Lump Waves in a Spatial Symmetric Nonlinear Dispersive Wave Model in (2+1)-Dimensions
Abstract
:1. Introduction
2. A Spatial Symmetric Nonlinear Model and Its Hirota Bilinear Form
3. Lump Wave Solutions
4. Characteristics of the Lump Waves
4.1. Line of Critical Points
4.2. Analyticity Condition
4.3. Extreme Values
5. Conclusions
Funding
Data Availability Statement
Conflicts of Interest
References
- Russell, J.S. Report on waves (Liverpool, 1837). In Report of the 7th Meeting of the British Association for the Advancement of Science; John Murray: London, UK, 1838; pp. 417–496. [Google Scholar]
- Russell, J.S. Report on waves (York, 1844). In Report of the 14th Meeting of the British Association for the Advancement of Science; John Murray: London, UK, 1845; pp. 311–390. [Google Scholar]
- Mollenauer, L.F.; Stolen, R.H.; Gordon, J.P. Experimental observation of picosecond pulse narrowing and solitons in optical fibers. Phys. Rev. Lett. 1980, 45, 1095–1098. [Google Scholar] [CrossRef]
- Ablowitz, M.J.; Segur, H. Solitons and the Inverse Scattering Transform; SIAM: Philadelphia, PA, USA, 1981. [Google Scholar]
- Hirota, R. The Direct Method in Soliton Theory; Cambridge University Press: New York, NY, USA, 2004. [Google Scholar]
- Ablowitz, M.J.; Newell, A.C. The decay of the continuous spectrum for solutions of the Korteweg-de Vries equation. J. Math. Phys. 1973, 14, 1277–1284. [Google Scholar] [CrossRef]
- Zakharov, V.E.; Shabat, A.B. A scheme for integrating the nonlinear equations of mathematical physics by the method of the inverse scattering problem. I. Funct. Anal. Appl. 1974, 8, 226–235. [Google Scholar] [CrossRef]
- Hirota, R. Exact solution of the Korteweg-de Vries equation for multiple collisions of solitons. Phys. Rev. Lett. 1971, 27, 1192–1194. [Google Scholar] [CrossRef]
- Ma, W.X. Lump solutions to the Kadomtsev-Petviashvili equation. Phys. Lett. A 2015, 379, 1975–1978. [Google Scholar] [CrossRef]
- Ma, W.X. A Liouville integrable hierarchy with four potentials and its bi-Hamiltonian structure. Rom. Rep. Phys. 2023, 75, 115. [Google Scholar]
- Ma, W.X. A six-component integrable hierarchy and its Hamiltonian formulation. Mod. Phys. Lett. B 2023, 37, 2350143. [Google Scholar] [CrossRef]
- Ma, W.X.; Huang, T.W.; Zhang, Y. A multiple exp-function method for nonlinear differential equations and its application. Phys. Scr. 2010, 82, 065003. [Google Scholar] [CrossRef]
- Song, Y.J.; Wang, Z.G.; Ma, Y.Z.; Yang, B. Solitary, kink and periodic wave solutions of the (3+1)-dimensional Hirota–Satsuma–Ito-like equation. Results Phys. 2022, 42, 106013. [Google Scholar] [CrossRef]
- Ma, W.X.; Zhou, Y. Lump solutions to nonlinear partial differential equations via Hirota bilinear forms. J. Differ. Equ. 2018, 264, 2633–2659. [Google Scholar] [CrossRef]
- Tan, W.; Dai, H.P.; Dai, Z.D.; Zhong, W.Y. Emergence and space-time structure of lump solution to the (2+1)-dimensional generalized KP equation. Pramana J. Phys. 2017, 89, 77. [Google Scholar] [CrossRef]
- Manakov, S.V.; Zakharov, V.E.; Bordag, L.A.; Matveev, V.B. Two-dimensional solitons of the Kadomtsev-Petviashvili equation and their interaction. Phys. Lett. A 1977, 63, 205–206. [Google Scholar] [CrossRef]
- Satsuma, J.; Ablowitz, M.J. Two-dimensional lumps in nonlinear dispersive systems. J. Math. Phys. 1979, 20, 1496–1503. [Google Scholar] [CrossRef]
- Kaup, D.J. The lump solutions and the Bäcklund transformation for the three-dimensional three-wave resonant interaction. J. Math. Phys. 1981, 22, 1176–1181. [Google Scholar] [CrossRef]
- Gilson, C.R.; Nimmo, J.J.C. Lump solutions of the BKP equation. Phys. Lett. A 1990, 147, 472–476. [Google Scholar] [CrossRef]
- Imai, K. Dromion and lump solutions of the Ishimori-I equation. Prog. Theor. Phys. 1997, 98, 1013–1023. [Google Scholar] [CrossRef]
- Zhang, R.F.; Bilige, S.D. Bilinear neural network method to obtain the exact analytical solutions of nonlinear partial differential equations and its application to p-gBKP equation. Nonlinear Dyn. 2019, 95, 3041–3048. [Google Scholar] [CrossRef]
- Sulaiman, T.A.; Yusuf, A.; Atangana, A. New lump, lump-kink, breather waves and other interaction solutions to the (3+1)-dimensional soliton equation. Commun. Theor. Phys. 2020, 72, 085004. [Google Scholar] [CrossRef]
- Wang, X.M.; Bilige, S.D. Novel interaction phenomena of the (3+1)-dimensional Jimbo-Miwa equation. Commun. Theor. Phys. 2020, 72, 045001. [Google Scholar] [CrossRef]
- Ma, H.C.; Yue, S.P.; Gao, Y.D.; Deng, A.P. Lump solution, breather soliton and more soliton solutions for a (2+1)-dimensional generalized Benjamin–Ono equation. Qual. Theory Dyn. Syst. Qual. Theory Dyn. Syst. 2023, 22, 72. [Google Scholar] [CrossRef]
- Chen, S.J.; Lü, X.; Yin, Y.H. Dynamic behaviors of the lump solutions and mixed solutions to a (2+1)-dimensional nonlinear model. Commun. Theor. Phys. 2023, 75, 055005. [Google Scholar] [CrossRef]
- Ma, W.X.; Batwa, S.; Manukure, S. Dispersion-managed lump waves in a spatial symmetric KP model. East Asian J. Appl. Math. 2023, 13, 246–256. [Google Scholar] [CrossRef]
- Ma, W.X.; Bai, Y.S.; Adjiri, A. Nonlinearity-managed lump waves in a spatial symmetric HSI model. Eur. Phys. J. Plus 2021, 136, 240. [Google Scholar] [CrossRef]
- Tang, Y.N.; Tao, S.Q.; Guan, Q. Lump solitons and the interaction phenomena of them for two classes of nonlinear evolution equations. Comput. Math. Appl. 2016, 72, 2334–2342. [Google Scholar] [CrossRef]
- Wang, C.J. Lump solution and integrability for the associated Hirota bilinear equation. Nonlinear Dyn. 2017, 87, 2635–2642. [Google Scholar] [CrossRef]
- Lü, J.Q.; Bilige, S.D. The study of lump solution and interaction phenomenon to (2+1)-dimensional potential Kadomste–Petviashvili equation. Anal. Math. Phys. 2019, 9, 1497–1509. [Google Scholar] [CrossRef]
- Xu, H.N.; Ruan, W.R.; Zhang, Y.; Lü, X. Multi-exponential wave solutions to two extended Jimbo-Miwa equations and the resonance behavior. Appl. Math. Lett. 2020, 99, 105976. [Google Scholar] [CrossRef]
- Zhou, X.J.; Ilhan, O.A.; Zhou, F.Y.; Sutarto, S.; Manafian, J.; Abotaleb, M. Lump and interaction solutions to the (3+1)-dimensional variable-coefficient nonlinear wave equation with multidimensional binary Bell polynomials. J. Funct. Spaces 2021, 2021, 4550582. [Google Scholar] [CrossRef]
- Guan, X.; Liu, W.J. Multiple-soliton and lump-kink solutions for a generalized (3+1)-dimensional Kadomtsev-Petviashvili equation. Results Phys. 2020, 17, 103149. [Google Scholar] [CrossRef]
- Rizvi, S.T.R.; Seadawy, A.R.; Ahmeda, S.; Younis, M.; Ali, K. Study of multiple lump and rogue waves to the generalized unstable space time fractional nonlinear Schrödinger equation. Chaos Solitons Fractals 2021, 151, 111251. [Google Scholar] [CrossRef]
- Wang, Y.H. Nonautonomous lump solutions for a variable–coefficient Kadomtsev–Petviashvili equation. Appl. Math. Lett. 2021, 119, 107201. [Google Scholar] [CrossRef]
- Yusuf, A.; Sulaiman, T.A.; Abdeljabbar, A.; Alquran, M. Breather waves, analytical solutions and conservation laws using Lie–Bäcklund symmetries to the (2+1)-dimensional Chaffee–Infante equation. J. Ocean Eng. Sci. 2023, 8, 145–151. [Google Scholar] [CrossRef]
- Wang, H. Lump and interaction solutions to the (2+1)-dimensional Burgers equation. Appl. Math. Lett. 2018, 85, 27–34. [Google Scholar] [CrossRef]
- Yu, J.P.; Sun, Y.L. Study of lump solutions to dimensionally reduced generalized KP equations. Nonlinear Dyn. 2017, 87, 2755–2763. [Google Scholar] [CrossRef]
- Zhao, Z.L.; He, L.C.; Gao, Y.B. Rogue wave and multiple lump solutions of the (2+1)-dimensional Benjamin-Ono equation in fluid mechanics. Complexity 2019, 2019, 8249635. [Google Scholar] [CrossRef]
- Roshid, H.O. Lump solutions to a (3+1)-dimensional potential-Yu–Toda–Sasa–Fukuyama (YTSF) like equation. Int. J. Appl. Comput. Math. 2017, 3 (Suppl. 1), S1455–S1461. [Google Scholar] [CrossRef]
- Sun, Y.; Tian, B.; Xie, X.Y.; Chai, J.; Yin, H.M. Rogue waves and lump solitons for a (3+1)-dimensional B-type Kadomtsev-Petviashvili equation in fluid dynamics. Wave Random Complex. 2018, 28, 544–552. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, Y.P.; Tang, X.Y. M-lump solutions to a (3+1)-dimensional nonlinear evolution equation. Comput. Math. Appl. 2018, 76, 592–601. [Google Scholar] [CrossRef]
- Kofane, T.C.; Fokou, M.; Mohamadou, A.; Yomba, E. Lump solutions and interaction phenomenon to the third-order nonlinear evolution equation. Eur. Phys. J. Plus 2017, 132, 465. [Google Scholar] [CrossRef]
- Wang, H.; Tian, S.F.; Zhang, T.T.; Chen, Y. The breather wave solutions, M-lump solutions and semi-rational solutions to a (2+1)-dimensional generalized Korteweg-de Vries equation. J. Appl. Anal. Comput. 2020, 10, 118–130. [Google Scholar] [CrossRef]
- Guo, Y.F.; Dai, Z.D.; Guo, C.X. Lump solutions and interaction solutions for (2+1)-dimensional KPI equation. Front. Math. China 2022, 17, 875–886. [Google Scholar] [CrossRef]
- Chen, W.X.; Guan, R.; Dong, M.J.; Tian, L.X.; Ma, J.J. N-solitons, lump solution and interaction phenomenon to the Boussinesq equation. Int. J. Comput. Math. 2022, 99, 2237–2249. [Google Scholar] [CrossRef]
- Batool, T.; Seadawy, A.R.; Rizvi, S.T.R. Multiple lump solutions and their interactionsfor an integrable nonlinear dispersionless PDE in vector fields. Nonlinear Anal. Model. Control 2023, 28, 264–287. [Google Scholar]
- Raut, S.; Barman, R.; Sarkar, T. Integrability, breather, lump and quasi-periodic waves of non-autonomous Kadomtsev–Petviashvili equation based on Bell-polynomial approach. Wave Motion 2023, 119, 103125. [Google Scholar] [CrossRef]
- Xu, X.X. A deformed reduced semi-discrete Kaup-Newell equation, the related integrable family and Darboux transformation. Appl. Math. Comput. 2015, 251, 275–283. [Google Scholar] [CrossRef]
- Han, G.F.; Li, X.Y.; Zhao, Q.L.; Li, C.Z. Interaction structures of multi localized waves within the Kadomtsev–Petviashvili I equation. Phys. D 2023, 446, 133671. [Google Scholar] [CrossRef]
- Wu, J.P.; Geng, X.G. Novel Wronskian condition and new exact solutions to a (3+1)-dimensional generalized KP equation. Commun. Theor. Phys. 2013, 60, 556–560. [Google Scholar] [CrossRef]
- Kaplan, M.; Ozer, M.N. Auto-Bäcklund transformations and solitary wave solutions for the nonlinear evolution equation. Opt. Quantum Electron. 2018, 50, 33. [Google Scholar] [CrossRef]
- Raza, N.; Kaplan, M.; Javid, A.; Inc, M. Complexiton and resonant multi-solitons of a (4+1)-dimensional Boiti-Leon-Manna-Pempinelli equation. Opt. Quantum Electron. 2022, 54, 95. [Google Scholar] [CrossRef]
- Novikov, S.; Manakov, S.V.; Pitaevskii, L.P.; Zakharov, V.E. Theory of Solitons—The Inverse Scattering Method; Consultants Bureau: New York, NY, USA, 1984. [Google Scholar]
- Ablowitz, M.J.; Fokas, A.S. Complex Variables: Introduction and Applications; Cambridge University Press: Cambridge, UK, 1997. [Google Scholar]
- Its, A.R. The Riemann-Hilbert problem and integrable systems. Not. Am. Math. Soc. 2003, 50, 1389–1400. [Google Scholar]
- Dorizzi, B.; Grammaticos, B.; Ramani, A.; Winternitz, P. Are all the equations of the Kadomtsev-Petviashvili hierarchy integrable? J. Math. Phys. 1986, 27, 2848–2852. [Google Scholar] [CrossRef]
- Wang, D.S.; Yin, Y.B. Symmetry analysis and reductions of the two-dimensional generalized Benney system via geometric approach. Comput. Math. Appl. 2016, 71, 748–757. [Google Scholar] [CrossRef]
- Konopelchenko, B.; Strampp, W. The AKNS hierarchy as symmetry constraint of the KP hierarchy. Inverse Probl. 1991, 7, L17–L24. [Google Scholar] [CrossRef]
- Ma, W.X. Soliton solutions to constrained nonlocal integrable nonlinear Schrödinger hierarchies of type (−λ, λ). Int. J. Geom. Methods Mod. Phys. 2023, 20, 2350098. [Google Scholar] [CrossRef]
- Ma, W.X. Integrable nonlocal nonlinear Schrödinger hierarchies of type (−λ*, λ) and soliton solutions. Rep. Math. Phys. 2023, 92, 19–36. [Google Scholar] [CrossRef]
- Ye, R.S.; Zhang, Y. General soliton solutions to a reverse-time nonlocal nonlinear Schrödinger equation. Stud. Appl. Math. 2020, 145, 197–216. [Google Scholar] [CrossRef]
- Li, J.; Xia, T.C.; Guo, H.D. Long-time asymptotics for the nonlocal Kundu-nonlinear-Schrödinger equation by the nonlinear steepest descent method. Theor. Math. Phys. 2022, 213, 1706–1726. [Google Scholar] [CrossRef]
- Ma, W.X. AKNS type reduced integrable bi-Hamiltonian hierarchies with four potentials. Appl. Math. Lett. 2023, 145, 108775. [Google Scholar] [CrossRef]
- Ma, W.X. Four-component integrable hierarchies of Hamiltonian equations with (m+n+2)th-order Lax pairs. Theor. Math. Phys. 2023, 216, 1180–1188. [Google Scholar] [CrossRef]
- Ma, W.X. Novel Liouville integrable Hamiltonian models with six components and three signs. Chin. J. Phys. 2023, 86, 292–299. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, W.-X. Lump Waves in a Spatial Symmetric Nonlinear Dispersive Wave Model in (2+1)-Dimensions. Mathematics 2023, 11, 4664. https://doi.org/10.3390/math11224664
Ma W-X. Lump Waves in a Spatial Symmetric Nonlinear Dispersive Wave Model in (2+1)-Dimensions. Mathematics. 2023; 11(22):4664. https://doi.org/10.3390/math11224664
Chicago/Turabian StyleMa, Wen-Xiu. 2023. "Lump Waves in a Spatial Symmetric Nonlinear Dispersive Wave Model in (2+1)-Dimensions" Mathematics 11, no. 22: 4664. https://doi.org/10.3390/math11224664
APA StyleMa, W. -X. (2023). Lump Waves in a Spatial Symmetric Nonlinear Dispersive Wave Model in (2+1)-Dimensions. Mathematics, 11(22), 4664. https://doi.org/10.3390/math11224664