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Abstract: This study explores adapted mathematical methods to solve the couple-breaking soliton (BS)
equations in two-dimensional spatial domains. Using these methods, we obtained analytical soliton
solutions for the equations involving free parameters such as the wave number, phase component,
nonlinear coefficient, and dispersion coefficient. The solutions are expressed as hyperbolic, rational,
and trigonometric functions. We also examined the impact of wave phenomenon on two-dimensional
diagrams and used composite two-dimensional and three-dimensional graphs to represent the
solutions. We used the finite difference method to transform the proposed system into a numerical
system to obtain numerical simulations for the Black–Scholes equations. Additionally, we discuss
the stability and error analysis of numerical schemes. We compare the validity and accuracy of
the numerical results with the exact solutions through analytical and graphical comparisons. The
methodologies presented in this research can be applied to various forms of nonlinear evolutionary
systems because they are appropriate and acceptable.
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1. Introduction

One of the most challenging problems in mathematical physics is the quest to find
numerical and soliton solutions for the nonlinear PDEs (NPDEs). NPDEs are utilized
extensively for the purpose of doing analyses on nonlinear processes. Nonlinear partial
differential equations (NPDEs) have practical applications in various scientific fields. Solu-
tions are obtained numerically and analytically using methods such as (P/Q)-expansion,
Hirota bilinear, and exp-function [1–4]. In order to acquire soliton solutions for NLPDEs, a
variety of approaches were utilized in order to examine the equations that were presented.
The authors of [5] analyze and discuss the regularized long-wave and adjusted equal-width
(MEW) equations. Wazwaz studied the KP-MEW equations using the Tanh approach in
2004. Radha and Lakshmanan examined localized structures in a pair BS equation and the
Painleve property in 1995. This equation is of some assistance. In 2004, Wazwaz conducted
research on the KP-MEW equations by utilizing the Tanh approach, which utilizes the (MW)
equation represented in the PK purpose and is described in [6,7]. In recent decades, Radha
et al. [8] researched the presence of exponentially localized systems in a (2 + 1)-dimensional
pair BS equation and the Painleve property. For the two-and-a-half-dimensional plus
one-dimensional BS equation, Yan and Zhang [9] created families with a solution that is
analogous to a soliton. After a period of one year had passed, Chen et al. [10] utilized the
recently obtained generalized expansion approach of the Riccati issue in order to achieve
a soliton solution to the (2 + 1)-dimensional pair BS equation. Peng and Krishnan [11]
used the singular manifold approach to examine two new kinds of exact soliton solutions
for the two-and-a-half-dimensional pair BS issue. Inan [12] conducted research on the
two-and-a-half-dimensional pair BS equation using the generalized Jacobi elliptic function
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approach. As a result of his investigation, periodic and multiple soliton solutions were
obtained for the above equation. In addition to the residual symmetry that was related to
the truncated Painleve expansion, Cheng et al. [13] were able to construct the nonlocal sym-
metry that was gained from the Lax pair. On the basis of the generalized unified technique,
Osman [14] was able to obtain the multiple-soliton solutions to the two-dimensional pair
BS problem. These solutions were derived for the problem. In recent years, a substantial
number of researchers have examined a wide variety of analytical methodologies for the
(2 + 1)-dimensional pair BS model. These researchers come from a variety of academic
fields. The 2-dimensional pair BS problem has been handled by utilizing several different
methodologies, such as the Hirota bilinear technique [15], the resemblance modification pro-
cess [16], the cos-Gordon expansion method [17], and a few more. These many approaches
have been combined in order to produce a single answer. The numerical solution to the two-
dimensional fourth-order parabolic thin film equation was derived by Alharbi [18] using
the parabolic Monge–Ampere approach in more recent research. Ren and Chu [19] looked
at the soliton molecules and explored the generalized BS equations in two dimensions and
one dimension. According to the best of our knowledge, researchers have yet to previously
document in the prior literature a solution to the (2 + 1)-dimensional ZK-MEW equations
and a handful of BS equations utilizing the method that is offered here. In addition, the
information provided in this paper can be utilized as a supplement for other publications
connected to the same overall topic area. In addition, we have begun working on a solution
that incorporates hyperbolic and trigonometric function solutions with free parameters.
The solutions to these issues will be extremely useful in a wide variety of sectors, including,
but not limited to, scientific research, maritime engineering, and many others. In more
recent research, Alharbi [18] used the parabolic Monge–Ampere technique to derive the
numerical solution to the two-dimensional fourth-order parabolic thin film equation. Ren
and Chu [19] investigated the generalized BS equations in two dimensions and one di-
mension and looked at the soliton molecules. To the best of our knowledge, researchers
have yet to previously document in the literature a solution to the (2 + 1)-dimensional
ZK-MEW equations and a handful of BS equations utilizing the method that is provided
here. In addition, the material presented in this paper can serve as a supplement to other
publications that are related to the same overarching subject area. In addition, we have
started working on a solution with hyperbolic and trigonometric function solutions that
incorporate free parameters. The answers to these problems will find widespread use in
scientific research, maritime engineering, and a variety of other fields. The Kudryashov
technique employs the transformed rational function approach [20] and the coefficient of
variation for generalized breaking solitons [21]. Kaplan and Kumar [20], Kaplan and asso-
ciates [22], and Kaplan and Akbulut [23] investigated the generalized Schrodinger equation,
the Jaulent–Miodek equation, and fractional PDEs, respectively, all in the same year. Al-
harbi et al. [24] successfully found a solution to the Kadomtsev–Petviashvili problem using
the adaptive moving mesh technique. Ma [25] researched nonlocally integrable NLPDEs,
calculating the soliton solutions to the nonlocally integrable modified Korteweg–de Vries
problem, and investigating the inverse scattering changes and soliton solutions of nonlocal
integrable equations utilizing the Riemann–Hilbert problems that were made available
through one-group reduction. Researchers have also discovered accurate solutions to the
BS system, including double solitons and other linked forms [26], and solutions supported
by trigonometry and exponential development [27]. The BS system [13,14] is considered
as follows:

Γt + 4βΓ Ψx + 4βΓx Ψ + β Γxxy = 0,

Ψx − Γy = 0.
(1)

Bogoyovlenskii [28] initially introduced this equation. Calogero and Degasperis [29,30]
employed the (2 + 1)-dimensional couple BS equation to express the interaction of a
Riemann wave traveling down the y-axis with a long wave traveling along the x-axis in 1996.
They did this by applying the equation to the Riemann wave’s matter. The wave events
that are described in the equations are essential to maintaining the integrity of water wave
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events and maintaining tight contact. It may open the gate to further research into nonlinear
wave phenomena, which are significant in the field of ocean engineering. Kazeykina and
Klein [31] carried out an investigation in which they analyzed the stability of solutions for a
particular equation and provided numerical solutions to the equation. In order to determine
the numerical consequences of the proposed system, they also used the Kansa approach [32].
On the other hand, there has been no discussion addressing the system’s stability or an error
analysis of the numerical method that was used (1). Obtaining various analytic solutions to
a problem (1) by utilizing modified S−expansion and generalized algebraic approaches
was the primary purpose of this research. In order to accomplish this goal, I combined
the numerical solution with finite differences in order to produce numerical results for
the system that was researched. I made a substantial contribution to the comprehension
of physical challenges in practice by analytically and visually comparing the solutions to
traveling wave problems and the numerical outcomes of those problems. The remaining
parts of this article are arranged as follows: Section 2 presents a general overview of
the mathematical models. Section 3 discusses the methodology that we developed for
extracting results from NLPDEs. The numerical schemes used to discover the numerical
results of the proposed system (1) are presented in Section 4, together with details regarding
the stability, accuracy, and convergence of those numerical schemes. After that, we derive
a variety of solutions to the collection of differential equations by making use of those
equations. The graphical and physical explanations of the solutions we identified will be
discussed in the following section of this article. A comparison of the answers is displayed
in Section 5, and the conclusion is presented in Section 6.

2. Overview of Proposed Procedures

The following form represents the development equations with the physical fields
Γ(x, y, t) and Ψ(x, y, t) in the variables x, y, and t.

G1(Γt, Γx, Γy, Γxxy, Ψ, Ψy, Ψx . . . ) = 0,

G2(Ψx, Γy, Γxxy, Ψ, Ψy, Ψx . . . ) = 0.
(2)

Step 1. We obtain the System (1) traveling-wave solutions, which are created as follows:

Γ(x, y, t) =Φ(ζ), ζ = x + y− α t,

Ψ(x, y, t) =Θ(ζ).
(3)

where α is the wave’s speed.
Step 2. The following ODE represents the nonlinear evolution (2):

G3(Φ, Φζ , Φζζζ , Θ, Θζ , . . . ) = 0,

G4(Θ, Θζ , Φ, Φζ , . . . ) = 0.
(4)

where G3 and G4 are polynomials with respect to Θ(ζ), Φ(ζ), and their combined
derivatives.

The generalized indirect algebraic approach suggests that the solution to (4) is

Φ(ζ) = ρ0 +
N

∑
k=1

(
ρkψ(ζ)k +

sk

ψ(ζ)k

)
, (5)

where ψ(ζ) is a solution of

ψ′(ζ) =

(
4

∑
k=0

γkψk(ζ)

)1
2

, (6)
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where ρk, and sk are to be determined, and N is a positive integer that balances the highest
possible degree of the nonlinear terms and the highest order of the derivatives. The
relationships between γk and 0 ≤ k ≤ 4 are listed in Table 1 [33].

Table 1. The relationships between γk, 0 ≤ k ≤ 4, and the function ψ(ζ).

(γ0, γ1, γ2, γ3, γ4) ψ(ζ)(
γ0 =

γ2
2

4γ4
, γ1 = 0, γ2 < 0, γ3 = 0, γ4 > 0

)
ψ(ζ) =

√
− γ2

2γ4
tanh

(√
−γ2

2
ζ

)
.

(γ0 = 0, γ1 = 0, γ2 > 0, γ3 = 0, γ4 < 0) ψ(ζ) =

√
−γ2

γ4
sech

(√
γ2ζ
)
.(

γ0 =
γ2

2
4γ4

, γ1 = 0, γ2 > 0, γ3 = 0, γ4 > 0

)
ψ(ζ) =

√
γ2

2γ4
tan
(√

γ2

2
ζ

)
.

(γ0 = 0, γ1 = 0, γ2 = 0, γ3 = 0, γ4 > 0, ) ψ(ζ) = − 1√
γ4ζ

.

(γ0 = 0, γ1 = 0, γ2 < 0, γ3 = 0, γ4 > 0) ψ(ζ) =

√
−γ2

γ4
sec (
√
−γ2ζ).

(γ0 = 0, γ1 = 0, γ2 > 0, γ3 6= 0, γ4 = 0) ψ(ζ) = −γ2

γ3
sech2

(√
γ2

2
ζ

)
.

The Modified S—the expansion method yields the following solutions to Equation (4):

ψ(ζ) = λ0 +
N

∑
k=1

(
λkS(ζ)k +

qk

S(ζ)k

)
, (7)

where S(ζ) is a solution of

S′(ζ) = µ0 + µ1S(ζ) + µ2S(ζ)2 (8)

where µk and 0 ≤ k ≤ 2 are listed in Table 2 [34] and qk and λk are to be obtained later.

Table 2. The relationships between µk, 0 ≤ k ≤ 2, and the function S(ζ).

(µ0, µ1, µ2) S(ζ)

(µ0 = 0.5, µ1 = 0.0, µ2 = 0.5) S(ζ) = sec(ζ) + tan(ζ), csc(ζ)− cot(ζ).
(µ0 = 0.5, µ1 = 0.0, µ2 = 0.5) S(ζ) = sec(ζ)− tan(ζ), csc(ζ) + cot(ζ).
(µ0 = ±1, µ1 = 0.0, µ2 = ±1) S(ζ) = tan(ζ), cot(ζ).

(µ0 = 0.0, µ1 = 1.0, µ2 = −1.0) S(ζ) =
1
2

(
1 + tanh

(
1
2

ζ

))
.

(µ0 = 1.0, µ1 = 0.0, µ2 = −1.0) S(ζ) = tanh(ζ), coth(ζ).
(µ0 = 1/2, µ1 = 0.0, µ2 = −1/2) S(ζ) = tanh(ζ)± sech(ζ), coth(ζ)± csch(ζ).

3. Methodology

Consider the couple-breaking soliton (BS) Equation (1). By applying the appropriate
transformations, the equation denoted as Equation (1) can be simplified into a system of
ordinary differential equations (ODEs) in the following manner:

Γ(x, y, t) =Φ(ζ), ζ = x + y− α t,

Ψ(x, y, t) =Θ(ζ).
(9)

As a result, Equation (1) is presented as

−α Φζ + 4βΦ Θζ + 4βΦζ Θ + β Φζζζ = 0,

Θζ −Φζ = 0.
(10)
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Integrating the second equation in (10) with respect to ζ yields Θ = Φ. Thus, the first
equation in (10) is given by

−α Φ + 4β Φ2 + β Φζζ = 0. (11)

In (11), the value of N = 2 is determined by balancing Φζζ with Φ2.
Based on the modified S−expansion method with N = 2, the solution to (11) is

ψ(ζ) = λ0 + λ1S(ζ) +
q1

S(ζ)
+ λ2S(ζ)2 +

q2

S(ζ)2 , (12)

where S(ζ) is a solution of

F′(ζ) = µ0 + µ1S(ζ) + µ2S(ζ)2. (13)

In addition, µi, i = 0, 1, 2, are listed in Table 2. In order to examine the analytical solutions
to (11), the steps outlined below should be followed.

(1) A system of equations for λ0, λm, qm, where m = 1, 2, can be obtained by incorporating
(12) and (13) into Equation (11) and setting all of the coefficients of S(ζ)m, −4 ≤ m ≤ 4
to zero;

(2) Mathematical software, such as Mathematica 13.2 or Maple 2023.1, should be em-
ployed to solve the resulting system;

(3) Using the values of µ0, µ1 and µ2, and the function S(ζ) from Table 2, and substituting
them along with λ0, λk, qk, k = 1, 2 into Equation (12), several trigonometric functions
and rational solutions to Equation (11) are obtained.

Using the preceding steps, I determined the following values for λ0, λ1, λ2, q1, q2,
and α:

1. When µ0 = 0, µ1 = ±1, and µ2 = ∓1, the solutions of System (1) Γ are provided using

Γ1(x, y, t) =− 1
4
+

3
4
(1 + tanh((x + y + β t)/2))− 3

8
(1 + tanh((x + y + β t)/2))2,

Ψ1(x, y, t) =
1
8

(
1− 3 tanh2

(
1
2
(βt + x + y)

))
,

Γ2(x, y, t) =− 1
4
+

3
4
(1 + coth((x + y + β t)/2))

[
1− 1

2
(1 + coth((x + y + β t)/2))

]
,

Ψ2(x, y, t) =
1
8

(
1− 3 coth2

(
1
2
(βt + x + y)

))
,

Γ3(x, y, t) =
3
4
(1 + tanh((x + y− β t)/2))− 3

8
(1 + tanh((x + y− β t)/2))2,

Ψ3(x, y, t) =− 3
8

(
tanh2

(
1
2
(−βt + x + y)

)
− 1
)

,

Γ4(x, y, t) =
3
4
(1 + coth((x + y + β t)/2))

[
1− 1

2
(1 + coth((x + y + β t)/2))

]
,

Ψ4(x, y, t) =
1
8
(−3)

(
coth2

(
1
2
(βt + x + y)

)
− 1
)

.

(14)
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2. When µ0 = 1, µ1 = 0, and µ2 = −1, two cases exist. The solutions are

Γ5(x, y, t) =
3
2
− 3

2
tanh2((x + y− 4β t)),

Ψ5(x, y, t) =
3
2

sech2(−4βt + x + y),

Γ6(x, y, t) =
3
2
− 3

2
coth2((x + y− 4β t)),

Ψ6(x, y, t) =− 3
2

csch2(−4βt + x + y),

Γ7(x, y, t) =− 1− 3
2

(
tanh2((x + y + 16β t)) + coth2((x + y + 16β t))

)
,

Ψ7(x, y, t) =− 3
2

(
tanh2(16βt + x + y) + coth2(16βt + x + y)

)
− 1,

Γ8(x, y, t) =
1
2
− 3

2
tanh2(4β t + x + y),

Ψ8(x, y, t) =
1
2

(
1− 3 tanh2(4βt + x + y)

)
,

Γ9(x, y, t) =
1
2
− 3

2
coth2(4β t + x + y),

Ψ9(x, y, t) =
1
2

(
1− 3 coth2(4βt + x + y)

)
,

Γ10(x, y, t) =3− 3
2

tanh2(16βt− x− y)− 3
2

coth2(16βt− x− y),

Ψ10(x, y, t) =− 6 csch2(2(−16βt + x + y)).

(15)

3. When µ0 =
1
2

, µ1 = 0, and µ2 =
1
2

, the solutions are

Γ11(x, y, t) =− 3
8

(
1 + (sec(x + y + β t)± tan(x + y + β t))2

)
,

Ψ11(x, y, t) =− 3
8
(sec(βt + x + y)± tan(βt + x + y))2 − 3

8

Γ12(x, y, t) =
1
4
− 3

8

(
(sec(x + y + 4β t) + tan(x + y + 4β t))2 +

(sec(x + y + 4β t) + tan(x + y + 4β t))−2
)

,

Ψ12(x, y, t) =
1
8

(
−3(tan(4βt + x + y) + sec(4βt + x + y))2

− 3
(tan(4βt + x + y) + sec(4βt + x + y))2 + 2

)
.

(16)
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4. When µ0 =
1
2

, µ1 = 0, and µ2 = −1
2

, the solutions are

Γ13(x, y, t) =
1
8

(
−3 tanh2

(
1
2
(4βt + x + y)

)
− 3 coth2

(
1
2
(4βt + x + y)

)
− 2
)

,

Ψ13(x, y, t) =− 3
8

tanh2
(

1
2
(4βt + x + y)

)
− 1

8
3 coth2

(
1
2
(4βt + x + y)

)
+

1
4

,

Γ14(x, y, t) =
1
8
− 3

8
(coth(βt + x + y) + csch(βt + x + y))2,

Ψ14(x, y, t) =− 1
8
(cosh(βt + x + y) + 2) csch2

(
1
2
(βt + x + y)

)
,

Γ15(x, y, t) =
1
8
− 3

8
(coth(βt + x + y) + csch(βt + x + y))−2,

Ψ15(x, y, t) =
1
8

(
1− 3(coth(βt + x + y) + csch(βt + x + y))−2

)
,

Γ16(x, y, t) =
1
8

(
1− 3 coth2

(
1
2
(βt + x + y)

))
,

Ψ16(x, y, t) =
1
8
− 3

8
coth2

(
1
2
(βt + x + y)

)
,

Γ17(x, y, t) =
3
8

sech2
(

1
2
(βt− x− y)

)
,

Ψ17(x, y, t) =
3
4
(1 + cosh(x + y− βt))−1.

(17)

Based on the generalized algebraic method with N = 2, the solution to (11) is

Φ(ζ) = ρ0 + ρ1ψ(ζ) + ρ2ψ(ζ)2 +
s1

ψ(ζ)
+

s2

ψ(ζ)2 , (18)

where ψ(ζ) is a solution of

ψ′(ζ) =
√

γ0 + γ1ψ(ζ) + γ2ψ2(ζ) + γ3ψ3(ζ) + γ4ψ4(ζ). (19)

Table 1 contains a list of all possible values for γj, j = 0, 1, 2, 3, 4. To determine the values of
the coefficients ρ0, ρ1, ρ2, s1, s2, and α in all of the scenarios mentioned earlier and their
subsequent solutions, I used mathematical software, specifically Mathematica 13.2, to
obtain the values. As a result, the analytic solutions to Equation (13) will be shown in
this section using the generalized algebraic method with various alternative values for γk,
k = 0, 1, 3, 4.

4. If γ0 = 0, γ1 = 0, γ2 > 0, γ3 = 0 and γ4 < 0, then

Γ18(x, y, t) =
3
2

γ2 sech2(
√

γ2(x + y− 4 βγ2 t)),

Γ19(x, y, t) =− γ2 +
3
2

γ2 sech2(
√

γ2(x + y− 4 βγ2 t)).
(20)

Ψ18(x, y, t) =
3
2

γ2 sech2(
√

γ2(x + y− 4 βγ2 t)),

Ψ19(x, y, t) =− γ2 +
3
2

γ2 sech2(
√

γ2(x + y− 4 βγ2 t)).
(21)



Mathematics 2023, 11, 4665 8 of 22

5. If γ0 =
γ2

2
4γ44

, γ1 = 0, γ2 < 0, γ3 = 0, and γ4 > 0, then

Γ20(x, y, t) =3γ2 csch2
(√

2
√
−γ2(8βγ2t + x + y)

)
,

Γ21(x, y, t) =
3
4

γ2

[
tanh2

(√
−γ2(2βγ2t + x + y)√

2

)
− 1
]

,

Γ22(x, y, t) =
1
4

γ2

(
3 tanh2

(√
−γ2(−2βγ2t + x + y)√

2

)
− 1
)

Γ23(x, y, t) =
3
4

γ2 csch2
(√
−γ2(2βγ2t + x + y)√

2

)
,

Γ24(x, y, t) =
1
4

γ2

(
3 tanh2

(√
−γ2(−8βγ2t + x + y)√

2

)
+ 3 coth2

(√
−γ2(−8βγ2t + x + y)√

2

)
+ 2
)

.

(22)

Ψ20(x, y, t) =3γ2 csch2
(√

2
√
−γ2(8βγ2t + x + y)

)
,

Ψ21(x, y, t) =
3
4

γ2

[
tanh2

(√
−γ2(2βγ2t + x + y)√

2

)
− 1
]

,

Ψ22(x, y, t) =
1
4

γ2

(
3 tanh2

(√
−γ2(−2βγ2t + x + y)√

2

)
− 1
)

Ψ23(x, y, t) =
3
4

γ2 csch2
(√
−γ2(2βγ2t + x + y)√

2

)
,

Ψ24(x, y, t) =
1
4

γ2

(
3 tanh2

(√
−γ2(−8βγ2t + x + y)√

2

)
+ 3 coth2

(√
−γ2(−8βγ2t + x + y)√

2

)
+ 2
)

.

(23)

6. If γ0 = 0, γ1 = 0, γ2 > 0, γ3 6= 0, and γ4 = 0, then

Γ25(x, y, t) =
3
8

γ2 sech2
(

1
2
√

γ2(−βγ2t + x + y)
)

,

Γ26(x, y, t) =− γ2

4
+

3
8

γ2 sech2
(

1
2
√

γ2(βγ2t + x + y)
)

.
(24)

Ψ25(x, y, t) =
3
8

γ2 sech2
(

1
2
√

γ2(−βγ2t + x + y)
)

,

Ψ26(x, y, t) =− γ2

4
+

3
8

γ2 sech2
(

1
2
√

γ2(βγ2t + x + y)
)

.
(25)

7. If γ0 = 0, γ1 = 0, γ2 < 0, γ3 = 0, γ4 > 0, then

Γ27(x, y, t) =
3
2

γ2 sec2(√−γ2(−4βγ2t + x + y)
)
,

Γ28(x, y, t) =
3
2

γ2 sec2(√−γ2(4βγ2t + x + y)
)
− γ2.

(26)

Ψ27(x, y, t) =
3
2

γ2 sec2(√−γ2(−4βγ2t + x + y)
)
,

Ψ28(x, y, t) =
3
2

γ2 sec2(√−γ2(4βγ2t + x + y)
)
− γ2.

(27)
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8. If γ0 =
γ2

2
4γ4

, γ1 = 0, γ2 > 0, γ3 = 0, γ4 > 0, then

Γ29(x, y, t) =− 3
4

γ2 tan2
(√

γ2(8βγ2t + x + y)√
2

)
− 1

4
3γ2 cot2

(√
γ2(8βγ2t + x + y)√

2

)
− 3γ2

2
,

Γ30(x, y, t) =− 1
4

3γ2 tan2
(√

γ2(2βγ2t + x + y)√
2

)
− 3γ2

4
,

Γ31(x, y, t) =− 1
4

3γ2 cot2
(√

γ2(2βγ2t + x + y)√
2

)
− 3γ2

4
,

Γ32(x, y, t) =− 1
4

3γ2 tan2
(√

γ2(−2βγ2t + x + y)√
2

)
− γ2

4
,

Γ33(x, y, t) =− 1
4

3γ2 cot2
(√

γ2(−2βγ2t + x + y)√
2

)
− γ2

4
,

(28)

Ψ29(x, y, t) =− 3
4

γ2 tan2
(√

γ2(8βγ2t + x + y)√
2

)
− 1

4
3γ2 cot2

(√
γ2(8βγ2t + x + y)√

2

)
− 3γ2

2
,

Ψ30(x, y, t) =− 1
4

3γ2 tan2
(√

γ2(2βγ2t + x + y)√
2

)
− 3γ2

4
,

Ψ31(x, y, t) =− 1
4

3γ2 cot2
(√

γ2(2βγ2t + x + y)√
2

)
− 3γ2

4
,

Ψ32(x, y, t) =− 1
4

3γ2 tan2
(√

γ2(−2βγ2t + x + y)√
2

)
− γ2

4
,

Ψ33(x, y, t) =− 1
4

3γ2 cot2
(√

γ2(−2βγ2t + x + y)√
2

)
− γ2

4
,

(29)

where the solution Ψ is equal to Γ in the corresponding cases and β is an arbitrary constant.
In this discussion, we will cover the BS equation, which involves a constant known as
β. These equations describe the interaction between a long wave along the x−axis and
a Riemann wave that moves along the y−axis. α is used to represent the speed of the
singularity. Figure 1 shows surface plots of the soliton solutions (a) Γ1(x, y, t) and (b) Γ3 for
t = 0→ 50. Additionally, Figure 2 depicts the 3D wave profiles for the soliton solutions
(a) Γ5 and (b) Γ17 with β = 1.2 and t = 0→ 10. The surface plots in the solution represent a
brilliant-type wave profile.
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Figure 1. The time evolution of the exact solutions (a) Γ1, and (b) Γ3. The parameter is supplied by
β = 1.20, with t = 0 : 10 : 50.
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Figure 2. The time evolution of the exact solutions (a) Γ5 and (b) Γ17. The parameter is supplied by
β = 1.20, with t = 0 : 2 : 10.

4. Numerical Solution

We employed various numerical techniques to ensure accurate analytical results when
solving the ODEs (11). Using Γ7 as an example, we set Φ and Θ to 0 at the endpoint where
ζ is 0 and then guessed the starting values of Φζ and Θζ . At t = 0, we applied the nonlinear
shooting and BVP methods to find the second Φ = 0 boundary condition at a specific left
endpoint of the domain. Once we obtain the numerical data, we compared them to the
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analytical solution Γ7 at t = 0. We generated the numerical solution using FSOLVE and
ODE15s in MATLAB [35]. The discretized version of the resulting ODE (11), which is

−α Φ + 2β Θ2 + 2β Φ2 +
β

δζ2 (Φi+1 − 2Φi + Φi−1) = 0, (30)

was subjected to the shooting method. Figure 3 displays a comparison of the analytic and
numerical solutions obtained using the aforementioned numerical approaches, all of which
were identical. The accuracy of the analytical solution could, therefore, be checked using
this method. The acquired numerical solution can serve as an initial condition for the
numerical scheme discussed in the following section.
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7
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BVP Method

Figure 3. Comparison of Γ7 at t = 0 via analytical and numerical methods. With parameters β = 1.2,
x = 0→ 20, and N = 3200.

To calculate the numerical outcomes of System (1) within the rectangular domain
[a, b]× [0, 1], I will be using the finite differences method. The starting point and ending
point of the rectangle along the x−axis are represented by a and b, respectively. The
rectangular area enclosed by [a, b]× [0, 1] is divided into (N + 1)× (J + 1) mesh points.
These points are arranged as

xi =a + i ∆x, i = 0, 1, 2, . . . , N,

yj = j ∆y, j = 0, 1, 2, . . . , J,

where ∆x and ∆y are the x and y domain step sizes, respectively. System (1) is turned into
an ODE system by discretizing the space derivatives while keeping the time derivative
continuous. Completing this process yields the desired results.

Γt|ni,j =−
2 β

∆x

[
Γn+1

i+ 1
2 ,j
(Ψn+1

i+1,j −Ψn+1
i−1,j) + Ψn+1

i+ 1
2 ,j
(Γn+1

i+1,j − Γn+1
i−1,j)

]
− β

2∆y
δ2

x(Γ
n+1
i,j+1 − Γn+1

i,j−1),

0 =
1

2∆x
(Ψn+1

i+1,j −Ψn+1
i−1,j)−

1
2∆y

(Γn+1
i,j+1 − Γn+1

i,j−1),

(31)
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where
δ2

xΓn+1
i,j =

(
Γn+1

i+1,j − 2Γn+1
i,j + Γn+1

i−1,j

)
.

According to the boundary conditions

Γx(a, y, t) = Γx(b, y, t) = 0, ∀y,

Γy(x, 0, t) = Γy(x, 1, t) = 0, ∀x,
(32)

The boundary constraints enabled us to evaluate the space derivatives at the domain’s
endpoints using fictitious points. The following factors contributed to the initial conditions:

Γ10(x, y, t = 0) =
3
2

γ2 sech2(
√

γ2(x + y + x0)), (33)

where γ2 > 0 is the setting chosen by the user. The parameter values are held constant
throughout all of the numerical results presented in this section as β = 0.1, x0 = −5.0,
y = 0 → 1, x = 0 → 20 and t = 0 → 25. It is important to note that we utilized the
DDASPK solver [36], a FORTRAN software 95 that effectively solves ODEs, to solve System
(31). The solver employed a regressive differentiation formula that necessitated an LU-
factorization approximation of the Jacobian matrix of the linearized system, as there was
no initial condition for the space derivatives. The numerical outcomes we acquired are
satisfactory, and the figures below demonstrate their comprehension.

5. Stability of the Numerical Scheme

The stability of the numerical solution was investigated using the Fourier stability
technique. This technique employs Fourier analysis, also known as von Neumann analysis,
to assess the stability of the scheme (31). It is important to note that this method is only
suitable for situations that involve linear equations. Therefore, the goal was to transform
the given equations linearly.

Γt + 4βΓ Ψx + 4βΓx Ψ + β Γxxy = 0,

Ψx − Γy = 0.
(34)

By examining the second equation of System (34), it can be observed that Γ is equal to Ψ.
Hence, the first equation in (34) can be expressed as

Γt + 8β Γ Γx + β Γxxy = 0. (35)

where β is a constant. In order to employ the Fourier stability approach, it is important to
possess linear equations. Hence, in order to align Equation (35) with this approach, it is
necessary to convert it into a linear equation.

Γt + d0Γx + β Γxxy = 0, (36)

where d0 = 8β Γ is quantized and held constant by

d0 = max
1≤i≤N
1≤j≤J

(
8β Γn

i,j

)
.

Equation (36) can be expressed using the finite difference method.

Γn
i,j =Γn+1

i,j + D1Γn+1
i+1,j − D1Γn+1

i−1,j + D2

(
Γn+1

i+1,j+1 − 2Γn+1
i,j+1 + Γn+1

i−1,j+1

)
− D2

(
Γn+1

i+1,j−1 − 2Γn+1
i,j−1 + Γn+1

i−1,j−1

)
,

(37)
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where D1 = 0.5 d0∆t
∆x , D2 = 0.5 β∆t

∆y . It is essential to consider the boundary conditions as
neglecting them can lead to significant consequences. Assume that xi = i∆x, yj = j∆y and
tn = n∆t; then,

Γn
i,j = µneι ξπi∆x eι ηπ j∆y and then Γn+1

i,j = µΓn
i,j,

i = 1, 2, 3, . . . , N, j = 1, 2, 3, . . . , M and ∀n.
(38)

By substituting (38) into (36), we obtain the subsequent results:

Γn
i,j =µΓn

i,j + 2D1 sin(∆xξπ)µΓn
i,j − 8iD2 sin2

(
∆xξπ

2

)
sin(ηπ∆y)µΓn

i,j. (39)

Thus,

µ =
1(

1 + 2D1 sin(ξπ∆x)− 8iD2 sin2
(

∆xξπ
2

)
sin(∆yηπ)

) . (40)

Let

v = 2D1 sin(∆xξπ)− 8iD2 sin2
(

∆xξπ

2

)
sin(∆yηπ). (41)

Equation (40) can be rewritten as:

|µ| =
∣∣∣∣ 1
1 + v

∣∣∣∣ ≤ 1. (42)

Based on our comprehensive study, we can assert with confidence that the scheme under
consideration exhibits stability and adheres to the established norms of Fourier stability.
Maintaining a value of mu below one is crucial, and we can verify that our system suc-
cessfully meets this criterion. The equation shown in (40) provides clear evidence that the
absolute value of µ is less than one, ensuring the stability of our numerical system under
all circumstances.

6. Error Analysis

To determine the accuracy order of Scheme (31), I utilized the Taylor series. The order
was calculated based on the evaluation of the truncation error. Here, we assume that

en+1
i,j = Γn+1

i,j − Γ
(
xi, yj, tn+1

)
. (43)

In order to study the error analysis at a specific position and time (xi, yj, tn+1), we utilize
en+1

i,j , which denotes the error. The estimated solution is referred to as Γn
i,j, while the

analytical solution is Γ
(

xi, yj, tn+1
)
. The ultimate outcome can be achieved by incorporating

(43) into scheme (37).

en
i,j =en+1

i,j + D0en+1
i+1,j − D0en+1

i−1,j + D1

(
en+1

i+1,j+1 − 2en+1
i,j+1 + en+1

i−1,j+1

)
− D1

(
en+1

i+1,j−1 − 2en+1
i,j−1 + en+1

i−1,j−1

)
− ∆tTn

i,j,
(44)

where D0 = d0∆t
2∆x and D1 = β∆t

2∆y . In addition, Tn
i,j presents a way to express the truncation

error, which is as follows:

Tn
i,j =Γ

(
xi, yj, tn+1

)
+ D0Γ

(
xi+1, yj, tn+1

)
− D0Γ

(
xi−1, yj, tn+1

)
+ D1

(
Γ
(
xi+1, yj+1, tn+1

)
− 2Γ

(
xi, yj+1, tn+1

)
+ Γ

(
xi−1, yj+1, tn+1

))
− D1

(
Γ
(
xi+1, yj−1, tn+1

)
− 2Γ

(
xi, yj−1, tn+1

)
+ Γ

(
xi−1, yj−1, tn+1

))
,

(45)
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Hence,

Tn
i,j ≤

∆t
2

Γtt
(

xi, yj, η0n+1
)
− ∆x∆y

4
Γxxxyy

(
η1i, η2j, tn+1

)
− ∆x2

6
Γxxx

(
η1i, yj, tn+1

)
, (46)

where η0n+1 ∈ (tn, tn+1), η1i ∈ (xi−1, xi+1), and η2j ∈
(
yj−1, yj+1

)
. Thus, the numerical

scheme’s truncation error is Tn
i,j = O(∆t) + O(∆y2) + O

(
∆x2). Consequently, every step’s

truncation error is indicated by

Tn
i,j = O

(
∆t, ∆y2, ∆x2

)
.

Performing a series of computations using the initial data and refining it with distinct
meshes, gives (∆x, ∆y, ∆t→ 0).

7. Convergence of the Numerical Schemes

In order to determine whether a numerical scheme is convergent within a specific
domain D, the first step is to evaluate each fixed point (x∗, y∗, t∗) ∈ D. If (xi, yj, tn) →
(x∗, y∗, t∗), then Γn

i,j = Γ(x∗, y∗, t∗) and the numerical scheme is convergent. Earlier, I
demonstrated that the implicit scheme guarantees the unconditional stability of the system.
In order to confirm that its convergence is unconditional, let us assume that the mistake is
represented by e, which is made possible by

en
i,j = Γn

i,j − Γ
(
xi, yj, tn

)
. (47)

Despite the truncation error indication, Γn
i,j removes it and successfully fulfilled the strategy

outlined in Equation (31). Thus,

en
i,j =en+1

i,j + D1en+1
i+1,j − D1en+1

i−1,j + D2

(
en+1

i+1,j+1 − 2en+1
i,j+1 + en+1

i−1,j+1

)
− D2

(
en+1

i+1,j−1 − 2en+1
i,j−1 + en+1

i−1,j−1

)
− ∆tTn

i,j,
(48)

where D1 = 0.5 d0∆t
∆x , D2 = 0.5 β∆t

∆y . Assuming that the following is the correct way to define
the maximum error for each time step:

En = max
{∣∣∣en

i,j

∣∣∣, ∀i, j and n ≥ 0
}

. (49)

Consequently, the result of implementing Equation (49) within Equation (48) is

en+1
i,j ≤ En + ∆tTn

i,j, (50)

Subsequently, for every value of i = 1, . . . , N, j = 1, . . . , M gives

En+1 ≤ En + ∆tTn
i,j. (51)

Based on the original data, it is possible to determine that E0 = 0. Therefore, the inequality
is expressed as

E1 ≤ E0 + ∆tTn
i,j = ∆tTn

i,j ⇒ E2 ≤ E1 + ∆tTn
i,j ≤ 2∆tTn

i,j.

Thus, we have
En ≤ n× ∆tTn

i,j. (52)

When ∆x, ∆y, ∆t→ 0, the value of Tn
i,j → 0; hence,

Ek ≤ k× ∆tTk
n,m → 0 as ∆t→ 0. (53)
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Therefore, it may be concluded that the scheme (Equation (31)) exhibits convergence when
∆x, ∆y, ∆t→ 0.

8. Result and Discussion

This study focuses on the significant outcomes and methods employed. The exact
solutions for Equation (1) can be obtained using the generalized indirect algebraic and
modified S−expansion methods. Figures 1, 2 and 4 display some solitary wave solutions
for the parameters β = 1.20, N = 100, and M = 3200, respectively. I also used a numerical
scheme (31) to confirm these solutions and obtain numerical results. Figure 5 and Table 3
present the main findings, facilitating the comparison between the analytical and numerical
solutions. Based on the above analysis, it is evident that the solutions exhibit a high degree
of similarity, and the error significantly diminishes as ∆x and ∆y approach zero. Any
value of parameter β must remain unchanged for the numerical schemes to maintain
stability. Any alteration to this parameter may lead to instability and should be avoided
at all costs. Figure 1a,b present the time evolution of the analytic solutions (a) Γ1 with
x = −70→ 10 and (b) Γ3 with x = −10→ 70. These figures are plotted at t = 0→ 50 and
β = 1.2. The firing method efficiently addresses the stated problem. Figure 2a,b present
the time evolution of the analytic solutions (a) Γ5 with x = −10 → 60 and (b) Γ8 with
x = −10 → 60. These figures are plotted at t = 0 → 10 and β = 1.2. Figure 4a,b present
the time evolution of the analytic solutions (a) Γ11 with x = −1 → 1 and (b) Γ17 with
x = −10 → 60. These figures are plotted at t = 0 → 10, and β = 1.2. To create the
numerical results of Equation (31), the solution was used as an initial condition for the
numerical scheme. Figure 6 shows the exact solution for a single traveling wave and the
shooting method solutions. These solutions are mutually conducive and behave as a unit,
indicating that the methods employed are valid and successful. The Taylor series expansion
was also used to examine the scheme’s precision. The precision was determined beginning
with the second order. The proposed numerical technique is only approximately accurate
to the second order, as indicated in Figure 5. The Von Neumann analysis demonstrates the
unconditional stability of the numerical system.

Figure 7a,b depict the time progression of the exact and numerical results with
β = 0.1, x0 = −5.0, y = 0 → 1, x = 0 → 20, t = 0 → 25, J = 100, and N = 3200.
It can be seen that the constructed accurate traveling solutions match with the numerical
solutions. The resulting accurate solitary traveling wave and numerical solutions at t = 25
are displayed in 3D in Figure 8a,b. These graphs make it clear that the exact solutions
exhibit behaviors similar to those of the numerical solutions. Table 3 and Figure 5 also
demonstrate the efficacy of the techniques employed. The L2 error and the amount of
CPU time needed to arrive to time step 5 using the numerical scheme are shown in Table 3.
Increasing the number of points dramatically reduces inaccuracy and increases the CPU
time required to process them. The finite difference method is more suitable for solving
nonlinear partial differential equations computationally because it provides the high-error
locations with sufficient data points, quickly decreasing the error.

Table 3. The relative error formula RLTV is used here to measure the error with fixing ∆t = 1× 10−2

at a specific time t = 25.

∆x RLTV CPU

1.0× 10−1 1.5× 10−3 56.0 s
5.0× 10−2 3.2× 10−4 133.36 s
2.5× 10−2 1.6× 10−4 316.20 s

1.25× 10−2 4.4× 10−5 619.80 s
6.3× 10−3 1.2× 10−5 1492.86 s
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β = 0.1, x0 = −5.0, x = 0→ 20, t = 0→ 25, J = 100, and N = 3200.
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Figure 7. The analytical (a) and numerical (b) solutions for Γ10 are shown in 3D. The parameter
values are determined by β = 0.1, x0 = −5.0, y = 0 → 1, x = 0 → 20, t = 0 → 25, J = 100, and
N = 3200.
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Figure 8. The resulting (a) accurate solitary traveling wave and (b) numerical solutions at t = 25
with β = 1.2, x = 0→ 20, y = 0→ 1, N = 3200, and J = 100.

9. Conclusions

In this study, we used the generalized indirect algebraic and modified S-expansion
methods to derive various types of solitary wave solutions for the BS equations. These
solutions were presented in the form of hyperbolic and trigonometric functions. To solve
the suggested problem, we used the shooting method to construct a solution, which we then
used as an initial condition for a numerical scheme. The numerical solution to the problem
was achieved successfully without any issues. We conducted an in-depth analysis of the
differences and similarities between the analytical and numerical results to validate the
constructed solutions. The solutions behaved almost identically to one another. The finite
differences approach achieved a significantly higher accuracy, contributing to the method’s
significant improvement. We determined that the numerical scheme is unconditionally
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stable, and there is a correlation between the total number of points and the relative error.
From a computational standpoint, the methods utilized are effective.
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