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Abstract: This paper investigates a single-machine scheduling problem of a software test with shared
common setup operations. Each job has a corresponding set of setup operations, and the job cannot be
executed unless its setups are completed. If two jobs have the same supporting setups, the common
setups are performed only once. No preemption of any processing is allowed. This problem is known
to be computationally intractable. In this study, we propose sequence-based and position-based
integer programming models and a branch-and-bound algorithm for finding optimal solutions. We
also propose an ant colony optimization algorithm for finding approximate solutions, which will be
used as the initial upper bound of the branch-and-bound algorithm. The computational experiments
are designed and conducted to numerically appraise all of the proposed methods.

Keywords: single-machine scheduling; shared common setups; total completion time; integer
programming; branch-and-bound; ant colony optimization
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1. Introduction

Scheduling is the decision-making process used by many manufacturing and service
industries to allocate resources to economic activities or tasks over he planning horizon [1,2].
This paper studies a scheduling model that is inspired by real-life applications, where
supporting operations need to be prepared before regular jobs are processed. The specific
application context is the scheduling of asoftware test at an IC design company, where the
software system is modular and can be tested module by module and level by level. Before
starting a module test, we need to install software utilities and libraries as well as adjust
system parameters to shape an appropriate system environment. The setup operation
corresponds to the installation of utilities and libraries, which are supporting tasks for the
job. Different tests may require part of the same environment settings. If two jobs have
common supporting tasks, the common setups are performed only once. The abstract
model was also studied by Kononov, Lin, and Fang [3] as a single-machine scheduling
problem formulated from the production scheduling of multimedia works. In the context
of multimedia scheduling, when we want to play multimedia, we need to download their
content first, including audio tracks, subtitles, and images, which can correspond to setup
operations and jobs for this study, respectively. Once the setup operations of the multimedia
objects are prepared, they can be embedded in upper-level objects without multiple copies,
as in physical products. This unique property is different from the manufacture of tangible
products, such as vehicles and computers. Following the standard three-field notation [4],
we denote the model by 1|bp − prec|∑j Cj, where the one indicates the single-machine
setting, bp− prec indicates the bipartite precedence relation between shared setups and
test jobs, and ∑j Cj is the objective to minimize the total completion time.
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This paper is organized into seven sections. In Section 2, the problem definition
is presented with a numerical example for illustrations. The literature review follows.
Section 3 introduces two integer programming models based on different formulation
approaches. Section 4 is dedicated to the development of a branch-and-bound algorithm,
including the development of upper bound, lower bound, and tree traversal methods.
In Section 5, an ant colony optimization algorithm is proposed. Section 6 presents the
computational experiments on the proposed methods. Finally, conclusions and suggestions
for future works are given in Section 7.

2. Problem Definition and Literature Review
2.1. Problem Statements

We first present the notation that will be used in this paper. Note that all parameters
are assumed to be non-negative integers.

n number of jobs;
m number of setup operations;
T = {t1, t2, . . . , tn} set of jobs to be processed;
S = {s1, s2, . . . , sm} set of setup operations;
R = {(si, tj)|si ∈ S supports tj ∈ T} relation indicating whether the setup operation si

is required for each job tj;
pj processing time of job tj on the machine;
spi processing time of setup si on the machine;
σ = (σ1, σ2, ..., σn) particular sequence of the jobs;
σ∗ optimal schedule sequence;
Cj completion time of job tj;
Z(σ) = ∑j∈T total job completion time under schedule σ.

The subject of our research is dedicated to studying the single-machine scheduling
problem with shared common setup operations. The objective is to minimize the total
completion time of the jobs, i.e., ΣCj. The problem can be described as follows:

From time zero onwards, two disjoint sets of activities S and T are to be processed on
a machine. Each job tj has a set of setup operations that job tj can only start after its setups
are completed. All setup operations and jobs can be performed on the machine at any time.
Although all setup operations need to be processed once, they do not contribute to the
objective function because their role is only the preparatory operations for jobs under the
priority relation. At any time, the machine can process at most one setup operation or job.
No preemption of any processing is allowed. In software test scheduling, jobs tj represent
the software to be tested, and setups si refers to the preparation of a programming language
or compilation environment that needs to be installed in advance so that the test software
can be executed. For example, if t1 is an Android application that needs to be tested, and
t1 needs setups s1 and s4, then s1 could be JAVA, s4 could be Android Studio, etc.

To illustrate the problem of our study, we give numerical examples of four setup
operations, five test jobs, the relationR, and its corresponding graph. The parameters and
relation are shown in Figure 1.

Two example schedules are produced and shown below in the form of Gantt charts.
The feasible schedule shown in Figure 2 is σ = (t1, t2, t3, t4, t5) with a total completion
time of 115. Setups s2, s3 precede job t1. The order of s2 and s3 is immaterial. Figure 3
shows schedule σ∗ = (t4, t2, t1, t3, t5) associated with a total completion time of 101, which
is optimal for the given instance. While both are feasible solutions, the objective value of
Figure 3 will be better than that of Figure 2.
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activities s1 s2 s3 s4 t1 t2 t3 t4 t5
length 2 4 3 2 5 3 6 2 7

R(si, tj) t1 t2 t3 t4 t5

s1 0 1 0 1 0
s2 1 1 0 0 1
s3 1 0 0 1 0
s4 0 0 1 0 1

(a) Parameters of five jobs.

s1 s2 s3 s4

t1 t2 t3 t4 t5

(b) Bipartite relation.

Figure 1. Example of 4 setups and 5 jobs.

Machine
Cj 0

∑ Cj 0

s2
4

4

s3
3

7

t1
5

12

12

s1
2

14

t2
3

17

29

s4
2

19

t3
6

25

54

t4
2

27

81

t5
7

34

115

Figure 2. Feasible solution.
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Figure 3. Optimal solution.

2.2. Literature Review

The scheduling problem studied by Kononov, Lin, and Fang [3] has a single machine
that performs all setup operations and testing jobs. Referring to Brucker [5] and Leung [1],
we know that precedence constraints play a crucial role in scheduling problems, especially
when complexity status or categories are involved. Existing research works in the literature
consider precedence relations presented in various forms. Bipartite graphs are often studied
in graph theory. The graph shown in Figure 1 is bipartite because edges exist between
nodes on one side and nodes on the other. Linear allocation problems can also be visualized
by both supply and demand. Unfortunately, scheduling theory rarely addresses precedence
constraints in bipartite graphs.

After formulation, Kononov, Lin, and Fang [3] studied two minimum sum objective
functions, namely the number of late jobs and the total weighted completion time of jobs. As
for the minimization of the total weighted completion time (∑j wjCj), Baker [6] is probably
the first paper to address the existence of precedence constraints. Adolphson and Hu [7]
proposed a polynomial time algorithm for the case in which rooted trees give priority. A
fundamental problem for the jobs-per-unit execution time is 1|prec, pi = 1|∑ wjCj, where
wj ∈ 1, 2, 3 has been proven to be strongly NP-hard by Lawler [8]. The minimum latency
set cover problem studied by Hassin and Levin [9] is the most relevant. The minimum
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latency set cover problem involves a subset of several operations. A subset is complete
when all of their operations are finished. The objective function is the total weighted
completion time of subsets. The minimum latency set cover problem is a special case of
our 1|bp− prec|∑ wjCj problem, and the correspondence is as follows: In our problem, an
operation is mapped to a setup operation (si), and a subset is interpreted as a testing job (tj).
Furthermore, Hassin and Levin [9] showed that the minimum delay set cover problem is
strongly NP-hard even if all operations require the unit execution time (UET). Subsequently,
the 1|bp− prec|∑ wjCj problem is hard as well. By performing a pseudo-polynomial time
reduction in Lawler’s result about 1|prec, pj = 1|∑ wjCj, where wj ∈ 1, 2, 3, Kononov, Lin,
and Fang [3] proved 1|bp− prec, si = tj = 1|∑ Cj is strongly NP-hard. In other words, it is
very difficult to minimize the total weighted completion time in our model, even though
all setup operations and all testing jobs require unit execution time and all weights are one.

To solve the scheduling problem, Shafransky and Strusevich [10]; Hwang, Kovalyov,
and Lin [11]; and Cheng, Kravchenko, and Lin [12] studied several special cases with
fixed job sequences and solved these problems in polynomial time. Moreover, the branch-
and-bound algorithm is an enumeration technique that can be applied to combinatorial
optimization problems. Brucker and Sievers [13] deploy branch-and-bound algorithms
on the job-shop scheduling problem and Hadjar, Marcotte, and Francois [14] do the same
on the multiple-depot vehicle scheduling problem. To find approximate solutions to
a hard optimization problem, various meta-heuristics have been designed. Kunhare,
Tiwari, and Dhar [15] used particle swarm optimization for feature selection in intrusion
detection systems. Kunhare, Tiwari, and Dhar [16] further used a genetic algorithm to
compose a hybrid approach to intrusion detection. For solving a worker assignment bi-level
programming problem, Luo, Zhang, and Yin [17] designed a two-level algorithm, which
simulated annealing as the upper level to minimize the worker idle time and the genetic
algorithm as the lower level to minimize the production time. For more general coverage,
the reader is referred to Ansari and Daxini [18] and Rachih, Mhada, and Chiheb [19].
Ant colony optimization (ACO) is a meta-heuristic algorithm that can be used to find
approximate solutions to difficult optimization problems. Many research studies in the
literature also use ACO to solve scheduling problems, such as Blum and Sampels [20]
on group shop scheduling problems; Yang, Shi, and Marchese [21] on generalized TSP
problems; and Xiang, Yin, and Lim [22] on operating room surgery scheduling problems.
According to the above, it is known that the branch-and-bound algorithm and ACO may
be effective in solving the scheduling problem in our study.

3. Integer Programming Models

In this section, to mathematically present the studied problem 1|bp− prec|ΣjCj, we
formulate two integer programming models. Since the problem’s nature is set on permuta-
tions of jobs, we deploy two common approaches, sequence-based decision variables and
position-based decision variables, for shaping permutation-based optimization problems.
The models will be then implemented and solved by the off-the-shelf Gurobi Optimizer.

3.1. Position-Based IP

In the section, we focus on the decision that assigns m + n activities at m + n positions.
Activities 1, 2, . . . , m are setups and activities m+ 1, m+ 2, . . . , and m+ n are jobs. Therefore,
an activity could be either a job or a setup operation. In the model, there are six categories
of constraints; (m + n)2 binary variables x; and two subsets of m + n integer variables, el
and Ck. Index k ∈ {1, 2, . . . , m + n} indicates the positions. We use the binary relation
(i, j) ∈ R to indicate whether the setup i should finish before the job j starts. The variables
used in the model are defined in the following:
Decision variables:

xi,k = 1 if the activity i is in the position k; 0, otherwise.
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Auxiliary variables:

pl : processing time of the activity l;

Ck : completion time of the job in the position k.

Note that extra variables, C′k, are introduced for extracting the completion times of jobs. If a
position k is loaded with a setup, then C′k ≥ −M, where M is a big number.
Position-based IP:

min
m+n

∑
k=1

C′k

s.t.
m+n

∑
k=1

xl,k = 1, activity l ∈ {1, . . . , m + n} is assigned to a position; (1)

m+n

∑
l=1

xl,k = 1, position k accommodates one activity; (2)

m+n

∑
k=1

xi,k · k ≤
m+n

∑
k=1

xj,k · k, (i, j) ∈ R, 1 ≤ i ≤ m, m + 1 ≤ j ≤ m + n; (3)

C1 =
m+n

∑
l=1

xl,1 · pl , completion time of the first position; (4)

Ck ≥ Ck−1 +
m+n

∑
l=1

xl,k · pl , completion time of position k ∈ {1, . . . , m + n}; (5)

C′k ≥ Ck − (
m

∑
i=1

xi,k)M, (6)

xl,k ∈ {0, 1}, 1 ≤ l, k ≤ m + n; (7)

Ck ≥ 0, C′k ≥ 0, 1 ≤ k ≤ m + n. (8)

The goal is to minimize the total completion time of jobs. Constraint (1) lets each
position accommodate exactly one job or one setup. Constraint (2) lets each activity be
assigned to exactly one position. Constraint (3) ensures that any job j can start only after
its setup operations, i, are all finished. Constraint (4) lets the completion time of the first
position be greater than or equal to the processing time of the event that occupied the
first position. Constraint (5) defines the completion time of the position k to be greater
than or equal to the completion time of k− 1 plus the processing time of the event that is
processed in the position k. Constraint (6) defines the completion time k′ if the position k
contains a job. The reason we added a variable is that if the objective function computes
the completion time of jobs in ∑m+n

k=1 ∑m+n
j=m+1 Ck · xjk; it becomes quadratic. Therefore, we

add an extra variable, C′, to make the objective function linear, i.e., ∑m+n
k=1 C′k.

3.2. Sequence-Based IP

In this section, the formulation approach is to determine the relative positions between
each two activities. The model consists of five categories of constraints; (m + n)2 binary
variables x; and two subsets of m + n integer variables, pj and Ck.

Decision variable:

xi,j = 1 if activity i precedes the activity j; 0, otherwise.
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Auxiliary variables:

pl : processing time of the activity l;

Ck : completion time of the activity k.Sequence-based IP:

min
m+n

∑
k=m+1

Ck

s.t. xi,j + xj,i = 1, i 6= j ∈ {1, . . . , m + n}; (9)

xj,i = 0, (i, j) ∈ R, 1 ≤ i ≤ m, m + 1 ≤ j ≤ m + n; (10)

Cj ≥ Ci + pj + (xi,j − 1)M, i 6= j ∈ {1, . . . , m + n}; (11)

Ci ≥ spi, 1 ≤ i ≤ m; (12)

Cj ≥ pj + ∑
(i,j)∈R

spi, m + 1 ≤ j ≤ m + n; (13)

xi,j ∈ {0, 1}, 1 ≤ i, j ≤ m + n; (14)

Ck ≥ 0, 1 ≤ k ≤ m + n. (15)

The objective value is to minimize the total completion time of jobs except for setup
operations. Constraint (9) limits the precedence between the two events. Constraint (10)
means that if job j needs setup i, then setup i should come before job j. Constraint (11) lets
the completion time of job j be greater than or equal to the completion time of job i plus the
processing time of job j if job i precedes job j. Constraint (12) defines the completion time
of event i if it is a setup. Constraint (13) defines the completion time of event j if it is a job.

4. Branch-and-Bound Algorithm

In this section, we explore a search tree that generates all permutations of jobs. In the
branch-and-bound algorithm, there will be an upper bound representing the current best
solution during the search process. In the process of searching, each node will calculate the
lower bound once, and if the lower bound calculated is not better than the upper bound,
the subtree of the node will be pruned to speed up the search. Therefore, we propose an
upper bound as the initial solution, a lower bound for pruning non-promising nodes, and a
property to check whether each node satisfies the condition when pruning the tree.

4.1. Upper Bound

First, we use an ACO algorithm coupled with local search to find an approximate
solution as an upper bound, sorted by the settings of pheromone and visibility. Details
about the ACO algorithm will be introduced in Section 5. Implementing a branch-and-
bound algorithm with tight upper bounds helps converge the solution process faster.

4.2. Lower Bound

Lower bounds can help cut unnecessary branches that will never lead to a solution
better than the incumbent one. Different approaches can be used to derive lower bounds.
In our study, we compute a lower bound by sorting the remaining processing times of
unscheduled jobs. We can express it as the 1|rj|ΣCj problem. When the setup operations of
the scheduled jobs are complete, we can release these setup times. Then, we denote the
unfinished setup operations as the release date of each job and implement the shortest
remaining processing time (SRPT) method. The process with the least amount of time
remaining before completion is selected to execute. Finally, we add the total current
completion time of scheduled jobs and the result of the SRPT mentioned above as a lower
bound. The Lower Bound algorithm is shown in Algorithm 1.
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Algorithm 1: LowerBound

1 Function LowerBound(σ):
2 LB = 0;
3 if length(σ) == n then
4 LB = sum(σ);
5 else
6 sort the unscheduled jobs by the shortest remaining processing time;
7 LB = sum(σ)+SRPT(σunscheduled);

8 return LB.

4.3. Dominance Property

In this section, after we use the lower bound to prune nodes, we also propose a
property of the branch-and-bound algorithm (Algorithm 2), which can also speed up node
pruning and reduce tree traversal time. The content description and proof of the property
are as follows:

Lemma 1. Let J = {j1, j2, ..., jk} be the unscheduled jobs at a node X in the branch-and-bound
tree. For any unscheduled job ja, if there is another unscheduled job jb such that the setups of jb are
all scheduled and pb ≤ pa, then the subtree X + ja by choosing ja as the next job to schedule can be
pruned off because jb precedes ja in some optimal solution.

Proof. Let σ be the sequence of scheduled jobs. Assume that there is an optimal solution
(σ, ja, L, jb), where L is a sequence of the unscheduled jobs. When the setups of job ja are
not yet completed, its completion time Ca would be Cσ + ∑m

i→a
i∈un f inished

spi + pa, and, when

the setups of job jb are completed, its completion time Cb would be Cσ + Ca + CL + pb,
where CL is the completion time of all jobs of L. Assuming the positions of jb and ja are
swapped as (σ, jb, L, ja), we denote their completion times as C′b,C′L, and C′a. At this point,
C′b will be Cσ + pb, and C′a will be Cσ + C′b + C′L + ∑m

i→a
i∈un f inished

spi + pa. Suppose that if

pb is less than pa, it makes C′b less than Cb, which also makes the completion time of L
shorter, to the benefit of both job jy and L. When both C′y and C′L move forward, the result
of C′a will also decrease accordingly. According to the assumption, we know that the total
completion time of (σ, jb, L, ja) will be smaller than that of (σ, ja, L, jb). Therefore, we can
prune off the branch of node ja, which will not lead to a better solution without sacrificing
the optimality.

Algorithm 2: Check Property

1 Function CheckProperty(J):
2 forall ja ∈ J do
3 forall jb ∈ J and ja 6= jb do
4 if the setups of jb have finished and pb ≤ pa then
5 return False;

6 return True.

4.4. Tree Traversal

In this section, we use three different tree traversal methods, depth-first search (DFS),
breadth-first search (BFS), and best-first search (BestFS), to perform the branch-and-bound
algorithm. Moreover, we also added the upper bound, lower bound, and property men-
tioned above into our branch-and-bound algorithm.
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4.5. Depth-First Search (DFS)

DFS is a recursive algorithm for searching all the nodes of a tree and can generate the
permutations of all the solutions. It starts at the root node and traverses along each branch
before backtracking. The advantage of DFS is that the demand for memory is relatively
low, but the disadvantage is that because of recursion, there will be a heavier loading in the
stack operation, and it will take more time to find all the solutions. The DFS algorithm is
shown in Algorithm 3.

First, the algorithm will obtain the upper bound from Line 15 and call the recursive
DFS function. When we encounter the deepest node or have visited all of its children, we
move backward along the current path to find the unvisited node to traverse. In the search
process, we use LowerBound() and CheckProperty() to test whether we should continue
to search down or not. If the lower bound is greater than or equal to the upper bound, or if
the property is not met, we will prune the branch because it does not yield a better solution
than the current one. This method can reduce the number of search nodes.

Algorithm 3: Depth-First Search

1 Function DFS(sequence, ub, σ, σ∗):
2 if length(σ) == n then
3 if sum(σ) < ub then
4 ub = sum(σ);
5 σ∗ = σ;

6 return ub, σ∗;

7 forall tj ∈ sequence do
8 σ.append(tj);
9 denote sequenceunscheduled as sequence without tj;

10 if LowerBound(σ)< ub then
11 if CheckProperty(tj, sequenceunscheduled) then
12 ub, σ∗ =DFS(sequenceunscheduled, ub, σ, σ∗);

13 return ub, σ∗;

14 ub =UpperBound(sequence);
15 ub, σ∗ =DFS(sequence, ub, [], σ∗);

4.6. Breadth-First Search (BFS)

BFS is a tree traversal algorithm that satisfies given properties. It starts at the root of
the tree, traverses all nodes at the current level, and moves to the next depth level. Unlike
DFS, which will find a solution first, it will wait until the last level is searched to find all
suitable solutions. In particular, this method uses a queue to record the sequence of visited
nodes. The advantage of BFS is that each node is traversed by the shortest path, but the
disadvantage is that it requires more memory to store all of the traversed nodes. It thus
takes more time to search deeper trees.

The BFS algorithm is shown in Algorithm 4. First, the algorithm will obtain the upper
bound by UpperBound() from Line 25. The BFS function starts from Line 2; we create a
queue that uses the First-In-First-Out strategy. Lines 3 through 5 are the initial settings that
we use to set a root. From Lines 6 to 24, we enqueue the root node and then dequeue the
values in order. Then, we enqueue the unvisited nodes and recalculate the lower bound un-
til there is no value in the queue. Before each enqueue, it is necessary to use LowerBound()
and CheckProperty() to check whether the lower bound is smaller than the upper bound
and whether it satisfies the property. It can reduce the number of visited nodes and shorten
the execution time. In Line 12, we use the Without() function to obtain the nodes that have
not been visited yet. The loop stops when the queue is empty, indicating that all nodes
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have been traversed.

Algorithm 4: Breadth-First Search

1 Function BFS(sequence, ub):
2 Let Q be a queue;
3 forall tj ∈ sequence do
4 if LowerBound(tj)< ub then
5 Q.enqueue(tj);

6 while Q is not empty do
7 σ = Q.dequeue();
8 while LowerBound(σ)≥ ub do
9 if Q is empty then

10 break;

11 σ = Q.dequeue();

12 forall tk ∈ Without(σ) do
13 σ.append(tk);
14 if length(σ) == n then
15 if sum(σ) < ub then
16 ub = sum(σ);
17 σ∗ = σ;

18 else
19 if LowerBound(σ)< ub then
20 if CheckProperty(tk, σ) then
21 Q.enqueue(tj);

22 if Q is empty then
23 break;

24 return ub, σ∗;

25 ub =UpperBound(sequence);
26 ub, σ∗ =BFS(sequence, ub);

4.7. Best-First Search (BestFS)

BestFS works as a combination of depth-first and breadth-first search algorithms. It is
different from other search algorithms that blindly traverse to the next node, it uses the
concept of a priority queue and heuristic search, using an evaluation function to determine
to which neighbor node is the best to move. It is also a greedy strategy because it always
chooses the best path at the time, rather than BFS using an exhaustive search. The advantage
of BestFS is that it is more efficient because it always searches through the node with the
smaller lower bound first. On the other hand, the disadvantage is that the structure of the
heap is difficult to maintain and requires more memory resources. Since each visited node
will be stored in the heap, we can directly obtain the node with the smallest lower bound
bound by heapsort. Therefore, when the amount of data is large, there will be too many
nodes growing at one time, which will occupy a relatively large memory space.

The concept of the BestFS algorithm is the same as Algorithm 4. The difference is that
in the BestFS function, we change the queue to a priority queue by using a min-heap data
structure, where the priority order is sorted using the calculated lower bound, instead of
using the FIFO order. The smaller the lower bound is, the higher the priority. When we
use a heap to pop or push values, we will perform the function of heapify at the same time
to ensure the heap is in the form of a min-heap. Heapify is the process of creating a heap
data structure from a binary tree. Similarly, before each element is pushed into the heap,
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we use LowerBound() and CheckProperty() to check whether the lower bound is smaller
than the upper bound and whether it satisfies the property.

5. Ant Colony Optimization (ACO)

Ant colony optimization (ACO) was proposed by Dorigo et al. [23] and Dorigo [24].
It is a meta-heuristic algorithm based on probabilistic techniques and populations. ACO
is inspired by the foraging behavior of ants, where the probability of an ant choosing a
path is proportional to the pheromone concentration on the path, that is, a large number of
ant colonies will give positive feedback. When ants are looking for food, they constantly
modify the original path through pheromones and, finally, find the best path. Initially, Ant
System (AS) was used to solve the well-known traveling salesman problem (TSP). Later,
many ACO variants were produced to solve different hard combinatorial optimization
problems, such as assignment problems, scheduling problems, or vehicle routing problems.
In recent years, some researchers have focused on applying the ACO algorithm to multi-
objective problems and dynamic or stochastic problems. In ant colony optimization, each
ant constructs its foraging path (solution) node by node. When determining the next node
to move on, we can use dominance properties and exclusion information to rule out the
nodes that are not promising. In comparison with other meta-heuristics, this feature may
save the time required for handling infeasible or inferior solutions. The pseudo-code of
ACO that we adopt is shown in Algorithm 5.

Algorithm 5: Ant Colony Optimization

1 Function ACO():
2 initialize the ACO parameters;
3 while stopping criteria is not met do
4 foreach ants in population do
5 generate the first job randomly;
6 foreach unselected job do
7 choose next job by the transition rule;

8 update local pheromone;

9 LocalSearch(sequencelbest);
10 update pheromone based on the best solution.

State transition rule: We treat each job as a node in the graph and all nodes are connected.
To choose the next edge, the ant will consider the visibility of each edge available from
its current location, as well as the pheromones. The formula for calculating the visibility
value is given by ηij =

1
∑

i→j
spi+pj

, where ηij is the visibility value from node i to node j

defined as the inverse of the processing time of job j plus its unfinished setup operations.
Then, we will calculate the probability of each feasible path; the probability formula is

given as pk
ij =

τα
ij∗η

β
ij

∑
k∈unselectedi

τα
ik∗η

β
ik

, where τij is the pheromone on the edge from node i to node

j, α ≥ 0 is a parameter for controlling the influence of the pheromone, and β ≥ 0 is a
parameter for controlling the influence of invisibility. The next node is determined by a
roulette wheel selection.
Pheromone update rule: When all ants have found their solutions, the pheromone trails are
updated. The formula for updating the pheromones is defined as τij = (1− ρ) ∗ τij +4τk

ij,

where ρ is the pheromone evaporation rate, and4τk
ij, the incremental of the pheromone

from node i to node j by the kth ant, is τk
ij =

Q
ΣCk

if the ant k traverses edgei,j; 0, otherwise,
where ΣCk is the total completion time in the solution of the kth ant, and Q is a constant.
Stopping criterion: We set a time limit of 1800 s for the ACO execution. Once the course
reaches the time limit, the ACO algorithm will stop and report the incumbent best solution.
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To close the discussion of ACO features, we note that local search algorithms can
improve on the ACO solution at each iteration and make the result closer to the global
optimal solution. At the end of each ACO generation, we deploy a 2-OPT local search
procedure to the best solution of each generation so as to probabilistically escape the
incumbent solution away from the local optimum.

6. Computational Experiments

In this section, we generate test data for appraising the proposed methods. The
solution algorithms were coded in Python, and the integer programming models are
implemented on Gurobi 9.1.2 interfaced with Python API. The experiments were performed
on a desktop computer with Intel Core(TM) i7-8700K CPU at 3.70GHz with 32.0 GB RAM.
The operating system is Microsoft Windows 10. We will describe the data generation design
and parameter settings in detail and discuss the experimental results.

6.1. Data Generation Scheme

In the experiments, datasets were generated according to the following rules, and all
parameters are integers:

1. Six different numbers of jobs n ∈ {5, 10, 20, 30, 40, 50} and different numbers of setup
operations m ∈ {4, 8, 18, 25, 35, 45}.

2. A binary support relation array R of a size n ∗ m is randomly generated. If (si, tj)
belongs toR, denoted by rij = 1, then job tj cannot start unless setup si is completed.
The probability for rij = 1 is set to be 0.5, i.e., if a generated random number ≤ 0.5,
then rij = 1. Note that when rij = 1 for all i and j, the problem can be solved by
simply arranging the job in the shortest processing time (SPT) order.

3. The processing times of jobs pj were generated from the uniform distribution [1, 10].
4. The processing times of setups spi were generated from the uniform distribution [1, 5].
5. For each job number, three independent instances were generated. In total, 18 datasets

will be tested, as shown in Table 1.

Table 1. Categories of datasets.

Datasets n m

D1,D2,D3 5 4
D4,D5,D6 10 8
D7,D8,D9 20 18
D10,D11,D12 30 25
D13,D14,D15 40 35
D16,D17,D18 50 45

6.2. Results of Integer Programming Models

In the experiments of the integer programming models, we ran two integer program-
ming models on the dataset with a time limit of 1800 s. The results are shown in Table 2. If
an IP model did not complete its execution of a dataset in 1800 s, its run time is denoted as
”−”. In the table, the gap column indicates the relative difference between the feasible solu-
tion found upon termination and the best proven lower bound. The gap values were in the
output of Gurobi. The gap value is defined as: gap(%) = |ObjBound−ObjVal|

|ObjVal| × 100%, where
ObjBound and ObjVal are a lower bound and the incumbent solution objective, respec-
tively. When the gap is zero we have demonstrated optimality. The column best solution
represents the best result of all our proposed methods on the same dataset.

When nk is 10, the sequence-based IP takes more than 1800 s, even though both
methods can obtain the optimal solution. The position-based IP takes less time and ends up
with a gap of 0%. When nk is greater than or equal to 20, neither model can find the optimal
solution within 1800 s, but there are still some solutions that can find the same solution as
the best solution, such as D17 of the position-based IP and D13 of the sequence-based IP. As
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nk increases, the gap of the position-based IP will be greater than that of the sequence-based
IP. However, when we compare it with the best solution, even if the objective value is the
same as the best solution, the gap value is still very large, such as the position-based IP of
D17 and the sequence-based IP of D7 to D9. It means that their lower bounds are not tight,
i.e., they have a significant deviation from the final feasible solution.

Table 2. Results of different IP models.

nk Datasets
Position-Based Sequence-Based

Best Solutionobj. Time gap obj. Time gap

5

D1 101 0.09 0% 101 0.10 0% 101
D2 128 0.09 0% 128 0.10 0% 128
D3 122 0.08 0% 122 0.10 0% 122

10

D4 461 246.11 0% 461 - 19% 461
D5 423 46.10 0% 423 - 21% 423
D6 457 355.95 0% 457 - 25% 457

20

D7 2055 - 44% 2052 - 53% 2052
D8 1822 - 34% 1820 - 58% 1820
D9 1670 - 46% 1662 - 57% 1662

30

D10 3609 - 50% 3602 - 61% 3597
D11 3985 - 50% 4007 - 62% 3985
D12 4448 - 62% 4469 - 66% 4424

40

D13 8196 - 72% 8168 - 66% 8168
D14 7395 - 68% 7402 - 67% 7390
D15 7975 - 70% 7935 - 66% 7935

50

D16 12,882 - 76% 12,963 - 66% 12,880
D17 12,305 - 73% 12,374 - 67% 12,305
D18 10,891 - 72% 10,953 - 66% 10,871

6.3. Results of Branch-and-Bound Algorithm

Table 3 shows the results of the branch-and-bound algorithm with three different
tree traversal methods. We set the time limit to 1800 s. In this table, the column node_cnt
represents the number of visited nodes. The dev column is an abbreviation for deviation,
expressed as a percentage of the difference between the objective value and the best solution.
The calculation formula is as dev(%) = (obj−best solution)

best solution × 100%.
When nk is less than 20, DFS and BestFS successfully find the optimal solutions, but

their execution times and the number of visited nodes of BFS are much larger than others.
Even if nk is 20, BFS cannot find the optimal solution within the time limit. In addition,
we can see that the execution time of BestFS is faster than that of DFS for a small number
of jobs. When nk is greater than or equal to 30, the three methods fail to find the optimal
solution within the time limit. The number of visited nodes and the deviation of DFS are
clearly lower than those of BFS and BestFS. The results indicate that DFS is more efficient
than BFS and BestFS because the DFS algorithm is not a layer-order traversal but will
backtrack after finding the solution. Therefore, BFS and BestFS may not be able to find any
feasible solution within the time limit. To sum up, the performance of DFS is better than
those of BFS and BestFS, so we will analyze the experimental results of DFS in detail in the
next section.
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Table 3. Results of different tree traversal methods.

nk Datasets
DFS BFS BestFS

obj. node_cnt Time dev obj. node_cnt Time dev obj. node_cnt Time dev

5

D1 101 25 0.00 0.00 101 67 0.00 0.00 101 16 0.00 0.00
D2 128 22 0.00 0.00 128 44 0.00 0.00 128 12 0.00 0.00
D3 122 27 0.00 0.00 122 68 0.01 0.00 122 20 0.00 0.00

10

D4 461 203 0.06 0.00 461 4141 0.39 0.00 461 283 0.04 0.00
D5 423 246 0.04 0.00 423 2518 0.27 0.00 423 128 0.02 0.00
D6 457 1055 0.25 0.00 457 34,646 2.57 0.00 457 1788 0.18 0.00

20

D7 2052 34,798 69.07 0.00 7839 1,940,323 - 2.82 2052 33,393 22.62 0.00
D8 1820 44,844 77.49 0.00 6651 2,081,103 - 2.65 1820 44,166 22.03 0.00
D9 1662 201,418 314.67 0.00 6211 2,078,269 - 2.74 1662 172,094 96.32 0.00

30

D10 3605 440,015 - 0.00 18,533 1,482,922 - 4.15 18,533 1,903,404 - 4.15
D11 4053 385,433 - 0.02 22,005 1,083,532 - 4.52 22,055 1,064,974 - 4.53
D12 4470 392,869 - 0.01 22,990 1,165,534 - 4.20 22,990 1,423,640 - 4.20

40

D13 8357 189,796 - 0.02 51,610 846,721 - 5.32 51,610 769,918 - 5.32
D14 7564 176,723 - 0.02 44,779 873,638 - 5.06 44,779 1,112,645 - 5.06
D15 8074 185,522 - 0.02 49,102 888,079 - 5.19 49,102 1,094,652 - 5.19

50

D16 13,007 74,873 - 0.01 106,541 856,905 - 7.27 106,541 954,605 - 7.27
D17 12,527 84,980 - 0.02 97,383 933,536 - 6.91 97,383 1,047,559 - 6.91
D18 11,255 90,908 - 0.04 87,545 1,055,329 - 7.05 87,545 1,181,533 - 7.05

6.4. Results of DFS Algorithm

In the experiment, we compare three different cases, including the original DFS
algorithm, DFS with the lower bound, and DFS with the dominance property. Table 4
shows the experimental results of the different cases and also compares their objective
values (obj.), numbers of visited nodes (node_cnt), execution times (time), and deviations
(dev) from the best solution.

We can find that when the lower bound and properties are incorporated into DFS, the
number of visited nodes is significantly reduced. Since this method will cut off unhelpful
branches, it can also speed up the traversal, making it easier to find better solutions. Even
when nk is greater than or equal to 30, none of the three cases can find the best solution
within the time limit. However, compared with the original DFS, DFS with a lower bound
and DFS with a dominance property attained smaller deviations, indicating the capability
of finding solutions closer to the best solution.

Table 4. Results of DFS algorithm.

nk Datasets
DFS DFS + LB DFS + LB + Property

obj. node_cnt Time dev obj. node_cnt Time dev obj. node_cnt Time dev

5

D1 101 325 0.00 0.00 101 28 0.00 0.00 101 25 0.00 0.00
D2 128 325 0.00 0.00 128 48 0.00 0.00 128 22 0.00 0.00
D3 122 325 0.00 0.00 122 27 0.00 0.00 122 27 0.00 0.00

10

D4 461 9,864,100 173.53 0.00 461 614 0.11 0.00 461 203 0.07 0.00
D5 423 9,864,100 174.60 0.00 423 626 0.09 0.00 423 246 0.05 0.00
D6 457 9,864,100 182.09 0.00 457 2381 0.51 0.00 457 1055 0.25 0.00

20

D7 2174 27,177,572 - 0.06 2052 135,187 230.35 0.00 2052 34,798 69.07 0.00
D8 2145 28,810,807 - 0.18 1820 287,087 429.71 0.00 1820 44,844 77.49 0.00
D9 1904 29,472,356 - 0.15 1662 1,006,390 1405.52 0.00 1662 201,418 314.67 0.00

30

D10 4229 14,013,551 - 0.18 3679 426,340 - 0.02 3605 440,015 - 0.00
D11 4757 13,668,237 - 0.19 4211 462,562 - 0.06 4053 385,433 - 0.02
D12 5087 14,077,620 - 0.15 4530 443,418 - 0.02 4470 392,869 - 0.01



Mathematics 2023, 11, 4705 14 of 17

Table 4. Cont.

nk Datasets
DFS DFS + LB DFS + LB + Property

obj. node_cnt Time dev obj. node_cnt Time dev obj. node_cnt Time dev

40

D13 9557 7,184,349 - 0.17 8405 169,550 - 0.03 8357 189,796 - 0.02
D14 8505 7,327,087 - 0.15 7645 210,938 - 0.03 7564 176,723 - 0.02
D15 9131 7,111,936 - 0.15 8250 210,891 - 0.04 8074 185,522 - 0.02

50

D16 14,629 4,136,372 - 0.14 13,196 104,445 - 0.02 13,007 74,873 - 0.01
D17 14,272 4,189,689 - 0.16 12,911 119,416 - 0.05 12,527 84,980 - 0.02
D18 12,901 4,254,099 - 0.19 11,522 114,774 - 0.06 11,255 90,908 - 0.04

6.5. Results of ACO Algorithm

In this section, we performed the ACO algorithm on the 18 datasets and set the time
limit to 1800 s. Tables 5–7 summarize the results of the three branch-and-bound algorithms
with ACO upper bounds. The results include objective values (obj.) and deviation (dev)
of the ACO. The execution time of the ACO algorithm is much shorter than that of the
branch-and-bound algorithm. In addition, we will compare the objective value (obj.),
the number of visited nodes (node_cnt), and the execution times, (time), of the original
algorithm and the algorithm with ACO as the upper bound. The ACO parameters used
in the experiments are shown as follows: generation = 300; population = 20; α = 3; β = 1;
and ρ = 0.1.

As can be seen from the experimental table, the deviation of the ACO is small and an
even better solution can be found than IP models within 1800 s. Therefore, we can use the
ACO as the initial value of the upper bound (ub) to speed up the tree traversal time.

When the branch-and-bound algorithm is executing with the test lb < ub, the ACO
can make ub smaller, cutting more unnecessary branches. According to the tables, when nk
is less than or equal to 20, the algorithm with an upper bound finds the best solution in a
shorter time and visits fewer nodes; especially for the ACO in BFS, this is more obvious.
As the value of nk becomes larger, it increases the probability of the algorithm finding the
best solution within the same time limit. In summary, using the ACO solution as an upper
bound can make the branch-and-bound algorithm perform better.

Table 5. Results of DFS with ACO upper bounds.

nk Datasets
DFS ACO DFS + ACO

obj. node_cnt Time obj. dev obj. node_cnt Time

5

D1 101 25 0.00 101 0.00 101 5 0.00
D2 128 22 0.00 128 0.00 128 7 0.00
D3 122 27 0.00 122 0.00 122 4 0.00

10

D4 461 203 0.06 461 0.00 461 112 0.06
D5 423 246 0.04 427 0.01 423 75 0.04
D6 457 1055 0.25 464 0.02 457 954 0.25

20

D7 2052 34,798 69.07 2058 0.00 2052 32,861 64.83
D8 1820 44,844 77.49 1868 0.03 1820 43,257 72.69
D9 1662 201,418 314.67 1668 0.00 1662 157,071 243.59

30

D10 3605 440,015 - 3616 0.01 3597 433,789 -
D11 4053 385,433 - 3986 0.00 3985 373,573 -
D12 4470 392,869 - 4424 0.00 4424 357,690 -

40

D13 8357 189,796 - 8282 0.01 8282 159,727 -
D14 7564 176,723 - 7390 0.00 7390 131,500 -
D15 8074 185,522 - 7967 0.00 7967 145,476 -

50

D16 13,007 74873 - 12,880 0.00 12,880 69,077 -
D17 12,527 84,980 - 12,587 0.02 12,527 83,440 -
D18 11,255 90,908 - 10,871 0.00 10,871 71,311 -
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Table 6. Results of BFS with ACO upper bounds.

nk Datasets
BFS ACO BFS + ACO

obj. node_cnt Time obj. Deviation obj. node_cnt Time

5

D1 101 67 0.00 101 0.00 101 4 0.00
D2 128 44 0.00 128 0.00 128 3 0.00
D3 122 68 0.01 122 0.00 122 4 0.00

10

D4 461 4141 0.39 461 0.00 461 96 0.04
D5 423 2518 0.27 427 0.01 423 118 0.03
D6 457 34,646 2.57 464 0.02 457 2578 0.40

20

D7 7839 1,940,323 - 2058 0.00 2052 43,231 33.67
D8 6651 2,081,103 - 1868 0.03 1868 3,185,673 -
D9 6211 2,078,269 - 1668 0.00 1662 79,117 124.83

30

D10 18,533 1,482,922 - 3616 0.01 3616 782,158 -
D11 22,005 1,083,532 - 3986 0.00 3986 394,009 -
D12 22,990 1,165,534 - 4424 0.00 4424 485,726 -

40

D13 51,610 846,721 - 8282 0.01 8282 649,800 -
D14 44,779 873,638 - 7390 0.00 7390 532,584 -
D15 49,102 888,079 - 7967 0.00 7967 702,847 -

50

D16 106,541 856,905 - 12,880 0.00 12,880 682,047 -
D17 97,383 933,536 - 12,587 0.02 12,587 927,886 -
D18 87,545 1,055,329 - 10,871 0.00 10,871 820,528 -

Table 7. Results of BestFS with ACO upper bounds.

nk Datasets
BestFS ACO BestFS + ACO

obj. node_cnt Time obj. Deviation obj. node_cnt Time

5

D1 101 16 0.00 101 0.00 101 4 0.00
D2 128 12 0.00 128 0.00 128 3 0.00
D3 122 20 0.00 122 0.00 122 4 0.00

10

D4 461 283 0.04 461 0.00 461 96 0.04
D5 423 128 0.02 427 0.01 423 61 0.02
D6 457 1788 0.18 464 0.02 457 1333 0.18

20

D7 2052 33,393 22.62 2058 0.00 2052 13,380 24.48
D8 1820 44,166 22.03 1868 0.03 1820 39,031 25.69
D9 1662 172,094 96.32 1668 0.00 1662 71,082 100.10

30

D10 18,533 1,903,404 - 3616 0.01 3616 1,350,098 -
D11 22,055 1,064,974 - 3986 0.00 3986 518,619 -
D12 22,990 1,423,640 - 4424 0.00 4424 648,245 -

40

D13 51,610 769,918 - 8282 0.01 8282 790,216 -
D14 44,779 1,112,645 - 7390 0.00 7390 971,168 -
D15 49,102 1,094,652 - 7967 0.00 7967 1,087,057 -

50

D16 106,541 954,605 - 12,880 0.00 12,880 888,985 -
D17 97,383 1,047,559 - 12,587 0.02 12,587 1,078,245 -
D18 87,545 1,181,533 - 10,871 0.00 10,871 1,181,376 -

To summarize the computational study, we note that the two proposed integer pro-
gramming approaches and the branch-and-bound algorithm, aimed at solving the problem
to optimality, can complete their execution courses for 20 jobs or less. For larger instances,
these exact two approaches become inferior. When reaching the specified time limit, the
reported solutions are not favorable. Another observation is about the three traversal strate-
gies. DFS has its advantages in its easy implementations (by straightforward recursions)
and minimum memory requirement. The BFS and BestFS strategies are known to show
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their significance in maintaining acquired information about the quality of the unexplored
nodes in a priority queue. On the other hand, they suffer from the memory space and heap
manipulation work for the unexplored nodes. BFS and BestFS would be preferred when a
larger memory is available and advanced data structure manipulations are available.

7. Conclusions and Future Works

In this paper, we studied the scheduling problem with shared common setups of the
minimum total completion time. We proposed two integer programming models and the
branch-and-bound algorithm, which incorporates three tree traversal strategies and the
initial solutions yielded from an ACO algorithm. A computational study shows that the
position-based IP outperforms the sequence-based one when the problem size is smaller. As
the problem grows larger, the gap values for the sequence-based IP are smaller than those
of the position-based IP. Similar to the branch-and-bound algorithm, the DFS performs
best, regardless of whether lower bounds and other properties are used or not. Finally,
we also observed that using ACO to provide an initial upper bound indeed speeds up the
execution course of the branch-and-bound algorithm.

For future research, developing tighter lower bounds and upper bounds could lead to
better performance. More properties can be found to help the branch-and-bound algorithm
curtail non-promising branches. For integer programming models, tighter constraints
can be proposed to reduce the execution time and optimality gaps to reflect a real-world
circumstance in which multiple machines or servers are available for a software test project.
In this generalized scenario, a setup could be performed on several machines if the jobs
that it supports are assigned to distinct machines.
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