Integral Models in the Form of Volterra Polynomials and Continued Fractions in the Problem of Identifying Input Signals
Abstract
:1. Introduction
2. Problem Statement
3. On Choosing the Parameter
4. On Identifying the Input Signal in (7)
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bakhtadze, N.N. Virtual Analyzers: Identification Approach. Autom. Remote Control 2004, 65, 1691–1709. [Google Scholar] [CrossRef]
- Giannakis, G.B.; Serpedin, E. A bibliography on nonlinear system identification. Signal Process. 2001, 81, 533–580. [Google Scholar] [CrossRef]
- Volkov, N.V. Functional Series in Problems of Dynamics of Automated Systems; Janus-K: Moscow, Russia, 2001. (In Russian) [Google Scholar]
- Tsibizova, T.Y. Methods for identifying nonlinear control systems. Mod. Probl. Sci. Educ. 2015, 1–1, 109–116. (In Russian) [Google Scholar]
- Solodovnikov, V.V. (Ed.) Technical Cybernetics. Theory of Automatic Control; Mashinostroenie: Moscow, Russia, 1969; Volume 2. (In Russian) [Google Scholar]
- Venikov, V.A.; Sukhanov, O.A. Cybernetic Models of Electrical Systems; Energoizdat: Moscow, Russia, 1982. (In Russian) [Google Scholar]
- Danilov, L.V.; Mathanov, P.N.; Fillipov, E.S. Theory of Nonlinear Electrical Circuits; Energoizdat: Leningrad, Russia, 1990. (In Russian) [Google Scholar]
- Deich, A.M. Methods for Identifying Dynamic Objects; Energya: Moscow, Russia, 1979. (In Russian) [Google Scholar]
- Pupkov, K.A.; Shmykova, N.A. Analysis and Calculation of Nonlinear Systems Using Functional Power Series; Mashinostroenie: Moscow, Russia, 1989. (In Russian) [Google Scholar]
- Bobreshov, A.M.; Mymrikova, N.N. The problems of strongly nonlinear analysis for electron circuits based on Volterra series. Proc. Voronezh State Univ. Ser. Phys. Math. 2013, 2, 15–25. (In Russian) [Google Scholar]
- Cheng, C.M.; Peng, Z.K.; Zhang, W.M.; Meng, G. Volterra-series-based nonlinear system modeling and its engineering applications: A state-of-the-art review. Mech. Syst. Signal Process. 2017, 87, 340–364. [Google Scholar] [CrossRef]
- Alper, P. Consideration of the Discrete Volterra Series. IEEE Trans. Atom. Control 1965, 10, 322–327. [Google Scholar] [CrossRef]
- Schreues, D.; Schreues, D.; O’Droma, M.; Goacher, A.A.; Gadringer, M. RF Power Amplifier Be havioral Modeling; Cambrige University Press: Cambrige, UK, 2008. [Google Scholar]
- Wang, T.; Brazil, T.J. Volterra-Mapping-Based Behavioral Modeling of Nonlinear Circuitsand Systems for High Frequencies. IEEE Trans. Microw. Theory Tech. 2007, 51, 1433–1440. [Google Scholar] [CrossRef]
- Zhu, Q.; Dooley, J.; Brazil, T.J. Simplified Volterra Series Based Behavioral Modeling of RF Power Amplifiers Using Deviation—Reduction. In Proceedings of the 2006 IEEE MTT-S International Microwave Symposium Digest, San Francisco, CA, USA, 11–16 June 2006; pp. 1113–1116. [Google Scholar]
- Fatuev, V.A.; Khrapova, A.G. D-optimal sequential identification procedure for the dynamic Volterra regression model. Eurasian Union Sci. 2015, 4, 20–24. (In Russian) [Google Scholar]
- Franz, M.; Schölkopf, B. A unifying view of Wiener and Volterra theory and polynomial kernel regression. Neural Comput. 2006, 18, 3097–3118. [Google Scholar] [CrossRef]
- Kekatos, V.; Giannakis, G.B. Sparse Volterra and polynomial regression models: Recoverability and estimation. IEEE Trans. Signal Process. 2011, 59, 5907–5920. [Google Scholar] [CrossRef]
- Kapalin, V.I.; Popovich, D.E.; Kyong, N.M. Nonparametric identification of objects and solution of Volterra integral equations of the first order. Sci. Bull. Belsu. Ser. Comput. Sci. Appl. Math. 2006, 2, 37–41. (In Russian) [Google Scholar]
- Chinarro, D. System Identification Techniques. In System Engineering Applied to Fuenmayor Karst Aquifer (San Julian de Banzo, Huesca) and Collins Glacier (King George Island, Antarctica); Springer: Berlin/Heidelberg, Germany, 2014; pp. 11–51. [Google Scholar]
- Popkov, A.Y.; Popkov, Y.S. Parametric and nonparametric estimation for characteristics of randomized models under limited data (entropy approach). Math. Mod. 2015, 27, 63–85. (In Russian) [Google Scholar]
- Popkov, Y.S.; Popkov, A.Y.; Lysak, Y.N. Estimating the characteristics of randomized dynamic data models (the entropy-robust approach). Autom. Remote Control 2014, 75, 872–879. [Google Scholar] [CrossRef]
- Popkov, Y.S.; Popkov, A.Y.; Lysak, Y.N. Estimation of characteristics of randomized static models of data (entropy-robust approach. Autom. Remote Control 2013, 74, 1863–1877. [Google Scholar] [CrossRef]
- Popkov, Y.S.; Popkov, A.Y. Robust entropic estimation of randomized data models. Proc. Inst. Syst. Anal. Ras 2012, 62, 38–44. (In Russian) [Google Scholar]
- Bakhtadze, N.; Chereshko, A.; Elpashev, D.; Suleykin, A.; Purtov, A. Predictive associative models of processes and situations. IFAC-PapersOnLine 2022, 55, 19–24. [Google Scholar] [CrossRef]
- Popkov, Y.S. Controlled Positive Dynamic Systems with an Entropy Operator: Fundamentals of the Theory and Applications. Mathematics 2021, 9, 2585. [Google Scholar] [CrossRef]
- Pavlenko, V.; Shamanina, T. Application Volterra Model of the Oculo-Motor System for Personal Identification. In Proceedings of the 2022 IEEE 3rd KhPI Week on Advanced Technology (KhPIWeek), Kharkiv, Ukraine, 3–7 October 2022; pp. 1–6. [Google Scholar]
- Medina-Ramos, C.; Carbonel-Olazabal, D.; Betetta-Gomez, J.; Tafur-Anzualdo, I. Global Temperature Anomaly by Volterra-Laguerre Model from CO2 Emission, Solar Irradiance, Population, and the Oceans Heat Content. In Proceedings of the IEEE Biennial Congress of Argentina (ARGENCON), San Juan, Argentina, 7–9 September 2022; pp. 1–8. [Google Scholar]
- Medina-Ramos, C.; Betetta-Gomez, J.; Carbonel-Olazabal, D.; Pilco-Barrenechea, M. System identification and MPC based on the Volterra-Laguerre model for improvement of the laminator systems performance. In Proceedings of the 2013 IEEE International Symposium on Sensorless Control for Electrical Drives and Predictive Control of Electrical Drives and Power Electronics (SLED/PRECEDE), Munich, Germany, 17–19 October 2013; pp. 1–8. [Google Scholar]
- Waadeland, H.; Lorentzen, L. Continued Fractions with Applications; Springer: Berlin/Heidelberg, Germany, 2008. [Google Scholar]
- Cuyt, A.; Petersen, V.; Verdonk, B.; Waadeland, H.; Jones, W.B. Handbook of Continued Fractions for Special Functions; Springer: Berlin/Heidelberg, Germany, 2008. [Google Scholar]
- Kartashov, V.Y.; Novosel’tseva, M.A. Structural-and-parametric identification of linear stochastic plants using continuous fractions. Autom. Remote Control 2010, 71, 1727–1740. [Google Scholar] [CrossRef]
- Novoseltseva, M.A.; Gutova, S.G.; Kazakevich, I.A. Structural and Parametric Identification of a Multisinusoidal Signal Model by Using Continued Fractions. In Proceedings of the 2018 International Russian Automation Conference (RusAutoCon), Sochi, Russia, 9–16 September 2018; pp. 1–5. [Google Scholar]
- Novoseltseva, M.A.; Gutova, S.G.; Kagan, E.S.; Borodulin, D.M. Structural and parametric identification of the process model using a rotary pulsation machine. Tomsk State Univ. J. Control Comput. Sci. 2019, 49, 63–72. (In Russian) [Google Scholar] [CrossRef]
- Li, P.; Peng, X.; Xu, C.; Han, L.; Shi, S. Novel extended mixed controller design for bifurcation control of fractional-order Myc/E2F/miR-17-92 network model concerning delay. Math. Methods Appl. Sci. 2023, 1–21. [Google Scholar] [CrossRef]
- Jin, T.; Yang, X. Monotonicity theorem for the uncertain fractional differential equation and application to uncertain financial market. Math. Comput. Simul. (MATCOM) 2021, 190, 203–221. [Google Scholar] [CrossRef]
- Jin, T.; Xia, H. Lookback option pricing models based on the uncertain fractional-order differential equation with Caputo type. J. Ambient. Intell. Humaniz. Comput. 2021, 14, 6435–6448. [Google Scholar] [CrossRef]
- Tairov, E.A. Nonlinear modeling of heat transfer dynamics in a channel with a single-phase coolant. Proc. Acad. Sci. USSR Energy Transp. 1989, 1, 150–156. (In Russian) [Google Scholar]
- Lavrentiev, M.M. Some Improperly Posed Problems in Mathematical Physics; Springer: Berlin/Heidelberg, Germany, 1967. [Google Scholar]
- Apartsyn, A.S. Nonclassical linear Volterra Equations of the First Kind; VSP: Utrecht, The Netherlands, 2003. [Google Scholar]
- Solodusha, S.V.; Bulatov, M.V. Integral equations related to Volterra series and inverse problems: Elements of theory and applications in heat power engineering. Mathematics 2021, 9, 1905. [Google Scholar]
- Apartsyn, A.S. On the theory of multilinear Volterra equations of the first kind. Optim. Control Intell. 2005, 1, 5–27. (In Russian) [Google Scholar]
- Sidorov, N.A.; Sidorov, D.N. Generalized solutions to integral equations in the problem of identification of nonlinear dynamic models. Autom. Remote Control 2009, 70, 598–604. [Google Scholar] [CrossRef]
- Solodusha, S.V.; Grazhdantseva, E.Y. Test polynomial Volterra equation of the first kind in the problem of input signal identification. Tr. Instituta Mat. Mekhaniki Uro Ran 2021, 27, 161–174. (In Russian) [Google Scholar]
- Solodusha, S.; Suslov, K. An Approach to Stabilizing the Dynamic Loads of a Wind Turbine Generator Based on the Control of the Blades Setting Angle. IFAC-PapersOnLine 2022, 55, 76–80. [Google Scholar] [CrossRef]
- Apartsyn, A.S. Multilinear Volterra equations of the first kind. Autom. Remote Control 2004, 2, 263–269. [Google Scholar] [CrossRef]
- Apartsyn, A.S. Multilinear Volterra equations of the first kind and some problems of control. Autom. Remote Control 2008, 4, 545–558. [Google Scholar] [CrossRef]
- Mishina, A.P.; Proskuryakov, I.V. Higher Algebra; Fizmatgiz: Moscow, Russia, 1962. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Solodusha, S.; Kokonova, Y.; Dudareva, O. Integral Models in the Form of Volterra Polynomials and Continued Fractions in the Problem of Identifying Input Signals. Mathematics 2023, 11, 4724. https://doi.org/10.3390/math11234724
Solodusha S, Kokonova Y, Dudareva O. Integral Models in the Form of Volterra Polynomials and Continued Fractions in the Problem of Identifying Input Signals. Mathematics. 2023; 11(23):4724. https://doi.org/10.3390/math11234724
Chicago/Turabian StyleSolodusha, Svetlana, Yuliya Kokonova, and Oksana Dudareva. 2023. "Integral Models in the Form of Volterra Polynomials and Continued Fractions in the Problem of Identifying Input Signals" Mathematics 11, no. 23: 4724. https://doi.org/10.3390/math11234724
APA StyleSolodusha, S., Kokonova, Y., & Dudareva, O. (2023). Integral Models in the Form of Volterra Polynomials and Continued Fractions in the Problem of Identifying Input Signals. Mathematics, 11(23), 4724. https://doi.org/10.3390/math11234724