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Abstract: Non-prismatic slender continua are the prototypical models of many structural elements
used in engineering applications, such as wind turbine blades and towers. Unfortunately, closed-form
expressions for stresses and strains in such continua are much more difficult to find than in prismatic
ones, e.g., the de Saint-Venant’s cylinder, for which some analytical solutions are known. Starting
from a suitable mechanical model of a tapered slender continuum with one dimension much larger
than the other tapered two, a variational principle is exploited to derive the field equations, i.e., the
set of partial differential equations and boundary conditions that govern its state of stress and strain.
The obtained equations can be solved in closed form only in a few cases. Paradigmatic examples in
which analytical solutions are obtainable in terms of stresses, strains, or related mechanical quantities
of interest in engineering applications are presented and discussed.
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1. Introduction

Non-prismatic slender elements are widely employed in engineering applications for
their structural efficiency compared to prismatic ones, but their peculiar shape makes it
complex to predict their state of stress and strain via analytical methods. Examples are
components of aircraft, wind turbines, and civil structures [1–5]. The prototypical model
for elements of this kind is that of the non-prismatic slender elastic continuum, i.e., a
three-dimensional elastic body with one dimension, say, the longitudinal one, much larger
than the other two, which are variable along the longitudinal dimension.

Since the early 20th century, several models have been proposed for slender structural
elements, e.g., the linear beam theory in classical treatises on the theory of elasticity [6–8];
Simo’s geometrically exact approach [9], which can be seen as a generalization of Reissner’s
formulation [10,11] and a convenient parameterization of the Antman’s extension [12] of the
Kirchhoff–Love rod model; numerically oriented formulations, e.g., [13,14]; formulations
based on the Cosserats (directed continuum) approach [15,16]; models based on asymptotic
methods, such as the one proposed by Berdichevsky [17] and subsequently exploited by
Hodges et al. [18,19]; and other refined beam models, e.g., [20–22], improving classical
theories via shear correction factors or specific warping functions.

Moreover, particular attention has been devoted to models that explicitly account
for the influence of peculiar geometric features. Among them, we recall investigations
concerning the cross-sectional pre-twist [23–28], aimed at analytically studying the effects
on stresses and strains induced by variations in cross-section orientation (pre-twist), and
studies regarding the influence of variable cross-section dimensions (taper), for which more
sophisticated models are needed [5,29–31]. The influence of taper, in particular, has been
studied by several scholars in different fields [32–38]. Focusing the attention on the effects
of taper on stresses and strains, most works assumed Navier’s formula [39] to hold for
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the cross-sectional normal stresses and derived the relevant shear stresses via the static
equilibrium of the beam in its reference undeformed configuration, following Jourawksi’s
method [40]. In the field of civil engineering, we recall the early work of Bleich [41] on vari-
able depth beams, as well as the studies of Paglietti and Carta [5] and Balduzzi et al. [42].
In the aerospace sector, Atkin [1] addressed the study of stresses and strains in typical
aircraft elements with tapered cross-sections, Pugsley and Weatherhead [43] investigated
the failures of tail-plane spars in highly tapered regions, and Saksena [44] proposed for-
mulas for shear stresses in some tapered components. For wind engineering applications,
Bertolini et al. [38] and Migliaccio et al. [4,31] studied the stress distributions in the cross-
sections of wind turbine blades and towers. However, despite the progress made over
the years and the numerous works in the literature, the analytical determination of cross-
sectional stresses and strains, both in- and out-of-plane, in non-prismatic slender elements,
still deserve investigation. Notwithstanding the slender shape of such elements, an an-
alytical prediction of the effects of taper cannot be based on the results valid for the de
Saint-Venant’s cylinder [7,8], but a tailored model is needed because of the non-trivial
stress and strain fields (produced by taper) that are absent in prismatic cases and that are
unpredictable via prismatic beam theories [5,35,45,46].

This work addresses the physical–mathematical modeling and the analytical predic-
tion of the state of stress and strain in non-prismatic slender bodies susceptible to large
deflections. A variational principle is exploited to derive the field equations that govern
the mechanical behavior of such bodies. They include a new set of partial differential
equations (PDEs) with Neumann-type boundary conditions that explicitly account for
the influence of taper on the in- and out-of-plane cross-sectional stresses and strains, rep-
resent a generalization of the PDEs that governs the state of stress and strain in the de
Saint-Venant’s cylinder, and reduce exactly to these latter in the absence of taper (prismatic
case). Partial differential equations, with appropriate boundary conditions, represent the
prototypical mathematical model of many physical problems [7,8,47–49]. Unfortunately,
they cannot be solved in closed form in general. This is also the case of the PDE problem
formulated in this work, which can always be solved numerically, but admits closed-form
solutions only in a few cases. Specifically, as is demonstrated in the paper, we can ob-
tain closed-form expressions for stress and strain fields in non-prismatic slender elements
with particular cross-sectional shapes, as well as analytical solutions for other mechanical
quantities of interest in applications (e.g., cross-sectional strain flow) for elements with
generic cross-sectional shapes. The reported analytical solutions allow, in particular, the
analytical demonstration of the inadequacy of stepped beam approaches when dealing
with stress predictions in tapered beams and provide an insight into the physical problem
that is not achievable via purely numerical investigations. For more clarity, we specify that
in the present work the term solution refers to classical solutions (not weak solutions) of the
PDE problem, while analytical solution refers to a solution given in terms of closed-form
expressions or formulas (i.e., not numerical).

The paper is organized as follows. The general physical–mathematical model and the
relevant PDEs that describe the mechanical behavior of the considered elastic body are
introduced in Section 2. Analytical solutions for tapered beams with circular cross-sections
are reported in Section 3. Closed-form solutions valid for generic cross-sectional shapes
in terms of cross-sectional strain flow are proposed in Section 4. Finally, conclusions are
drawn and possible prospects are illustrated in Section 5.

2. Mechanical Model

Mechanical modeling of deformable bodies requires three main ingredients: (1) a
description of the state of relative motion between the body points, which involves defining
quantities called strain measures; (2) a statement that characterizes the state of motion or
equilibrium of the body, which may be based on energy principles and leads to equations
referred to as balance equations, often expressed in terms of quantities called stress mea-
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sures; (3) a constitutive law that accounts for the body material behavior. Such ingredients
are introduced here along with a physical–mathematical model of the considered body.

Let us schematize a non-prismatic slender elastic body as a set of deformable plane
figures (beam cross-sections) attached at a deformable line (beam center-line), occupying a
spatial region of volume V in its undeformed reference state (Figure 1). The slenderness of
the body is associated with a small value of the ratio h/L (i.e., h/L� 1), with h denoting
the characteristic dimension or radius of the body cross-sections and L being the reference
length of the body center-line. Let us consider a reference state of the body in which
the cross-sections are orthogonal to the center-line at the centroid and the center-line is a
straight regular curve. Moreover, the center-line may undergo large displacements, while
the cross-sections follow the center-line motion and may undergo additional warping
displacements, in and out of plane, which produce small cross-sectional deformations.

Figure 1. Schematic of a non-prismatic slender elastic body, occupying a region of volume V in its
reference undeformed state (left), and a sketch of its current deformed state (right); the orange dot
identifies a point in the reference undeformed cross-section (left); the deformed (warped) configura-
tion of this latter is represented in red (right).

Figure 1 shows the reference and current states of center-line and cross-sections. Two
local coordinate systems with orthogonal unit vectors are introduced. The first one, with
unit vectors bi, i = 1, 2, 3, is defined at any point along the center-line in the reference
state and depends on the arc-length s, i.e., bi = bi(s). Note that b1 is tangential to the
reference center-line, while b2 and b3 are contained in the cross-sectional plane. The second
local coordinate system, with unit vectors ai, i = 1, 2, 3, is the image of the reference local
coordinate system in the current state. It is called the current local coordinate system, and
its position and orientation depend on the arc-length s and time t, i.e., ai = ai(s,t). Note that
unlike the reference (undeformed) state, in which a generic cross-section Σ is contained in
the plane of b2 and b3, in the current (deformed) state a cross-section may not remain plane
(un-warped) and may not belong to the plane of a2 and a3 because of the cross-sectional
warping in and out of plane.

For convenience, we also introduce the orthogonal unit vectors c1, c2, and c3 associated
with a fixed Cartesian reference frame (see Figure 1), and adopt a standard summation
convention for indexed variables: Latin indices takes values 1, 2, and 3; Greek indices
assume values 2 and 3; repeated indices are summed over their range.

The orientation of the local unit vectors ai and bi with respect to the fixed unit vectors
ci can be defined in terms of two proper orthogonal tensor fields, A and B, such that the
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usual juxtaposition of these tensors to vectors of the fixed reference frame ci provides
vectors of the local coordinate systems, respectively, ai = Aci, bi = Bci, and i = 1, 2, 3.

Let us define the position of the beam points in the reference and current states via
two mapping functions, RB and RA, as follows:

RB(zi) = R0B(z1) + xα(zi)bα(z1) , (1a)

RA(zi, t) = R0A(z1, t) + xα(zi)aα(z1, t) + wk(zi, t)ak(z1, t) , (1b)

where R0B and R0A denote the position of the center-lines in the reference and current
states with respect to the fixed Cartesian reference system; xα identify the points in the
body cross-sections; wi are warping displacements; and, finally, zi are time-independent
variables, with z1 = s and zα spanning a two-dimensional domain such that xi = Λijzj, with
Λ11 = 1, Λ22 = Λ2(z1), Λ33 = Λ3(z1), and Λij = 0 for i 6= j. Henceforth, the dependence
of all scalar, vector, and tensor fields on the spatial variables zi (or xi) and on the time t is
understood and, hence, omitted.

Let us describe the body state of strain via the Green–Lagrange strain tensor E and the
vector fields γ = TTR′0A −R′0B and k = TTk′A − k′B, as in [37], where kB and kA are axial
vectors of the skew tensors KB = B′BT and KA = A′AT , respectively; T = ai ⊗ bi, ⊗ is the
usual dyadic product; and prime stands for s-derivative. Note that k = kibi and γ = γibi
(one-dimensional strain measures) describe variations in beam curvature and center-line
tangent between the current and reference states, while E = Eijbi ⊗ bj (three-dimensional
strain measure) accounts for the cross-sectional deformation and is defined as follows:

E =
HTH− I

2
, (2)

where I denotes the identity tensor, and H is the deformation gradient, i.e., the derivative
of the current map RA with respect to the reference map RB,

H =
∂RA
∂RB

. (3)

By combining (1)–(3), the components Eij of the Green–Lagrange strain tensor (2) can
be expressed in terms of one-dimensional strains (kα, k1, and γ1, i.e., bending curvatures,
torsional curvature, and center-line extension, respectively) and partial derivatives of the
warping fields wi. The dependence can be linear if such strain and warping fields are small,
which is the case considered here. Specifically, we quantify this smallness by introducing
a small dimensionless parameter ε� 1, representing the maximum among the orders of
magnitude of the dimensionless quantities γi, hki, wi/h, and wi,j, and maintain only terms
up to the first order in ε in the calculation of the scalar fields Eij via Equation (2).

Let us describe the body state of stress via the second (symmetric) Piola–Kirchhoff
stress tensor, S = Sijbi ⊗ bj. Assuming small strains, as discussed in the foregoing, this
stress tensor is related to the Green–Lagrange strain tensor via a linear elastic isotropic
constitutive model [50], as follows:

S =
Y

1 + ν
E +

νY
(1 + ν)(1− 2ν)

tr(E)I , (4)

where tr(E) = Eii, while Y (Young’s modulus) and ν (Poisson’s ratio) are material parame-
ters. Stress tensors commonly used in mechanics are also the first Piola–Kirchhoff stress
tensor P = HS and the Cauchy stress tensor C = HSHT det(H−1), associated with the state
of stress of the body in the current (deformed) configuration [50].

The stress and strain fields introduced so far can be obtained as solutions of balance
equations, i.e., partial differential equations (PDEs) with the relevant boundary conditions,
which are derivable via the principle of virtual power [16,51,52]. To exploit this principle,
we define two functionals, namely, the external power Πe and the internal power Πi. The
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external power functional Πe is introduced to describe, for each velocity field attainable by
the body, interactions between the body and the external environment. We imagine that
such interactions may take place via contact and non-contact actions, and assume

Πe =
∫

V
f · v +

∫
∂V

p · v , (5)

where dot denotes the usual scalar or dot product in Euclidean vector space; vector f
represents body loads (non-contact actions) per unit body reference volume V; vector p
stands for surface loads (contact actions) per unit area of the body boundary ∂V; v is the
time rate of the current position of the body points, i.e., the derivative of RA with respect
to time t; and, finally, the integrals are performed, respectively, over the body reference
volume V (also represented in Figure 1, left) and its boundary ∂V. Interactions among the
body parts are instead described via the internal power functional Πi, that is,

Πi =
d
dt

∫
V

Φ , (6)

where Φ = S · E/2 is the body strain energy density, which can be explicitly expressed in
terms of one-dimensional strains, kα, k1, γ1, and cross-sectional warping fields wi by using
Equations (2)–(4). Balance equations are finally obtainable via the classical principle of
virtual power, as in [16,28,45,51,52], by requiring that for any velocity field attainable by
the body its interactions with the external environment and among its parts are such that
the total power vanishes (i.e., Πe = Πi) at any value of the evolution parameter t.

Field Equations and Relevant PDE Problems

We are now in a position to introduce the field equations that govern the mechanical
behavior of the considered elastic body. Following [28,45], for tapered straight beams,
whose center-line and cross-sectional points are identified by the axial variable s ∈ [0, L]
and cross-sectional variables (x2, x3) ∈ Σ, the local coordinate system in the current state
tangential to the deformed center-line, and external actions applied only at the end cross-
sections (i.e., the cross-sections at s = 0 and s = L), the principle of virtual power allows us
to write the following set of balance equations, i.e., partial differential equations,

∂2ω

∂x2
2
+

∂3ω

∂x3
3
= 0 , (7a)

∂ϕ2

∂x2
+

∂ϕ3

∂x3
= a2x2 + a3x3 , (7b)

∂ϕ3

∂x2
− ∂ϕ2

∂x3
= b2x2 + b3x3 , (7c)

2(1− ν)
∂2u2

∂x2
2
+ (1− 2ν)

∂2u2

∂x2
3
+

∂2u3

∂x2∂x3
+ c1 = 0 , (7d)

(1− 2ν)
∂2u3

∂x2
2
+ 2(1− ν)

∂2u3

∂x2
3
+

∂2u2

∂x3∂x2
+ d1 = 0 , (7e)

with Neumann-type boundary conditions,(
∂ω

∂x2
− k1x3

)
n2 +

(
∂ω

∂x3
+ k1x2

)
n3 = 0 , (8a)

ϕ2n2 + ϕ3n3 = 0 , (8b)

(
2(1− ν)

∂u2

∂x2
+ 2ν

∂u3

∂x3
+ c2

)
n2 + (1− 2ν)

(
∂u2

∂x3
+

∂u3

∂x2
+ c3

)
n3 = 0 , (8c)
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(1− 2ν)

(
∂u3

∂x2
+

∂u2

∂x3
+ d2

)
n2 +

(
2(1− ν)

∂u3

∂x3
+ 2ν

∂u2

∂x2
+ d3

)
n3 = 0 . (8d)

In (7) and (8), nα represent the components of the outward unit normal on the boundary ∂Σ
of the cross-sectional domain Σ, while coefficients aα, bα, ci, and di are defined as follows

a2 = 2(1 + ν)k′3 + 2(1 + ν)(Λ−1
3 Λ′3 + 2Λ−1

2 Λ′2)k3 , (9a)

a3 = −2(1 + ν)k′2 − 2(1 + ν)(Λ−1
2 Λ′2 + 2Λ−1

3 Λ′3)k2 , (9b)

b2 = 2νk′2 + 2(1 + ν)Λ−1
2 Λ′2k2 , (9c)

b3 = 2νk′3 + 2(1 + ν)Λ−1
3 Λ′3k3 , (9d)

c1 = −(1− 2ν)k′1x3 +
∂2ω

∂x1∂x2
, (9e)

c2 = 2ν
∂ω

∂x1
− (1− 2ν)

(
∂ω

∂x2
− k1x3

)
Λ−1

2 Λ′2x2 , (9f)

c3 = −
(

∂ω

∂x2
− k1x3

)
Λ−1

3 Λ′3x3 , (9g)

d1 = (1− 2ν)k′1x2 +
∂2ω

∂x1∂x3
, (9h)

d2 = −
(

∂ω

∂x3
+ k1x2

)
Λ−1

2 Λ′2x2 , (9i)

d3 = 2ν
∂ω

∂x1
− (1− 2ν)

(
∂ω

∂x3
+ k1x2

)
Λ−1

3 Λ′3x3 . (9j)

The unknown scalar fields ω, ϕ2, ϕ3, u2, u3, depending on variables xi, can be de-
termined as functions of taper coefficients Λα and one-dimensional strains, γ1 and ki, by
solving the PDE problems (7)–(9). In its turn, given the scalar fields ω, ϕ2, ϕ3, u2, u3,
introduced to formulate the PDE problems (7)–(9) in a more compact form, the components
Eij of the Green–Lagrange strain tensor can be determined via the following relations:

E11 =
∂ω

∂x1
+ γ1 + k2x3 − k3x2 , (10a)

2E12 =
∂ω

∂x2
+ ϕ2 − k1x3 + 2(1 + ν)(γ1 + k2x3 − k3x2)Λ−1

2 Λ′2x2 , (10b)

2E13 =
∂ω

∂x3
+ ϕ3 + k1x2 + 2(1 + ν)(γ1 + k2x3 − k3x2)Λ−1

3 Λ′3x3 , (10c)

E22 =
∂u2

∂x2
− ν(γ1 + k2x3 − k3x2) , (10d)

E33 =
∂u3

∂x3
− ν(γ1 + k2x3 − k3x2) , (10e)

2E23 =
∂u2

∂x3
+

∂u3

∂x2
. (10f)
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Equations (7)–(10) show the role, from a mechanical standpoint, played by the scalar
fields ω, ϕ2, ϕ3, u2, and u3, in the determination of the strain fields Eij. Specifically,
ω, ϕ2, and ϕ3 affect the Green–Lagrange strains E11, E21, and E31 associated with the
out-of-plane deformation of the body cross-sections, while the scalar fields u2 and u3
affect only the Green–Lagrange strains E22, E33, and E23 associated with the in-plane
deformations. In particular, the scalar field ω plays the role of the de Saint-Venant’s out-of-
plane warping function, to which it is proportional via the torsional curvature k1. Moreover,
its determination does not depend on the determination of the other scalar fields, i.e., the
PDE (7a) with boundary condition (8a) is an independent PDE problem. Similarly, the
PDEs (7b) and (7c) with boundary condition (8b) and the PDEs (7d) and (7e) with boundary
conditions (8c) and (8d) are two PDE problems that can be solved independently of each
other: the first problem is in terms of the scalar fields ϕ2, ϕ3, which are a measure of
the cross-sectional shear strains produced by the body flexure; the second problem is in
terms of the scalar fields u2 and u3, which govern the in-plane deformation of the body
cross-sections. We also note that all PDE problems formally resemble those that govern
the deformation of the de Saint-Venant’s cylinder [7,8], except for the coefficients aα, bα, ci,
and di, which in the present work account for the effects of taper and reduce to those of
the de Saint-Venant’s cylinder only in the prismatic case. Finally, it is worth noting that
the solution of the PDE problems (7)–(9) and, as a consequence, the components of the
Green–Lagrange strain tensor (10) explicitly depend on the taper functions Λα and can be
expressed in terms of linear combinations of the one-dimensional strains, γ1 and ki, and
their s-derivative. This allows us to consider separately the effect of each one-dimensional
strain measure by solving simpler PDE problems whose solutions only depend on the shape
of the cross-sectional domain Σ. Unfortunately, even such simpler problems, which can
always be solved numerically, admit closed-form analytical solutions only in a few cases
(see, e.g., Section 3). However, apart from determining the scalar fields ω, ϕ2, ϕ3, u2, and
u3, and the corresponding strain fields (10) and stress fields (4), it is also possible to obtain
analytical solutions in terms of other mechanical quantities of interest for engineering
applications, as discussed in Section 4.

3. Analytical Solution in the Case of Circular Cross-Sections

As anticipated in the foregoing, the PDE problem (7)–(9) admits closed-form analytical
solutions only in a few cases. This is the case, for instance, of tapered beams with circular
cross-sections of radius R(s) and taper functions Λ2 = Λ3 = Λ(s), subject to bending
and extension (and null torsional curvature k1). In such case, the identically null scalar
field ω satisfies PDE problem (7a), (8a), as do null scalar fields u2 and u3 with PDE prob-
lem (7b), (7c), and (8b). On the contrary, the scalar fields ϕ2 and ϕ3 depend on bending
curvatures kα and center-line extension γ1, which are not null in the present case. However,
for the cross-sectional shape considered in this section, it is possible to find closed-form
expressions of ϕ2 and ϕ3 that satisfy the PDE problem (7d), (7e), (8c), and (8d). They are

ϕ2 =

(
1− 2ν

4
x2

3 +
3 + 2ν

4
(x2

2 − R2)

)
k′3 −

1 + 2ν

2
x2x3k′2 + 2(1 + ν)Λ−1Λ′

(
(x2

2 − R2)k3 − x2x3k2

)
, (11a)

ϕ3 = −
(

1− 2ν

4
x2

2 +
3 + 2ν

4
(x2

3 − R2)

)
k′2 +

1 + 2ν

2
x2x3k′3 − 2(1 + ν)Λ−1Λ′

(
(x2

3 − R2)k2 − x2x3k3

)
. (11b)

Given the scalar fields ω, ϕ2, ϕ3, u2, and u3, it is possible to determine the components
of the Green–Lagrange strain tensor (10) and, subsequently, by using the constitutive model,
the corresponding stress fields (4). By combining (11) and (10), the following expressions
are obtained for the components of the Green–Lagrange strain tensor

E11 = γ1 + k2x3 − k3x2 , (12a)
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2E12 =

(
1− 2ν

4
x2

3 +
3 + 2ν

4
(x2

2 − R2)

)
k′3 −

1 + 2ν

2
x2x3k′2 + 2(1 + ν)Λ−1Λ′

(
x2γ1 − R2k3

)
, (12b)

2E13 = −
(

1− 2ν

4
x2

2 +
3 + 2ν

4
(x2

3 − R2)

)
k′2 +

1 + 2ν

2
x2x3k′3 + 2(1 + ν)Λ−1Λ′

(
x3γ1 + R2k2

)
, (12c)

E22 = −ν(γ1 + k2x3 − k3x2) , (12d)

E33 = −ν(γ1 + k2x3 − k3x2) , (12e)

2E23 = 0 . (12f)

Equation (12) formally resembles those valid for a prismatic cylinder with circular
cross-sections [7], except for the additional terms depending on the taper function Λ(s)
and for the dependence of the cross-sectional radius R(s) on the arc-length s.

The above solution provides an analytical demonstration of the inadequacy of a
stepped beam approach when dealing with predictions of stresses and strains in tapered
beams. As is apparent, it is not possible to account for all the effects of taper only by taking
the formal solutions of the prismatic beam theory and considering the variation of the
cross-section geometric parameters with s (e.g., R(s)): the additional non-trivial terms
depending on taper functions (e.g., Λ(s)), which are present in the expressions of the stress
and strain fields in tapered elements, cannot be taken into account with such an approach.

4. Analytical Solution in Terms of Cross-Sectional Strain Flow

Let us consider a simply connected two-dimensional domain Σq contained in the
cross-sectional domain Σ, as in Figure 2, where the cross-sectional domain Σ is split in
two zones: the dashed one coincides with the domain Σq. The boundary of this latter,
whose normal and tangent vectors are denoted as n and t, is oriented counterclockwise
and is composed by several lines: a line fully contained in the interior of the cross-sectional
domain Σ is referred to as an internal line, ∂Σi; a line that coincides with a part of the
boundary of the cross-sectional domain Σ is an external line, ∂Σe. For completeness, we also
define the components nα and tα of the normal and tangent vectors n and t, respectively.

Figure 2. Schematic of a generic cross-section with indication of the two-dimensional domain Σq and
its boundary lines, ∂Σi and ∂Σe (left), and case of the rectangular cross-section (right).
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Let us introduce the cross-sectional strain flow q as a measure of the flow of the strain
fields E1α through the boundary lines ∂Σi. It is defined via the line integral

q =
∫

∂Σi

2E1αnα . (13)

The strain flow q is a mechanical quantity of interest in engineering applications and
provides a measure of the mean shear strain in the interior of the body cross-sections. To
actually determine the strain flow q, we have to calculate the line integral (13). To this aim,
we can exploit Green’s formulas or the divergence theorem [50]. In fact, according to the
divergence theorem, the line integral of the flow of strain fields E1α over the boundary
of a two-dimensional domain Σq coincides with the surface integral of the divergence
of the same strain fields E1α over the domain Σq. In its turn, the divergence of E1α is
expressible in terms of divergence of the scalar fields ϕα, appearing in Equations (7)–(10).
Following the procedure illustrated now, which begins from definition (13), exploitation
of Equations (7)–(10), and integration based on Green’s formulas or on the divergence
theorem, after some algebraic manipulation, the strain flow q can be expressed in the form

q
2(1 + ν)

= −S2k′2 + S3k′3 − Z2k2 + Z3k3 + Z1γ1 , (14)

where coefficients Sα are the static moments of the two-dimensional domain Σq with respect
to the cross-sectional axes xα and are defined via the surface integrals

S2 =
∫

Σq
x3 , S3 =

∫
Σq

x2 , (15)

while Zi are geometric coefficients that explicitly depend on taper functions and are defined
via line integrals over the internal boundary ∂Σi of the domain Σq as follows:

Z1 = Λ−1
2 Λ′2

∫
∂Σi

x2n2 + Λ−1
3 Λ′3

∫
∂Σi

x3n3 , (16a)

Z2 = S′2 + Λ−1
2 Λ′2

∫
∂Σi

x3x2n2 + Λ−1
3 Λ′3

∫
∂Σi

x3x3n3 , (16b)

Z3 = S′3 + Λ−1
2 Λ′2

∫
∂Σi

x2x2n2 + Λ−1
3 Λ′3

∫
∂Σi

x2x3n3 , (16c)

Equations (14)–(16) show the analytical dependence of the cross-sectional strain flow q
on the one-dimensional strains (bending curvatures kα and center-line extension γ1) and on
the cross-sectional taper (via the taper functions Λα). It is worth noting that in the prismatic
case, coefficients Zi identically vanish and the cross-sectional strain flow q turns out to be
a linear combination of the s-derivative of the bending curvatures kα, the coefficients of
the linear combination being the static moments Sα, as is expected from the classical linear
theory of prismatic beams [7,8].

Application Example

Equation (14) can provide application-oriented information. As an example, let us
consider a structural element widely employed in applications, i.e., a tapered beam with
rectangular cross-sections. See Figure 2 (right): the cross-sectional axes x2 and x3 are
parallel to the edges of length h2 and h3, respectively; the relevant taper functions are Λ2
and Λ3. Within this cross-section, let us consider a cross-sectional chord (AB) parallel to
the x2-axis. The strain flow through such chord can be obtained using Equations (14)–(16)
and performing all surface and line integrals. The following result is obtained

q
(1 + ν)h2

= −Λ−1
2 (Λ2k2)

′ 4x2
3 − h2

3
4

+ Λ−1
3 Λ′3

h2
3k2 + 4x3γ1

2
, (17)
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where xα and hα are cross-sectional variables and dimensions of the cross-section at the
axial coordinate s; k2 and γ1 are bending curvature and center-line extension; and, finally,
the effects of taper are accounted for by taper functions Λα.

This paradigmatic example shows the influence of cross-sectional taper on the strain
flow q and a typical cross-sectional distribution of this latter in tapered elements, which
(for rectangular cross-sections) is quadratic with respect to the cross-sectional variable
x3 when it is evaluated on cross-sectional chords parallel to the x2-axis. It is evident
that the strain flow depends not only on the cross-sectional variable x3 but also on the
axial variable s, i.e., the strain flow distribution is different on different cross-sections:
Equation (17) provides a quantitative measure of this dependence, which vanishes in the
prismatic case, as is expected. Moreover, we also observe, once again, the inadequacy of
stepped-beam approaches when dealing with predictions of stresses and strains in non-
prismatic elements: with regard to the present example, the additional terms depending on
the cross-sectional taper (e.g., taper functions Λα in Equation (17)) cannot be accounted for
by a stepped-beam approach. The usefulness of analytical solutions such as those discussed
in this work is evident: they allow analytical predictions (about the influence of taper, for
instance) to be performed in a straightforward manner and provide an insight into the
physical problem which is not achievable via purely numerical investigations.

5. Conclusions

Slender elastic solids with non-prismatic cross-sections are prototypical models of
many structural elements used in engineering applications. An accurate analytical predic-
tion of their state of stress and strain is much more complex than in prismatic elements
because of the additional non-trivial stress and strain fields produced by the cross-sectional
taper that are absent in prismatic elements and that cannot be predicted by exploiting the
results available for these latter, as demonstrated in the paper.

Specifically, this work has addressed the physical–mathematical modeling and the ana-
lytical prediction of cross-sectional strains and stresses, in and out of plane, in non-prismatic
slender solids susceptible to large deflections. A variational principle has provided the field
equations, i.e., the set of partial differential equations (PDEs) and boundary conditions that
govern the state of stress and strain in the considered elastic solids. The obtained equations
represent a generalization of those that govern the state of deformation of the classical de
Saint-Venant’s cylinder and reduce exactly to them for a prismatic cylinder undergoing
small displacements and strains.

Two analytical solutions to the aforementioned PDEs are discussed: the first is valid
for circular cross-sectioned tapered beams undergoing bending and extension. For this
case, analytical closed-form expressions can be obtained for the in- and out-of-plane cross-
sectional strains and the corresponding stress fields. The second solution is valid for slender
elastic solids with generic tapered cross-sections. For such solids, a closed-form solution
in terms of cross-sectional strain flow has been obtained. An application example is also
reported to show how such a closed-form expression of the strain flow can be used to
derive application-oriented information.

The analytical results reported and discussed in the paper have regarded the strain
and stress fields in tapered slender solids and the effects of taper. Analytical investigations
generally provide an insight into physical problems not achievable via purely numerical
analyses and, in the present work, have also provided an analytical demonstration of the
inadequacy of stepped-beam approaches when dealing with predictions of stresses and
strains in tapered slender solids. Apart from the effects of taper, analytical investigations
regarding the influence of other geometric parameters (e.g., cross-sectional pre-twist and
center-line initial curvature) and material properties (inhomogeneity and anisotropy) on
cross-sectional strains, both in and out of plane, as well as on other mechanical quantities
(e.g., strain flow), would be important and will be addressed in subsequent works.
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