New Numerical and Analytical Solutions for Nonlinear Evolution Equations Using Updated Mathematical Methods
Abstract
:1. Introduction
2. Overview of Proposed Procedures
- Step 1.
- We obtain the System (1) traveling-wave solutions, which are created as follows:
- Step 2.
- The following ODE represents the nonlinear evolution (2):
3. Methodology
- (1)
- (2)
- Mathematical software, such as Mathematica 13.2 or Maple 2023.1, should be employed to solve the resulting system;
- (3)
- 1.
- When and , the solutions of System (1) are provided using
- 2.
- When and , two cases exist. The solutions are
- 3.
- When and , the solutions are
- 4.
- When and , the solutions are
- 4.
- If , and , then
- 5.
- If , and , then
- 6.
- If , and , then
- 7.
- If then
- 8.
- If then
4. Numerical Solution
5. Stability of the Numerical Scheme
6. Error Analysis
7. Convergence of the Numerical Schemes
8. Result and Discussion
9. Conclusions
Funding
Data Availability Statement
Conflicts of Interest
References
- Akbulut, A.; Islam, S.; Rezazadeh, H.; Tascan, F. Obtaining exact solutions of nonlinear partial differential equations via two different methods. Int. J. Mod. Phys. B 2022, 36, 2250041. [Google Scholar] [CrossRef]
- Wen-Xiu, M.; Yong, X.; Zhang, H. Diversity of interaction solutions to the (2+1)-dimensional Ito equation. Comput. Math. Appl. 2018, 75, 289–295. [Google Scholar] [CrossRef]
- Ozkam, Y.; Yasar, E.; Osman, M. Novel multiple soliton and front wave solutions for the 3D-Vakhnenko–Parkes equation. Mod. Phys. Lett. B 2022, 36, 2250003. [Google Scholar] [CrossRef]
- Bashar, M.; Islam, S. Exact solutions to the (2 + 1)-Dimensional Heisenberg ferromagnetic spin chain equation by using modified simple equation and improve F-expansion methods. Phys. Open 2020, 5, 100027. [Google Scholar] [CrossRef]
- Zaki, S. Solitary wave interactions for the modified equal width equation. Comput. Phys Commun. 2000, 126, 219–231. [Google Scholar] [CrossRef]
- Wazwaz, A. The tanh method and the sine–cosine method for solving the KP-MEW equation. Int. J. Comput. Math. 2005, 82, 235–246. [Google Scholar] [CrossRef]
- Alharbi, A.; Faisal, M.; Shah, F.; Waseem, M.; Ullah, R.; Sherbaz, S. Higher Order Numerical Approaches for Nonlinear Equations by Decomposition Technique. IEEE Access 2019, 7, 44329–44337. [Google Scholar] [CrossRef]
- Radha, R.; Lakshmanan, M. Dromion like structures in the (2 + 1)-dimensional breaking soliton equation. Phys. Lett. A 1995, 197, 7–12. [Google Scholar] [CrossRef]
- Yan, Z.; Zhang, H. Constructing families of soliton-like solutions to a (2+1)-dimensional breaking soliton equation using symbolic computation. Int. J. Comput. Math. Appls. 2002, 44, 1439–1444. [Google Scholar] [CrossRef]
- Chen, Y.; Biao, L.; Zhang, H. Symbolic Computation and Construction of Soliton-Like Solutions to the (2+1)-Dimensional Breaking Soliton Equation. Commun. Theor. Phys. 2003, 40, 137–142. [Google Scholar] [CrossRef]
- Peng, Y.; Krishnan, E. Two Classes of New Exact Solutions to (2+1)-Dimensional Breaking Soliton Equation. Commun. Theor. Phys. 2005, 44, 807–809. [Google Scholar] [CrossRef]
- Inan, I. Generalized Jacobi Elliptic Function Method for Traveling Wave Solutions of (2+1)-Dimensional Breaking Soliton Equation. Cankaya Univ. J. Sci. Eng. 2010, 7, 39–50. [Google Scholar]
- Cheng, W.; Chen, Y. Nonlocal symmetry and exact solutions of the (2+1)- dimensional breaking soliton equation. Commun. Nonlinear Sci. Numer. Simulat. 2015, 29, 198–207. [Google Scholar] [CrossRef]
- Osman, M.S. On multi-soliton solutions for the (2+1)-dimensional breaking soliton equation with variable coefficients in a graded-index waveguide. Comput. Math. Appls. 2018, 75, 1–6. [Google Scholar] [CrossRef]
- Manafian, J.; Behnam, M.; Abapour, M. Lump-type solutions and interaction phenomenon to the (2+1)-dimensional Breaking Soliton equation. Appl. Math. Comput. 2019, 356, 13–41. [Google Scholar] [CrossRef]
- Kumar, M.; Tanwar, D. Lie symmetries and invariant solutions of (2 + 1)-dimensional breaking soliton equation. Pranama J. Phys. 2020, 94, 23. [Google Scholar] [CrossRef]
- Baskonus, H.; Kumar, A.; Wei, G. Deeper investigations of the (4 + 1)-dimensional Fokas and (2 + 1)-dimensional Breaking soliton equations. Int. J. Mod. Phys. B 2020, 34, 2050152. [Google Scholar] [CrossRef]
- Alharbi, A. Numerical solutions to two-dimensional fourth order parabolic thin film equations using the Parabolic Monge-Ampere method. AIMS Math. 2023, 8, 16463–16478. [Google Scholar] [CrossRef]
- Ren, B.; Chu, P. Dynamics of D’Alembert wave and soliton molecule for a (2+1)-dimensional generalized breaking soliton equation. Chin. J. Phys. 2021, 74, 296–301. [Google Scholar] [CrossRef]
- Kaplan, M.; Akbulut, A. The analysis of the soliton-type solutions of conformable equations by using generalized Kudryashov method. Opt. Quantum. Electron. 2021, 53, 498. [Google Scholar] [CrossRef]
- Qin, Y.; Gao, Y.; Shen, Y.; Sun, Y.; Meng, G.; Yu, X. Solitonic interaction of a variable coefficient (2 + 1)-dimensional generalized Breaking Soliton equation. Phys. Scr. 2013, 88, 1–7. [Google Scholar] [CrossRef]
- Mirzazadeh, M.; Hosseini, K.; Dehingia, K.; Salahshour, S. A second-order nonlinear Schrödinger equation with weakly nonlocal and parabolic laws and its optical solitons. Optic 2021, 242, 166911. [Google Scholar] [CrossRef]
- Xia, T.; Xiong, S. Exact solutions of (2 + 1)-dimensional Bogoyavlenskii’s Breaking Soliton equation with symbolic computation. Comput. Math. Appl. 2010, 60, 919–923. [Google Scholar] [CrossRef]
- Alharbi, A.; Almatrafi, M.; Abdelrahman, M. Analytical and numerical investigation for Kadomtsev–Petviashvili equation arising in plasma physics. Phys. Scr. 2020, 95, 045215. [Google Scholar] [CrossRef]
- Alharbi, A. A Study of Traveling Wave Structures and Numerical Investigation of Two-Dimensional Riemann Problems with Their Stability and Accuracy. Comput. Model. Eng. Sci. 2023, 134, 2193–2209. [Google Scholar] [CrossRef]
- Cao, L.; Wang, D.; Chen, L. Symbolic computation and q-deformed function solutions of (2 + 1)-dimensional Breaking Soliton equation. Commun. Theor. Phys. 2007, 47, 270–274. [Google Scholar] [CrossRef]
- Zhang, S. A generalized new auxiliary equation method and its application to the (2 + 1)-dimensional Breaking Soliton equations. Appl. Math. Comput. 2007, 190, 510–516. [Google Scholar] [CrossRef]
- Bogoyavlensky, O. Overturning solitons in new two-dimensional integrable equations. Izv. Akad. Nauk SSSR Ser. Mat. 1989, 53, 243–257. [Google Scholar] [CrossRef]
- Calogero, F.; Degasperis, A. Nonlinear evolution equations solvable by the inverse spectral transform—I. Il Nuovo Cimento B 1976, 32, 201–242. [Google Scholar] [CrossRef]
- Calogero, F.; Degasperis, A. Nonlinear evolution equations solvable by the inverse spectral transform— II. Il Nuovo Cimento B 1977, 39, 1–54. [Google Scholar] [CrossRef]
- Kazeykina, A.; Klein, C. Numerical study of blow-up and stability of line solitons for the Novikov- Veselov equation. Nonlinearity 2017, 30, 2566. [Google Scholar] [CrossRef]
- Sagar, B.; Saha, S. Numerical soliton solutions of fractional (2+1)-dimensional Nizhnik-Novikov-Veselov equations in nonlinear optics. Int. J. Mod. Phys. B 2021, 35, 2150090. [Google Scholar] [CrossRef]
- Bai, C.; Bai, C.; Zhao, H. A new generalized algebraic method and its application in nonlinear evolution equations with variable coefficients. Z. Naturforsch. A 2005, 60, 211–220. [Google Scholar] [CrossRef]
- Aasaraai, A. The application of modified F-expansion method solving the Maccari’s system. J. Adv. Math. Comput. Sci. 2015, 11, 1–14. [Google Scholar] [CrossRef]
- Shampine, L.; Reichelt, M. The matlab ode suite. SIAM J. Sci. Comput. 1994, 18, 1–22. [Google Scholar] [CrossRef]
- Brown, P.; Hindmarsh, A.; Petzold, L.E. Using Krylov methods in the solution of large-scale differential-algebraic systems. SIAM J. Sci. Comput. 1994, 15, 1467–1488. [Google Scholar] [CrossRef]
. | |
. | |
. | |
. | |
sec . | |
. |
RLTV | CPU | |
---|---|---|
s | ||
s | ||
s | ||
s |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alharbi, A.R. New Numerical and Analytical Solutions for Nonlinear Evolution Equations Using Updated Mathematical Methods. Mathematics 2023, 11, 4665. https://doi.org/10.3390/math11224665
Alharbi AR. New Numerical and Analytical Solutions for Nonlinear Evolution Equations Using Updated Mathematical Methods. Mathematics. 2023; 11(22):4665. https://doi.org/10.3390/math11224665
Chicago/Turabian StyleAlharbi, Abdulghani R. 2023. "New Numerical and Analytical Solutions for Nonlinear Evolution Equations Using Updated Mathematical Methods" Mathematics 11, no. 22: 4665. https://doi.org/10.3390/math11224665
APA StyleAlharbi, A. R. (2023). New Numerical and Analytical Solutions for Nonlinear Evolution Equations Using Updated Mathematical Methods. Mathematics, 11(22), 4665. https://doi.org/10.3390/math11224665