : y υ + 2 ) . Now consider the following short exact sequence:
0 F υ , r * * / ( J * : x υ ) · x υ F υ , r * * / J * F υ , r * * / ( J * , x υ ) 0 .
We have
F υ , r * * / ( J * : x υ ) F υ 2 , r * * / E υ 2 , r K K [ { x υ , y υ + 2 } j = 1 r { y ( υ + 1 ) j , x ( υ 1 ) j } ] ,
and
F υ , r * * / ( J * , x υ ) F υ 1 , r * / I υ 1 , r * K K [ { y υ + 2 } j = 1 r { x υ j , y ( υ + 1 ) j } ] .
Thus, by using Lemma 3, we obtain depth ( F υ , r * * / ( J * : x υ ) ) = depth ( F υ 2 , r * * / E υ 2 , r ) + 2 r + 2 and depth ( F υ , r * * / ( J * , x υ ) ) = depth ( F υ 1 , r * / I υ 1 , r * ) + 2 r + 1 . We consider two cases:
Case 1. If υ is even, then by induction on υ ,
depth ( F υ , r * * / ( J * : x υ ) ) = depth ( F υ 2 , r * * / E υ 2 , r ) + 2 r + 2 = ( n 2 + 1 ) ( r + 1 ) + 2 r + 2 = υ ( r + 1 ) r 1 + 2 r + 2 = ( υ + 1 ) ( r + 1 ) .
Similarly, by induction on υ , we have
depth ( F υ , r * * / ( J * , x υ ) ) = depth ( F υ 1 , r * / I υ 1 , r * ) + 2 r + 1 = ( υ 1 ) ( r + 1 ) + 1 + 2 r + 1 = υ ( r + 1 ) r 1 + 1 + 2 r + 1 = ( υ + 1 ) ( r + 1 ) .
Since depth ( F υ , r * * / ( J * : x υ ) ) = depth ( F υ , r * * / ( J * , x υ ) ) Applying the Depth Lemma, we obtain
depth ( F υ , r * * / ( E υ , r : y υ + 2 ) ) = depth ( F υ , r * * / J * ) = ( υ + 1 ) ( r + 1 ) .
Now F υ , r * * / ( E υ , r , y υ + 2 ) F υ , r * / I υ , r * K K [ y ( υ + 2 ) 1 , y ( υ + 2 ) 2 , , y ( υ + 2 ) r ] . By Lemmas 3 and 8, we have depth ( F υ , r * * / ( E υ , r , y υ + 2 ) ) = depth ( F υ , r * / I υ , r * ) + r = ( r + 1 ) υ + 1 + r = ( υ + 1 ) ( r + 1 ) . Again, since depth ( F υ , r * * / ( E υ , r : y υ + 2 ) ) = depth ( F υ , r * * / ( E υ , r , y υ + 2 ) ) , then by the Depth Lemma,
depth ( F υ , r * * / E υ , r ) = ( υ + 1 ) ( r + 1 ) .
Case 2. If υ is odd, then by induction on υ ,
depth ( F υ , r * * / ( J * : x υ ) ) = depth ( F υ 2 , r * * / E υ 2 , r ) + 2 r + 2 = ( υ 2 ) ( r + 1 ) + 2 + 2 r + 2 = υ ( r + 1 ) 2 r 2 + 2 + 2 r + 2 = υ ( r + 1 ) + 2 .
Also, by induction on υ , we have
depth ( F υ , r * * / ( J * , x υ ) ) = depth ( F υ 1 , r * / I υ 1 , r * ) + 2 r + 1 = ( υ 1 ) ( r + 1 ) + 1 + 2 r + 1 = υ ( r + 1 ) r 1 + 1 + 2 r + 1 = υ ( r + 1 ) + r + 1 .
By the Depth Lemma, depth ( F υ , r * * / J * ) υ ( r + 1 ) + 2 . It is easy to see that F υ , r * * / ( E υ , r , y υ + 2 ) F υ , r * / I υ , r * K K [ y ( υ + 2 ) 1 , y ( υ + 2 ) 2 , , y ( υ + 2 ) r ] . By Lemma 3, we have depth ( F υ , r * * / ( E υ , r , y υ + 2 ) ) = depth ( F υ , r * / I υ , r * ) + r = υ ( r + 1 ) + 1 + r . Using the Depth Lemma, depth ( F υ , r * * / E υ , r ) υ ( r + 1 ) + 2 . For upper bound as x υ E υ , r , and
F υ , r * * / ( E υ , r : x υ ) F υ , r * * / E υ 2 , r K K [ V ( S r + 1 ) ] / I ( S r + 1 ) K K [ x υ , y ( υ + 1 ) 1 , , y ( υ + 1 ) r , x ( υ 1 ) 1 , , x ( υ 1 ) r ] .
Thus, by Lemmas 3 and 4 and induction on υ ,
depth ( F υ , r * * / ( E υ , r : x υ ) ) = depth ( F υ , r * * / E υ 2 , r ) + depth ( K [ V ( S r + 1 ) ] / I ( S r + 1 ) ) + 2 r + 1 = ( υ 2 ) ( r + 1 ) + 2 + 1 + 2 r + 1 = υ ( r + 1 ) 2 r 2 + 2 + 2 r + 2 = υ ( r + 1 ) + 2 .
Using Corollary 1, depth ( F υ , r * * / E υ , r ) depth ( F υ , r * * / ( E υ , r : x υ ) ) = υ ( r + 1 ) + 2 . This completes the proof for depth.
For Stanley depth, when υ = 1 , by applying Lemma 2 instead of the Depth Lemma and Lemma 6 instead of Lemma 5 on the short exact sequence, we obtain sdepth ( F 1 , r * * / E 1 , r ) r + 3 . For upper bound, consider μ = y 21 y 2 r y 1 y 3 x 1 F 1 , r * * / E 1 , r ; clearly x μ E 1 , r , for all x supp ( E 1 , r ) supp ( μ ) . Therefore, by Lemma 7, sdepth ( F 1 , r * * / E 1 , r ) r + 3 . For υ 2 , the required result follows by applying Lemma 2 instead of the Depth Lemma, Lemma 6 instead of Lemma 5, and Proposition 1 instead of Corollary 1. If υ is even, then we obtain sdepth ( F υ , r * * / E υ , r ) ( υ + 1 ) ( r + 1 ) . For upper bound, consider
μ = y 11 y 1 r y ( υ 1 ) 1 y ( υ 1 ) r y ( υ + 1 ) 1 y ( υ + 1 ) r x 11 x 1 r x ( υ 3 ) 1 x ( υ 3 ) r x ( υ 1 ) 1 x ( υ 1 ) r y 2 y 4 y υ y υ + 2 x 2 x 4 x υ 2 x υ F υ , r * * / E υ , r .
Clearly x μ E υ , r , for all x supp ( E υ , r ) supp ( μ ) ; therefore, by Lemma 7, sdepth ( F υ , r * * / E υ , r ) ( υ + 1 ) r + υ + 1 = ( υ + 1 ) ( r + 1 ) . Hence, sdepth ( F υ , r * * / E υ , r ) = ( υ + 1 ) ( r + 1 ) . If υ is odd, then we obtain sdepth ( F υ , r * * / E υ , r ) υ ( r + 1 ) + 2 . For upper bound, consider
μ = y 21 y 2 r y ( υ 1 ) 1 y ( υ 1 ) r y ( υ + 1 ) 1 y ( υ + 1 ) r x 21 x 2 r x ( υ 3 ) 1 x ( υ 3 ) r x ( υ 1 ) 1 x ( υ 1 ) r y 1 y 3 y υ y υ + 2 x 1 x 3 x υ 2 x υ F υ , r * * / E υ , r .
Clearly x μ E υ , r , for all x supp ( E υ , r ) supp ( μ ) ; therefore, by Lemma 7, sdepth ( F υ , r * * / E υ , r ) υ r + υ + 2 = υ ( r + 1 ) + 2 . This completes the proof for Stanley depth. □
Corollary 5.
Let r 1 and υ 1 . Then
pdim ( F υ , r * * / E υ , r ) = ( υ + 1 ) ( r + 1 ) , if υ is even ; υ ( r + 1 ) + 2 r , if υ is odd .
Proof. 
The required result can be obtained by using Theorem 5 and Theorem 1. □
Now we find depth, Stanley depth, and projective dimension of the edge ideals of the r-fold bristled graph of the circular ladder graph.
Theorem 6.
Let υ 3 and r 1 . Then
depth ( F υ , r / C υ , r ) = sdepth ( F υ , r / C υ , r ) = υ ( r + 1 ) , if υ is even ; υ ( r + 1 ) + r 1 , if υ is odd .
Proof. 
First we will prove the result for depth. Consider the following short exact sequence:
0 F υ , r / ( C υ , r : x υ ) · x υ F υ , r / C υ , r F υ , r / ( C υ , r , x υ ) 0 .
After a suitable renumbering of variables, we have
F υ , r / ( C υ , r : x υ ) F υ 3 , r * * / E υ 3 , r K K [ { x υ } j = 1 r { x ( υ 2 ) j , x ( υ 1 ) j , y υ j } ] .
By Lemma 3,
depth ( F υ , r / ( C υ , r : x υ ) ) = depth ( F υ 3 , r * * / E υ 3 , r ) + 3 r + 1 .
Let A * : = ( C υ , r , x υ ) and G ( A * ) = G ( I υ 1 , r ) { y 1 y υ , y υ y υ 1 , x υ } { y υ y υ 1 , y υ y υ 2 , , y υ y υ r } . Consider the following short exact sequence:
0 F υ , r / ( A * : y υ ) · y υ F υ , r / A * F υ , r / ( A * , y υ ) 0 .
After renumbering of variables, we have
F υ , r / ( A * : y υ ) F υ 3 , r * * / E υ 3 , r K K [ { y υ } j = 1 r { x υ j , y ( υ 2 ) j , y ( υ 1 ) j } ] ,
and
F υ , r / ( A * , y υ ) F υ 1 , r / I υ 1 , r K K [ x υ 1 , x υ 2 , , x υ r , y υ 1 , y υ 2 , , y υ r ] .
Case 1. When υ is even, using Lemma 3, depth ( F υ , r / ( A * : y υ ) ) = depth ( F υ 3 , r * * / E υ 3 , r ) + 3 r + 1 . As υ is even, so υ 3 will be an odd number. So by Theorem 5, we have
depth ( F υ , r / ( A * : y υ ) ) = ( υ 3 ) ( r + 1 ) + 2 + 3 r + 1 = υ ( r + 1 ) 3 r 3 + 3 r + 3 = υ ( r + 1 ) .
Similarly, by Lemma 3 and Theorem 3,
depth ( F υ , r / ( A * , y υ ) ) = depth ( F υ 1 , r / I υ 1 , r ) + 2 r = ( υ 1 ) ( r + 1 ) + 2 r = υ ( r + 1 ) r 1 + 2 r = υ ( r + 1 ) + r 1 .
By the Depth Lemma, depth ( F υ , r / A * ) υ ( r + 1 ) . Now by Theorem 5,
depth ( F υ , r / ( C υ , r : x υ ) ) = depth ( F υ 3 , r * * / E υ 3 , r ) + 3 r + 1 = ( υ 3 ) ( r + 1 ) + 2 + 3 r + 1 = υ ( r + 1 ) 3 r 3 + 3 r + 3 = υ ( r + 1 ) .
Applying the Depth Lemma on short exact sequence 5, we obtain depth ( F υ , r / C υ , r ) = υ ( r + 1 ) . This completes the proof when υ is even.
Case 2. If υ is odd, using Lemma 3, depth ( F υ , r / ( A * : y υ ) ) = depth ( F υ 3 , r * * / E υ 3 , r ) + 3 r + 1 . As υ is odd, so υ 3 will be an even number. So by Theorem 5, we have
depth ( F υ , r / ( A * : y υ ) ) = ( n 3 + 1 ) ( r + 1 ) + 3 r + 1 = υ ( r + 1 ) 2 r 2 + 3 r + 1 = υ ( r + 1 ) + r 1 .
Now by Lemma 3 and Theorem 3,
depth ( F υ , r / ( A * , y υ ) ) = depth ( F υ 1 , r / I υ 1 , r ) + 2 r = ( υ 1 ) ( r + 1 ) + 2 r = υ ( r + 1 ) r 1 + 2 r = υ ( r + 1 ) + r 1 .
By the Depth Lemma, depth ( F υ , r / A * ) = υ ( r + 1 ) + r 1 . By Theorem 5,
depth ( F υ , r / ( C υ , r : x υ ) ) = depth ( F υ 3 , r * * / E υ 3 , r ) + 3 r + 1 = ( υ 3 + 1 ) ( r + 1 ) + 3 r + 1 = υ ( r + 1 ) 2 r 2 + 3 r + 1 = υ ( r + 1 ) + r 1 .
Applying the Depth Lemma on short exact sequence 5, we obtain depth ( F υ , r / C υ , r ) = υ ( r + 1 ) + r 1 . This completes the proof for depth.
For Stanley depth, the required result follows by applying Lemma 2 instead of the Depth Lemma and Lemma 6 instead of Lemma 5. When υ is even, we have sdepth ( F υ , r / C υ , r ) υ ( r + 1 ) . For upper bound as x υ C υ , r and sdepth ( F υ , r / ( C υ , r : x υ ) ) = sdepth ( F υ 3 , r * * / E υ 3 , r ) + 3 r + 1 , by Theorem 5 and Proposition 1 sdepth ( F υ , r / C υ , r ) sdepth ( F υ , r / ( C υ , r : x υ ) ) = υ ( r + 1 ) . Similarly, when υ is odd, we obtain sdepth ( F υ , r / C υ , r ) υ ( r + 1 ) + r 1 . For upper bound as x υ C υ , r and sdepth ( F υ , r / ( C υ , r : x υ ) ) = sdepth ( F υ 3 , r * * / E υ 3 , r ) + 3 r + 1 , by Theorem 5 and Proposition 1, sdepth ( F υ , r / C υ , r ) sdepth ( F υ , r / ( C υ , r : x υ ) ) = υ ( r + 1 ) + r 1 . Hence,
sdepth ( F υ , r / C υ , r ) = υ ( r + 1 ) + r 1 .
Corollary 6.
Let υ 3 and r 1 . Then
pdim ( F υ , r / C υ , r ) = υ ( r + 1 ) , if υ is even ; υ ( r + 1 ) r + 1 , if υ is odd .
Proof. 
The required result can be obtain by using Theorem 6 and Theorem 1. □
We also have formulae for values of depth, Stanley depth, and projective dimension of the quotient rings of the edge ideals of the T υ graph, as given in the next theorem and corollary.
Theorem 7.
Let υ 3 and r 1 . Then
depth ( F υ , r / C υ , r ) = sdepth ( F υ , r / C υ , r ) = 3 υ + 1 2 r + υ 1 2 .
Proof. 
First we will prove the result for depth. We will prove this for υ 3 . Consider the following short exact sequence:
0 F υ , r / ( C υ , r : x υ ) · x υ F υ , r / C υ , r F υ , r / ( C υ , r , x υ ) 0 .
After renumbering the variables, we have
F υ , r / ( C υ , r : x υ ) F υ 3 , r / L υ 3 , r K K [ { x υ } j = 1 r { x ( υ 2 ) j , x ( υ 1 ) j , y ( υ 2 ) j , y υ j , y ( υ 1 ) j } ] .
Using Lemma 3 and Theorem 4,
depth ( F υ , r / ( C υ , r : x υ ) ) = depth ( F υ 3 , r / L υ 3 , r ) + 5 r + 1 = 3 ( υ 3 ) 2 r + υ 3 2 + 5 r + 1 = 3 υ + 1 2 r + υ 1 2 .
Let J : = ( C υ , r , x υ ) , where G ( J ) = G ( I υ 1 ) { x υ 1 y υ , y υ 1 y υ , y υ y 1 , y υ x 1 , x υ } j = 1 r { y υ y υ j } . Consider the following short exact sequence:
0 F υ , r / ( J : y υ ) · y υ F υ , r / J F υ , r / ( J , y υ ) 0 .
After renumbering the variables, we have
( F υ , r / ( J : y υ ) ) F υ 3 , r / L υ 3 , r K K [ { y υ } j = 1 r { y ( υ 2 ) j , x ( υ 2 ) j , x υ j , x ( υ 1 ) j , y ( υ 1 ) j } ] .
By Lemma 3 and Theorem 4,
depth ( F υ , r / ( J : y υ ) ) = depth ( F υ 3 , r / L υ 3 , r ) + 5 r + 1 = 3 ( υ 3 ) 2 r + υ 3 2 + 5 r + 1 = 3 υ + 1 2 r + υ 1 2 .
Now G ( J , y υ ) = G ( L υ 1 , r ) { y υ , x υ } and F υ , r / ( J , y υ ) F υ 1 , r / L υ 1 , r K K [ j = 1 r { x υ j , y υ j } ] . Using Lemma 3 and Theorem 4, we have depth ( F υ , r / ( J , y υ ) ) = depth ( F υ 1 , r / L υ 1 , r ) + 2 r = 3 ( υ 1 ) 2 r + υ 1 2 + 2 r . = 3 υ + 1 2 r + υ 1 2 . By the Depth Lemma,
depth ( F υ , r / J ) = depth ( F υ , r / ( C υ , r , x υ ) ) = 3 υ + 1 2 r + υ 1 2 .
Applying the Depth Lemma on short exact sequence 6, depth ( F υ , r / C υ , r ) = 3 υ + 1 2 r + υ 1 2 . This completes the proof for depth.
For Stanley depth, the required result follows by applying Lemma 2 instead of the Depth Lemma. We obtain sdepth ( F υ , r / C υ , r ) 3 υ + 1 2 r + υ 1 2 . For upper bound as x υ C υ , r we have
sdepth ( F υ , r / ( C υ , r : x υ ) ) = sdepth ( F υ 3 , r / L υ 3 , r ) + 5 r + 1 ,
by Theorem 4 and Proposition 1,
sdepth ( F υ , r / C υ , r ) sdepth ( F υ , r / ( C υ , r : x υ ) ) = 3 υ + 1 2 r + υ 1 2 .
This completes the proof. □
Corollary 7.
Let υ 3 and r 1 . Then
pdim ( F υ , r / C υ , r ) = υ 1 2 r + 3 υ + 1 2 .
Proof. 
The required result can be obtain by using Theorem 7 and Theorem 1. □
Example 2.
If υ = 9 and r = 4 , then by Theorem 7, we have depth ( F 9 , 4 / C 9 , 4 ) = sdepth ( F 9 , 4 / C 9 , 4 ) = 3 ( 9 ) + 1 2 ( 4 ) + 9 1 2 = 56 + 4 = 60 . Also, by Corollary 4 we have pdim  ( F 9 , 4 / C 9 , 4 ) = 9 1 2 ( 4 ) + 3 ( 9 ) + 1 2 = 16 + 14 = 30 .

Author Contributions

Conceptualization, Y.W., S.S., M.I., F.T., F.M.T. and A.A.; methodology, Y.W., M.I., F.T., F.M.T. and A.A.; validation, Y.W., S.S., M.I., F.T., F.M.T. and A.A.; formal analysis, S.S.; investigation, Y.W.; writing—original draft preparation, S.S.; writing—review and editing, M.I. and A.A. All authors have read and agreed to the published version of the manuscript.

Funding

This research work is supported by Researchers Supporting Project number (RSP2023R440), King Saud University, Riyadh, Saudi Arabia.

Data Availability Statement

No data is required to support the study.

Conflicts of Interest

The authors declare no conflict of interest.

References

  1. Stanley, R.P. Linear Diophantine equations and local cohomology. Invent. Math. 1982, 68, 175–193. [Google Scholar] [CrossRef]
  2. Duval, A.M.; Goeckneker, B.; Klivans, C.J.; Martine, J.L. A non-partitionable Cohen-Macaulay simplicial complex. Adv. Math. 2016, 299, 381–395. [Google Scholar] [CrossRef]
  3. Herzog, J.; Vladoiu, M.; Zheng, X. How to compute the Stanley depth of a monomial ideal. J. Algebra 2009, 322, 3151–3169. [Google Scholar] [CrossRef]
  4. Herzog, J. A survey on Stanley depth. In Monomial Ideals, Computations and Applications; Springer: Berlin/Heidelberg, Germany, 2013; pp. 3–45. [Google Scholar]
  5. Popescu, D. An inequality between depth and Stanley depth. Bull. MathéMatique SociéTé Des Sci. MathéMatiques Roum. 2009, 52, 377–382. [Google Scholar]
  6. Pournaki, M.R.; Fakhari, S.A.; Tousi, M.; Yassemi, S. What is Stanley Depth? Not. AMS 2009, 56, 1106–1108. [Google Scholar]
  7. Banerjee, A.; Das, P.; Selvaraja, S. Bounds for the regularity of product of edge ideals. Algebr. Comb. 2022, 5, 1015–1032. [Google Scholar] [CrossRef]
  8. Van Tuyl, A. A Beginners Guide to Edge and Cover Ideals. In Monomial Ideals, Computations and Applications; Bigatti, A., Gimenez, P., Saenz-de-Cabezon, E., Eds.; Lecture Notes in Mathematics; Springer: Berlin/Heidelberg, Germany, 2013; Volume 2083. [Google Scholar]
  9. Morey, S. Depths of powers of the edge ideal of a tree. Commun. Algebra 2010, 38, 4042–4055. [Google Scholar] [CrossRef]
  10. Pournaki, M.R.; Seyed Fakhari, S.A.; Yassemi, S. Stanley depth of powers of the edge ideals of a forest. Proc. Am. Math. Soc. 2013, 141, 3327–3336. [Google Scholar] [CrossRef]
  11. Chartrand, G. Introduction to Graph Theory; Tata Mcgraw-Hill Education: New York, NY, USA, 2006. [Google Scholar]
  12. Harary, F. Graph Theory; Addison-Wesley: Boston, MA, USA, 1969. [Google Scholar]
  13. Lei, S.; Guan, H.; Jiang, J.; Zou, Y.; Rao, Y. A Machine Proof System of Point Geometry Based on Coq. Mathematics 2023, 11, 2757. [Google Scholar] [CrossRef]
  14. Rao, Y.; Zhou, Q.; Akhoundi, M.; Talebi, A.A.; Amiri, S.O.; GMuhiuddin, G. Novel Concepts in Rough Cayley Fuzzy Graphs with Applications. J. Math. 2023, 2023, 2244801. [Google Scholar] [CrossRef]
  15. Saha, S.; Mandal, A.; Narasimhamurthy, A.; Sangam, S. Handbook of Research on Applied Cybernetics and Systems Science; IGI Global: Hershey, PA, USA, 2017. [Google Scholar]
  16. Hammack, R.H.; Imrich, W.; Klavžar, S.; Imrich, W.; Klavžar, S. Handbook of Product Graphs; CRC Press: Boca Raton, FL, USA, 2011; Volume 2. [Google Scholar]
  17. Bruns, W.; Herzog, J. Cohen-Macaulay Rings; Cambridge University Press: Cambridge, UK, 1998. [Google Scholar]
  18. Rauf, A. Depth and Stanley depth of multigraded modules. Commun. Algebra 2010, 38, 773–784. [Google Scholar] [CrossRef]
  19. Alipour, A.; Tehranian, A. Depth and Stanley depth of edge ideals of star graphs. Int. J. Appl. Math. Stat. 2017, 56, 63–69. [Google Scholar]
  20. Din, N.U.; Ishaq, M.; Sajid, Z. Values and bounds for depth and Stanley depth of some classes of edge ideals. AIMS Math. 2021, 6, 8544–8566. [Google Scholar] [CrossRef]
  21. Cimpoeas, M. Several inequalities regarding Stanley depth. Rom. J. Math. Comput. Sci. 2012, 2, 28–40. [Google Scholar]
  22. Iqbal, Z.; Ishaq, M.; Aamir, M. Depth and Stanley depth of the edge ideals of square paths and square cycles. Commun. Algebra 2018, 46, 1188–1198. [Google Scholar] [CrossRef]
  23. Shaukat, B.; Ishaq, M.; Haq, A.U.; Iqbal, Z. Algebraic properties of edge ideals of corona product of certain graphs. arXiv 2022. [Google Scholar] [CrossRef]
Figure 1. Ladder graph and king’s graph.
Figure 1. Ladder graph and king’s graph.
Mathematics 11 04646 g001
Figure 2. 2-Fold bristled graph of a ladder graph and its modification by adding some vertices and edges.
Figure 2. 2-Fold bristled graph of a ladder graph and its modification by adding some vertices and edges.
Mathematics 11 04646 g002
Figure 3. B r s 2 ( L 4 ) .
Figure 3. B r s 2 ( L 4 ) .
Mathematics 11 04646 g003
Figure 4. Graphs corresponding to ideals ( I 4 , 2 * : y 5 ) and ( L 3 , 2 , x 3 ) .
Figure 4. Graphs corresponding to ideals ( I 4 , 2 * : y 5 ) and ( L 3 , 2 , x 3 ) .
Mathematics 11 04646 g004
Figure 5. 2-fold bristled graphs of circular ladder and circular king’s graphs.
Figure 5. 2-fold bristled graphs of circular ladder and circular king’s graphs.
Mathematics 11 04646 g005
Figure 6. A 3 , 2 .
Figure 6. A 3 , 2 .
Mathematics 11 04646 g006
Figure 7. Graphs corresponding to ideals ( E 1 , 2 : y 3 ) , ( E 1 , 2 , y 3 ) , ( C 6 , 2 : x 6 ) and ( C 6 , 2 , x 6 ) .
Figure 7. Graphs corresponding to ideals ( E 1 , 2 : y 3 ) , ( E 1 , 2 , y 3 ) , ( C 6 , 2 : x 6 ) and ( C 6 , 2 , x 6 ) .
Mathematics 11 04646 g007
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

Share and Cite

MDPI and ACS Style

Wang, Y.; Sharif, S.; Ishaq, M.; Tchier, F.; Tawfiq, F.M.; Aslam, A. Depth and Stanley Depth of the Edge Ideals of r-Fold Bristled Graphs of Some Graphs. Mathematics 2023, 11, 4646. https://doi.org/10.3390/math11224646

AMA Style

Wang Y, Sharif S, Ishaq M, Tchier F, Tawfiq FM, Aslam A. Depth and Stanley Depth of the Edge Ideals of r-Fold Bristled Graphs of Some Graphs. Mathematics. 2023; 11(22):4646. https://doi.org/10.3390/math11224646

Chicago/Turabian Style

Wang, Ying, Sidra Sharif, Muhammad Ishaq, Fairouz Tchier, Ferdous M. Tawfiq, and Adnan Aslam. 2023. "Depth and Stanley Depth of the Edge Ideals of r-Fold Bristled Graphs of Some Graphs" Mathematics 11, no. 22: 4646. https://doi.org/10.3390/math11224646

APA Style

Wang, Y., Sharif, S., Ishaq, M., Tchier, F., Tawfiq, F. M., & Aslam, A. (2023). Depth and Stanley Depth of the Edge Ideals of r-Fold Bristled Graphs of Some Graphs. Mathematics, 11(22), 4646. https://doi.org/10.3390/math11224646

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop