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Abstract: This paper aims to search for lump waves in a spatial symmetric (2+1)-dimensional
dispersive wave model. Through an ansatz on positive quadratic functions, we conduct symbolic
computations with Maple to generate lump waves for the proposed nonlinear model. A line of
critical points of the lump waves is computed, whose two spatial coordinates travel at constant
speeds. The corresponding maximum and minimum values are evaluated in terms of the wave
numbers, and interestingly, all those extreme values do not change with time, either. The last section
is the conclusion.
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1. Introduction

Applied sciences rely heavily on closed-form mathematical theories. Much of such
studies represent mathematical intuitions and skills of high order, challenging even for
advanced researchers of today. A kind of multiple wave solution, called soliton solutions
(first observed in water waves [1,2] and then in optical fibers [3]), are examples of closed-
form solutions to integrable models of nonlinear dispersive waves. The nonlinearity and
the dispersion play together in generating such nonlinear dispersive wave solutions.

In soliton theory, there are two powerful techniques, the inverse scattering trans-
form [4] and the Hirota bilinear method [5], to soliton solutions. The inverse scattering
transform was developed initially for solving Cauchy problems of nonlinear model equa-
tions, generated from Lax pairs of matrix spectral problems [6,7], It is a nonlinear version
of the Fourier transform.

The Hirota bilinear method is the other direct but powerful technique to soliton waves.
Hirota bilinear forms are the starting point to generate closed-form solutions [8,9]. In
the (2+1)-dimensional case, take a polynomial R in time t and two space variables x, y.
A (2+1)-dimensional Hirota bilinear differential equation is defined by

R(Dt, Dx, Dy) f · f = 0, (1)

where Dt, Dx and Dy are three Hirota bilinear derivatives given as follows [5]:

Dm
t Dn

x Dk
y f · f =

( ∂

∂t
− ∂

∂t′
)m( ∂

∂x
− ∂

∂x′
)n( ∂

∂y
− ∂

∂y′
)k f (t, x, y) f (t′, x′, y′)

∣∣
t′=t,x′=x,y′=y, (2)
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in which m, n, k are nonnegative integers. Associated with a Hirota bilinear equation, a
nonlinear partial differential equation

X(u, ut, ux, uy, · · · ) = 0 (3)

with a dependent variable u is usually presented by the logarithmic derivative transformations

u = 2(ln f )xx, u = 2(ln f )yy or u = 2(ln f )xy. (4)

For multi-component integrable models (see, e.g., [10,11]), other kinds of transformations
need to be introduced and implemented, and for non-integrable equations, the multiple
exp-function method plays a similar role as the bilinear algorithm in exploring dispersive
wave solutions (see, e.g., [12,13]). Within the Hirota bilinear theory, an N-soliton solution to
a nonlinear equation can be presented by solving its corresponding Hirota bilinear equation
(see, e.g., [8]).

Remarkably similar to solitons, lump waves (and rogue waves) are another kind of
closed-form solution to nonlinear integrable models [14]. Lump waves are expressed in
terms of analytic rational functions, which are localized in all directions in the spatial space
(see, e.g., [14,15]):

lim
x2+y2→∞, ax+by+c=0

u(x, y, t) = 0, t ∈ R, (5)

where a, b, c are arbitrary constants and a2 + b2 6= 0. The KPI equation possesses abundant
lump waves (see, e.g., [9]), and taking long wave limits of its soliton solutions can yield
particular lump waves [16,17]. Many other integrable models possess lump waves, include
the three-wave resonant interaction [18], the BKP equation [19], and the Ishimori-I equa-
tion [20]. Lump waves can exist in nonlinear nonintegrable models as well, and illustrative
examples include generalized KP, BKP, Jimbo–Miwa and Bogoyavlensky–Konopelchenko
equations [21–25]. There also exist lump waves in linear models in higher dimensions.

Quadratic functions are used to present exact solutions to Hirota bilinear equations
and formulate lump wave solutions to nonlinear model equations [9,14]. The logarith-
mic derivative transformations are taken to link nonlinear model equations to bilinear
equations. In this paper, we would like to search for lump waves in a spatial symmetric
(2+1)-dimensional nonlinear dispersive wave model via such an ansatz using quadratic
functions. The novelty is the consideration of a spatial symmetric nonlinearity with three
nonlinear terms, which need to be balanced to create lump waves. We will conduct sym-
bolic computations with Maple to determine its lump waves. Characteristic properties,
such as critical points and extreme values, will be analyzed for the resulting lump waves.
Concluding remarks will be given in the last section.

2. A Spatial Symmetric Nonlinear Model and Its Hirota Bilinear Form

Let α and β be real constants. We introduce a spatial symmetric (2+1)-dimensional
nonlinear dispersive wave model equation:

X(u) = α(3uxx py + 3ux pxy + 3uxyv + 3uyvx + uxxxy + utx − uyy

+ 3uyyqx + 3uyqxy + 3uxyw + 3uxwy + uxyyy + uty − uxx)

+ β(4uuxy + 5uxuy + uyyv + uxxw + vxwy + uxxyy) = 0, (6)

with vy = ux, wx = uy, px = v, qy = w, and search for its lump waves via the indicated
ansatz using quadratic functions. The example with α = 1 and β = 0 of this nonlinear
model gives the special spatial symmetric (2+1)-dimensional model equation

3uxx py + 3ux pxy + 3uxyv + 3uyvx + uxxxy + utx − uyy

+ 3uyyqx + 3uyqxy + 3uxyw + 3uxwy + uxyyy + uty − uxx = 0. (7)
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With the help of Maple, through the logarithmic derivative transformations

u = 2(ln f )xy, v = 2(ln f )xx, w = 2(ln f )yy, p = 2(ln f )x, q = 2(ln f )y, (8)

the above spatial symmetric (2+1)-dimensional model Equation (6) is put into the Hirota
bilinear form:

R( f ) = [α(D3
xDy + D3

yDx + DtDx + DtDy − D2
x − D2

y) + βD2
xD2

y] f · f

= 2α( fxxxy f − 3 fxxy fx + 3 fxy fxx − fy fxxx + ftx f − ft fx − fyy f + f 2
y

+ fxyyy f − 3 fxyy fy + 3 fxy fyy − fx fyyy + fty f − ft fy − fxx f + f 2
x )

+ 2β( fxxyy f − 2 fxxy fy − 2 fxyy fx + fxx fyy + 2 f 2
xy) = 0, (9)

where Dt, Dx and Dy are the standard Hirota bilinear derivatives [5] (see also, (2)). By
symbolic computation, a precise relation between the nonlinear model equation and the
bilinear model equation can be explored to be

X(u) =
[R( f )

f 2

]
xy, (10)

where the involved functions u, v, w, p, q are determined through the logarithmic derivative
transformations of f in (8).

The same link also exists in a spatial symmetric KP model [26] and a spatial symmetric
HSI model [27]. It is now evident that if f is a solution to the bilinear model Equation (9),
then u, v, w, p, q determined by (8) solve the spatial symmetric (2+1)-dimensional dispersive
wave model Equation (6). In the following section, we would like to look for a class of
lump waves in this spatial symmetric nonlinear dispersive wave model.

3. Lump Wave Solutions

We would now like to compute lump wave solutions to the spatial symmetric (2+1)-
dimensional dispersive wave model Equation (6), through conducting symbolic compu-
tations. A direct computation can show that the above general nonlinear model equation
does not pass the three-soliton test and thus it doesn’t possess an N-soliton solution.

Applying a general ansatz on lump waves in (2+1)-dimensions [9], we start looking
for positive quadratic function solutions

f = ζ2
1 + η2

2 + a9, ζ1 = a1x + a2y + a3t + a4, ζ2 = a5x + a6y + a7t + a8, (11)

to the corresponding Hirota bilinear Equation (9), and the task will be to determine the real
constant parameters ai, 1 ≤ i ≤ 9 (see, e.g., [9,14] for illustrative examples). It is known
that this is a general ansatz for lump wave solutions of lower order in (2+1)-dimensions [14].

We substitute f by (11) into the Hirota bilinear Equation (9) and obtain a system of
algebraic equations on the involved parameters. A direct Maple computation to solve this
system for a3, a7 and a9 yields a set of solutions for the parameters:

a3 =
(a1 + a2)[a2

1 + a2
2 + (a5 + a6)

2]− 2a1a2
6 − 2a2a2

5
(a1 + a2)2 + (a5 + a6)2 ,

a7 =
(a5 + a6)[(a1 + a2)

2 + a2
5 + a2

6]− 2a2
2a5 − 2a2

1a6

(a1 + a2)2 + (a5 + a6)2 ,

a9 =
3(a1a2 + a5a6)(a2

1 + a2
2 + a2

5 + a2
6)[(a1 + a2)

2 + (a5 + a6)
2]

2(a1a6 − a2a5)2

+
β[(a1a2 − a5a6)

2 + 2(a1a2 + a5a6)
2 + (a1a6 + a2a5)

2][(a1 + a2)
2 + (a5 + a6)

2]

2α(a1a6 − a2a5)2 ,

(12)

and all other parameters are arbitrary.
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The above two frequency parameters, a3 and a7, exhibit a class of dispersion relations
in (2+1)-dimensional nonlinear dispersive waves, and the constant term parameter, a9,
tells a complicated expression of the wave numbers, which is crucial in formulating lump
waves within the Hirota bilinear theory. Interestingly, there also exists a kind of higher-
order dispersion relations appearing in lump waves of the second model equation of the
integrable KP hierarchy.

Let us analyze the analyticity of the lump waves by observing the above simplified
expressions for the wave frequencies and the constant term in (12). Obviously, if

a1 + a2 = a5 + a6 = 0 (13)

then
a1a6 − a2a5 = 0. (14)

This implies that if a1a6 − a2a5 6= 0, then we have

(a1 + a2)
2 + (a5 + a6)

2 > 0, a2
1 + a2

2 + a2
5 + a2

6 > 0.

Therefore, to generate lump wave solutions through the logarithmic derivative transforma-
tions, we require two basic conditions:

a1a6 − a2a5 6= 0, (15)

and

3(a1a2 + a5a6) +
β[(a1a2 − a5a6)

2 + 2(a1a2 + a5a6)
2 + (a1a6 + a2a5)

2]

α(a2
1 + a2

2 + a2
5 + a2

6)
> 0. (16)

Those two necessary and sufficient conditions really guarantee the fundamental prop-
erties of lump waves. First, the resulting solutions of u, v, w are localized in all spatial
directions, under (15). Second, they are analytic in the whole spatial and temporal space,
under (15) and (16), which lead equivalently to that a9 > 0. We will show in the next section
that a9 > 0 is also necessary for u, v, w to be analytic in R3.

The second condition defined by (16) contains the two coefficients, α and β. Clearly, if

a1a2 + a5a6 ≥ 0, αβ ≥ 0, (a1a2 + a5a6)
2 + (αβ)2 > 0, (17)

then we have a9 > 0. Therefore, the nonlinearity affects the analyticity of the lump waves
in the model Equation (6), but it does not affect the speeds of the two single waves in the
lumps, in view of (12).

One reduced case can be worked out. When α = 1 and β = 0, we obtain

a9 =
3(a1a2 + a5a6)(a2

1 + a2
2 + a2

5 + a2
6)[(a1 + a2)

2 + (a5 + a6)
2]

2(a1a6 − a2a5)2 . (18)

Then, the conditions for the existence of lump waves in this reduced case simply become

(a1a5 − a2a5) 6= 0, a1a2 + a5a6 > 0. (19)

We remark that the above ansatz on lump waves is increasingly being adopted in
searching for exact and explicit solutions to nonlinear wave models [28–36].

4. Characteristics of the Lump Waves

In this section, we would like to consider the characteristic behaviors of the resultant
lump waves presented previously.
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4.1. Line of Critical Points

Let us first compute critical points of f defined by (11) as a function of x and y. To this
end, we need to determine solutions to the system

fx(x(t), y(t), t) = 0, fy(x(t), y(t), t) = 0. (20)

Since f is a quadratic polynomial in x and y, this system just requires

a1ζ1 + a5ζ2 = 0, a2ζ1 + a6ζ2 = 0.

Accordingly, based on the condition (15), we have ζ1 = ζ2 = 0, i.e.,

a1x + a2y + a3t + a4 = 0, a5x + a6y + a7t + a8 = 0. (21)

This is a linear system of x and y, and all solutions are critical points of the quadratic
function f : 

x(t) = −
(a1 + a2)

2 + (a5 + a6)
2 − 2a2

2 − 2a2
6

(a1 + a2)2 + (a5 + a6)2 t +
a2a8 − a4a6

a1a6 − a2a5
,

y(t) =
(a1 − a2)

2 + (a5 − a6)
2 − 2a2

2 − 2a2
6

(a1 + a2)2 + (a5 + a6)2 t− a1a8 − a4a5

a1a6 − a2a5
,

(22)

at an arbitrary time t.
Evidently, those critical points form a straight line, whose two spatial coordinates

travel at constant speeds. Now, a further straightforward computation can verify that
all those points (x(t), y(t)) determined above are also critical points of the three solution
functions u, v and w defined by (8).

4.2. Analyticity Condition

Taking advantage of (21), we see that the sum of two squares, i.e., the function f − a9 =
ζ2

1 + ζ2
2 becomes zero at all critical points defined by (22). Accordingly, the quadratic

function f > 0 in R3 if and only if the constant term a9 > 0. The sufficiency is clear,
as analyzed earlier. The necessity is true, because we have that f vanishes at the critical
points if a9 = 0, and f vanishes at all points on the circle ζ2

1 + ζ2
2 = −a9 if a9 < 0.

Consequently, the three solutions u, v, w defined by (8) are analytic in R3 if and only
if the constant parameter a9 must be positive. Further, in view of the analysis of the
positiveness of a9 made in the previous section, the necessary and sufficient conditions
for u, v, w to be analytic are the two conditions in (15) and (16) on the wave numbers
a1, a2, a5, a6 and the coefficients α and β.

4.3. Extreme Values

Applying the second partial derivative test, we can see that the both lump waves, v
and w, have a peak at the critical points (x(t), y(t)). This is because we have

vxx = −
32α2(a2

1 + a2
5)

2(a1a6 − a2a5)
4

3[(a1 + a2)2 + (a5 + a6)2]2a2
10

< 0,

vxxvyy − v2
xy =

1024α4(a2
1 + a2

5)
2(a1a6 − a2a5)

10

27[(a1 + a2)2 + (a5 + a6)2]4a4
10

> 0,

(23)

and 
wyy = −

32α2(a2
2 + a2

6)
2(a1a6 − a2a5)

4

3[(a1 + a2)2 + (a5 + a6)2]2a2
10

< 0,

wxxwyy − w2
xy =

1024α4(a2
2 + a2

6)
2(a1a6 − a2a5)

10

27[(a1 + a2)2 + (a5 + a6)2]4a4
10

> 0,

(24)
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where a10 is defined by

a10 = α(a1a2 + a5a6)(a2
1 + a2

2 + a2
5 + a2

6)

+
1
3

β[(a1a2 + a5a6)
2 + (a1a6 + a2a5)

2 + 2a2
1a2

2 + 2a2
5a2

6]. (25)

In a similar way, we can work out that

uxx = −
32α2(a1a2 + a5a6)(a2

1 + a2
5)(a1a6 − a2a5)

4

3[(a1 + a2)2 + (a5 + a6)2]2a2
10

,

uxxuyy − u2
xy

=
1024α4 [3(a1a2 + a5a6)

2 − (a1a6 − a2a5)
2](a1a6 − a2a5)

10

81[(a1 + a2)2 + (a5 + a6)2]4a4
10

,

(26)

where a10 is given by (25). Accordingly, the lump wave u has the maximum (or minimum)
points (x(t), y(t)), when a1a2 + a5a6 > 0 (or a1a2 + a5a6 < 0) and

3(a1a2 + a5a6)
2 − (a1a6 − a2a5)

2 > 0;

the lump wave u has the saddle points (x(t), y(t)), when

3(a1a2 + a5a6)
2 − (a1a6 − a2a5)

2 < 0;

and the second partial derivative test is inconclusive, when

3(a1a2 + a5a6)
2 − (a1a6 − a2a5)

2 = 0.

A direct computation can generate the extreme values of v, w and u, achieved at the
critical points (x(t), y(t)), as follows:

vmaximum =
8α(a2

1 + a2
5)(a1a6 − a2a5)

2

3[(a1 + a2)2 + (a5 + a6)2]a10
, (27)

wmaximum =
8α(a2

2 + a2
6)(a1a6 − a2a5)

2

3[(a1 + a2)2 + (a5 + a6)2]a10
, (28)

uextremum =
8α(a1a2 + a5a6)(a1a6 − a2a5)

2

3[(a1 + a2)2 + (a5 + a6)2]a10
, (29)

where a10 is defined by (25). Upon observing those expressions for the extreme values,
we find that all extreme values do not depend on time t; they are all constants on the
characteristic line of critical points (see also, [26,27] for other examples). Furthermore,
when a1a6 − a2a5 goes to zero, i.e., the two spatial directions (a1, a2) and (a5, a6) tends to
be parallel to each other, the lump waves of u, v, w may not decay in all cases of the wave
numbers a1, a2, a5 and a6.

5. Conclusions

Through conducting symbolic computations with Maple, we have explored lump
waves in a spatial symmetric (2+1)-dimensional dispersive wave model. The resulting lump
waves have a line of critical points, whose spatial coordinates travel with constant velocities.
The frequencies a3, a7 and the constant term a9 of the lump waves were computed in terms
of the wave numbers in the quadratic function f . Characteristic properties of the lump
waves, such as critical points and extreme values, were worked out, and the effects of the
nonlinear terms and the wave numbers were analyzed.

Interestingly, abundant lump waves also exist in linear wave model equations, be-
sides nonlinear (2+1)-dimensional models (see, e.g., [37–39]) and (3+1)-dimension models
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(see, e.g., [40–42]). The Hirota bilinear forms and the generalized bilinear forms are the
starting points exhibiting a great convenience in determining lump waves. Interaction
solutions between lump waves and other interesting waves, including homoclinic and het-
eroclinic solutions, can be explored for integrable and nonintegrable model equations (see,
e.g., [43–48]). Connections with other solution approaches in soliton theory should deserve
further investigation, which include Darboux transformations [49,50], the Wronskian tech-
nique [51], auto-Bäcklund transformations [52,53], the Riemann–Hilbert technique [54–56],
symmetry reductions [57,58] and symmetry constraints [59].

It is also known that N-soliton solutions have been systematically studied by the
Riemann–Hilbert technique for local and nonlocal integrable equations generated from
group reductions of matrix spectral problems (see, e.g., [60–63]). It is intriguing to analyze
the existence of lump waves in reduced integrable equations (see, e.g., [64–66]), both local
and nonlocal. It is expected that studies of lump waves could advance our understanding
of nonlinear wave phenomena and their integrability theory.
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and 51771083, the Ministry of Science and Technology of China (G2021016032L), and the Natural
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