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Abstract: A generalized multinomial logit (G-MNL) model is proposed to alleviate the four chal-
lenges inherent to the conditional logit model, including (1) simultaneous unidentifiability, (2) the
immediacy of decision-making, (3) the homogeneity of preferences in unobservable variables, and
(4) the independence of irrelevant alternatives. However, the G-MNL model has some restrictions
that are caused by the assumed logit scale of the lognormal distribution used in the G-MNL model.
We propose a mixed logit with integrated Pareto-distributed scale (MIXL-iPS) model to address the
restriction of the G-MNL model by introducing a logit scale in accordance with the Pareto distribution
type I with an expected value of 1. We have clarified the mathematical properties and examined the
distributional properties of the novel MIXL-iPS model. The results suggest that the MIXL-iPS model
is a model in which the instability in the estimation of the G-MNL model is modified. Moreover, the
apparent preference parameter was confirmed to have a skewed distribution in general in the MIXL-
iPS model. In addition, we confirm that in the MIXL-iPS model, bounded rationality is reasonably
well represented, as many individuals have below-average choice consistency.

Keywords: additive random utility model; preference heterogeneity; scale heterogeneity; Pareto
distribution type I; choice consistency; logit scale

MSC: 62-91

1. Introduction

The conditional logit (CL) model is the gold standard in the social sciences’ axiomatic
understanding of choice behavior. According to McFadden [1] and Yellot [2], only the CL
model is compatible with all of the utility maximization requirements of microeconomics,
the Choice Axiom [3], and the Law of Comparative Judgment [4]. The CL model is the
basis not only for numerous case studies in policy evaluation and marketing but also for a
quantal response equilibrium or a logit equilibrium model in experimental economics [5],
which are expected to lead to an understanding of bounded rational human behavior [6].
The drift-diffusion model [7], which is the primary model used for response time analysis
in cognitive psychology, also derives its most basic structure from the form of the CL
model [8,9]. Even as descriptive response-time analysis models are being developed and
case studies are accumulating in cognitive psychology, the need to consider CL extensions
aligned with the tradition of axiomatic understanding in psychological research is being
discussed [10]. Thus, the CL model is expected to continue to play a broad role in the social
sciences in general.

Data collected through discrete choice experiments (DCEs) or choice-based con-
joint analysis have played an essential role in the application and extension of the CL
model [11–13]. DCE data were used to extend the CL model by accumulating empirical
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examples through the examination of a wide range of models, from closed-form to open-
form and from continuous to discrete distributions regarding the probability distributions
assumed for the preference parameters. DCEs have excellent characteristics in question
design, data collection, and estimation. First, regarding question design, the use of DCEs
can ensure statistical efficiency while avoiding multicollinearity among attribute variables
within choice sets by using excellent experimental design methods [12]. Second, regarding
data collection, the use of survey research data has the advantage of enabling various
covariates to be obtained, making it easy to examine the validity of the application of the
CL model and its extensions. In recent years, since Meißner and Decker [14], the number of
examples of eye-tracking experiments, including among DCEs, has increased, and the use
of more para data in the study of modeling has accelerated. Third, regarding estimation,
in advanced methods such as simulated maximum likelihood estimation and hierarchi-
cal Bayes estimation [13], DCE data occupy a pivotal position in research aimed at more
appropriate CL extensions.

The mixed logit (MIXL) model [15] was a central extension of the CL model. The
MIXL model is also called the random parameter logit model [13]. The MIXL model
is an open-form econometric discrete choice model that maintains the structure of the
axiomatic understanding of the CL model while also having the flexible error structure of
the conditional probit model [16]. The MIXL model can approximate any discrete choice
model that is consistent only with random utility [17], and the number of applications
continues to increase. The MIXL model is also at the center of the discussion in this paper.

From a review of previous studies on CL extensions, the authors identified four char-
acteristics of the CL model that require resolution: (1) simultaneous unidentifiability: the
CL model cannot be used to simultaneously identify true preferences and logit scale; (2) the
immediacy of decision-making: the CL model cannot be used to account for the effects
of sequential information sampling and processing; (3) the homogeneity of preferences
in unobservable variables: the CL model is difficult to use for analyzing unobservable
preference heterogeneity; and (4) the independence of irrelevant alternatives (IIA): the CL
model cannot be used to account for the heterogeneous effects of additional alternatives.
We note that, because multiple scale parameters appear in this paper, they are denoted as
explicit model or distribution names, like logit scale. All of these characteristics stem from
the assumption of independent and identical Gumbel error terms. Primarily, (1)–(4) are
the crucial issues in the CL model. While (3) and (4) have been resolved in an econometric
sense in the MIXL model, (1) is still being explored [18]. Moreover, when (1) is mitigated,
(2) is also mitigated [9].

Fiebig et al. [19] developed a generalized multinomial logit (G-MNL) model, which
was once regarded as an extended MIXL model that could also apparently resolve issues
(1) and (2) [19,20]. However, Hess and Train [18] pointed out that it is the restricted form
of the MIXL model. On the other hand, Ohdoko [21], one of the authors of this paper,
conducted an empirical study of the G-MNL model using Japanese undergraduate survey
data on a takeaway cup of fair trade coffee. The results suggest that the G-MNL model
may be inferior to MIXL regarding model fit. The results of Ohdoko [21] are one of the
motivations for the research in this paper.

Inspired by Adamska et al. [22], who examined the distribution of the product of the
lognormal or normal distribution and the Pareto distribution, we propose the integration
of a Pareto-distributed scale that can appropriately mitigate (1)–(4) of the CL issues and has
behaviorally reasonable interpretability into the MIXL model. We refer to it as a mixed logit
with integrated Pareto-distributed scale (MIXL-iPS). The basic structure of the MIXL-iPS
model assumes a normal or lognormal distribution for the true preference parameter and
a Pareto distribution type I [23] with expectation 1 for the logit scale. It has the property
of being able to produce behaviorally reasonable results from a broad dataset. Rezapour
and Ksaibati [24], who applied the G-MNL model to DCE data on front-seat passengers’
choice of seat belt usage, reported no need to introduce scale heterogeneity in their dataset.
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However, the conclusion may or may not change if the assumption of the distribution
function of the logit scale changes.

The remainder of this paper is structured as follows. In Section 2, as a review of
previous studies, we first confirm the derivation of the CL model and summarize its issues,
and then, we present our research question. In Section 3, the MIXL model is discussed
as an open-form model aimed at resolving issues (3) and (4) of the CL model, and we
introduce the G-MNL model as the base model in this paper. In Section 4, we propose a
basic MIXL-iPS model for a single-choice opportunity and perform numerical simulations
of the parameter properties. Section 5 presents conclusions and future work. Some of the
elementary mathematical derivations and analytical considerations performed in previous
studies are also described in the discussion for clarity. In this paper, we present theoretical
evidence of the ability of datasets to be used to validate the model properties of the MIXL-
iPS model. One idea for future empirical research is the use of eye-tracking experiments.

2. The Conditional Logit Model
2.1. Derivations and Challenges

In this paper, a single choice opportunity is assumed, except when necessary. The
notation common throughout the description is as follows: n(n = 1, 2, · · · , N) denotes an
individual, i(i = 1, 2, · · · , J) is the chosen option, j(j 6= i, j = 1, 2, · · · , J) is the unchosen
option, and k(k = 1, 2, · · · , K) denotes the type of choice attribute. N denotes the sample
size, J is the total number of choices in the choice set, and K is the total number of attributes
in a choice set. When we use j∗, i and j( 6= i) are covered. Let the true preference parameter
be α, the logit scale be ϕ, and their product, the apparent preference parameter β = αϕ.
As exogenous variables, the choice attributes and the covariates are denoted by x and
z, respectively. The Dirac delta function is represented by δ for the probability density
function f and the cumulative distribution function F, respectively. Although developed
with DCE data in mind, our approach readily applies to other choice situations and should
be read by the reader as appropriate.

In deriving the CL model, the additive random utility model (ARUM), which we also
assume in this paper, is defined as follows [13]:

Ui = Vi + εi (1)

Ui is the indirect utility of chosen alternative i. Vi is an observable deterministic term,
and εi is an unobservable error term.

McFadden [1] derived CL compatible with utility maximization in microeconomics by
formulating the conditional choice probability as follows (see also Appendix A):

Pi = Prob
(
Ui > Uj, ∀j 6= i

)

=
exp(Vi/ξ)

∑j exp
(
Vj/ξ

) (2)

Here, we assume that ∀j ∈ J, ε j∼i.i.d.Gumbel(0, ξ), where ξ denotes the Gumbel scale.
The probability density function and cumulative distribution function of the Gumbel
distribution evaluated at the zero-location parameter are as follows:

f (ε) =
1
ξ

exp
(
− ε

ξ

)
exp

(
−exp

(
− ε

ξ

))
,

F(x) = exp
(
−exp

(
− ε

ξ

))
, ξ > 0 (3)

where E[ε] = 0 and Var(ε) = ξ2π2/6, respectively. ξ → ∞ ; in situations where the variance
of the error term or the Gumbel error is substantial, Pj∗ → 1/J while the choices become
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indiscriminate. ξ → 0 ; as the variance of the Gumbel error disappears, the choice becomes
deterministic. Thus, the properties of the choice change with the magnitude of the impact
of unobservable variables.

On the other hand, Marsili [25], through an analogy with the distribution of canonical
ensembles or the Gibbs–Boltzmann distribution in thermodynamics and statistical physics,
formulated the expected information processing cost of the choice task or DCE choice set
faced by the decision maker in maximizing the expected utility using Shannon entropy [26]
as follows [27].

max
Pi

E[Ui] = ∑i PiVi + ξ∑i Piln Pi, s.t. ∑i Pi = 1 (4)

The same choice probability as that in the CL model is derived here (see also
Appendix B). ξ → ∞ ; in situations where the overall expected cost of information pro-
cessing is exceptionally high, every alternative becomes indifferent because Pj∗ → 1/ J .
ξ → 0 ; when the overall expected cost of information processing is minimal, the choice
is made deterministically. Thus, the Gumbel scale assumed for the CL model expresses
the marginal utility for the overall expected information processing cost of the choice set
encountered. Marsili [25] designated its cost as the control cost. In this paper, we refer to
it as a choice behavior control cost.

Here, as was assumed in previous DCE studies, we assume linearity concerning
the true preference parameter in the definite term of the indirect utility function, as in
Vj∗ = α’xj∗k. From Ui > Uj in Equation (2), that is, α’xik + εi > α’xjk + ε j. If we multiply
both sides by the logit scale ϕ = 1/ξ > 0, we obtain:

ϕα’xi + ϕεi > ϕα’xj + ϕε j (5)

In this case, ϕε j∗ = ε j∗/ξ = ε j∗
∗∼i.i.d.Gumbel(0, 1). Therefore, if Ui

∗ = ϕUi, then the
redefined linear-in-parameter ARUM becomes:

Ui
∗ = Vi

∗ + εi
∗ = ϕα’xi + εi

∗ = β’xi + εi
∗, εi

∗∼i.i.d.Gumbel(0, 1) (6)

Therefore, the logit scale ϕ is multiplied by all elements in the linear-in-parameter
ARUM except the Gumbel error [18].

The logit scale ϕ expresses the choice consistency [28]. The conditional choice proba-
bility, based on the redefined linear-in-parameter ARUM, becomes:

Pi = Prob
(
Ui
∗ > Uj

∗, ∀j 6= i
)

= Prob
(
ε j
∗ − εi

∗ < Vi
∗ −Vj

∗, ∀j 6= i
)

= Prob
(

ε j
∗ − εi

∗ < ϕ
(

α’xi − α’xj

)
, ∀j 6= i

)
(7)

where ε j
∗ − εi

∗ follows a logistic distribution and the support is (−∞, ∞). Thus, ε j
∗ − εi

∗ <

ϕ
(
α’xi−α’xj

)
is probabilistically valid as the logit scale increases with ϕ→ ∞ ; the larger

the logit scale is, the higher the probability of choosing according to one’s true preference.
Conversely, as ϕ→ 0 , the probability of choosing according to one’s true preference is
reduced; the alternatives become indifferent such that Pj∗ → 1/J .

At this stage, we can point out two of the challenges of using the CL model: (1) the
simultaneous unidentifiability and (2) the immediacy of the decision-making as seen from
the redefined linear-in-parameter ARUM; the logit scale and true preference parameters are
estimated inseparably in the form of multiplication. Therefore, at least one expected value
must be normalized to 1 to identify both the logit scale and the true preference parameters.
If one wants to examine the true preference on a single dataset with the CL formulation, one
has no choice but to normalize the logit scale expectation to 1 [29]. Webb [9] also showed in
mathematical neuroeconomics that the CL model does not include the effects of dynamic
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and sequential information sampling and processing that can occur within a single-choice
opportunity. In particular, the intuitive implications for the immediacy of the decision-
making can be organized as follows. The heterogeneity of the logit scale is the heterogeneity
of overall and cognitive choice behavior control costs. Since the logit scale is closely related
to cognitive information processing, modeling the logit scale as constant across individuals
or choice occasions, as CL does, implies that cognitive information processing is the same
for any person or any choice occasion. Usually, cognitive information processing in choice
behavior should differ from person to person or from choice opportunity to opportunity.
Treating this as a constant would not be so much different from assuming that everyone
makes all choices instantly at any time. To include them, one must introduce unobserved
heterogeneity for the logit scale, i.e., scale heterogeneity. In DCE studies, the logit scale
has also been correlated with response time [30] and survey engagement [31], suggesting
the influence of dynamic and sequential information sampling and processing. Therefore,
these challenges require a solution on the logit scale.

Traditional DCE research has indicated two issues with the CL model: (3) the ho-
mogeneity of preferences in unobservable variables and (4) the IIA [13]. It is possible to
include the CL model with socioeconomic characteristics or para data in the analysis. Such
data are used to express the deterministic heterogeneity in the analysis cross terms, the
product with alternative attributes, or the alternative specific constants (ASCs), which can
introduce up to J − 1 alternatives [12]. However, we cannot consider the heterogeneity in
unobservable variables. The ratio of the choice probabilities of the different alternatives, i
and j(j 6= i), is as follows:

Pi/Pj = exp(V∗ i)/exp
(
V∗ j
)

(8)

Therefore, the choices i and j are independent of the deterministic terms of the indirect
utility functions of the alternatives other than i and j. This does not allow for nonuniform
changes in choice probabilities when additional alternatives are introduced.

2.2. Research Question

In this paper, the research goal is to mathematically construct a discrete choice model
that can appropriately relax the assumptions of (1) simultaneous unidentifiability, (2) the
immediacy of decision-making, (3) the homogeneity of preferences in unobservable vari-
ables, and (4) the IIA, which can be considered the main aspects of the CL problem. We
focus on the formulation of scale heterogeneity by using the logit scale.

We also consider the use of specifically open-form models that represent unobserved
heterogeneity to enable the application of models to broad datasets. For logit scale formula-
tion when using the covariate zn, the heteroskedastic multinomial logit model [11] with
ϕ = exp(ϑ′zn) is omitted due to its inability to represent unobserved heterogeneity. When
we need to set the distribution of the true preference parameters in the simulation, we
assume a normal distribution for nonprice-related attributes and a lognormal distribution
for price-related choice attributes in DCE questions. We chose the normal and lognormal
distributions for the distribution of apparent preference parameters in this paper because
the former is the most used in empirical studies, and the latter was recommended by Daly
et al. [32] as a possible way to estimate the finite moments of the marginal willingness to
pay (MWTP) by making assumptions about price-related attributes. Daly et al. [32] recom-
mended that the finite moments of MWTP can be estimated by making assumptions on the
apparent preference parameters of price-related attributes as log-normally distributed.

3. The Mixed Logit and the Generalized Multinomial Logit Models
3.1. The Mixed Logit Model and Its Challenges

The MIXL model relaxes (3) the homogeneity of preferences in unobservable vari-
ables by introducing unobserved heterogeneity in the apparent preference parameters.
Here, let ASC be β0, and let the apparent preference parameters of the choice attributes
be βk(k = 1, · · · , K). When the apparent preference parameter vector β’ = (β0, β1, · · · , βK)
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follows a multivariate probability distribution, the unconditional choice probability is
formulated as follows:

Pni =
∫ exp(V∗ni)

∑j∗ exp
(
V∗nj∗

) f(βn)dβn (9)

The f(βn) have been assumed to be normal, lognormal, gamma, uniform, triangular,
and Johnson Sb distributions [13,33]. It has also been shown that f(βn) can partially set
apparent preference parameters without standard deviation or covariance, and in the MIXL
model, such parameters are called fixed parameters, while apparent preference parameters
other than fixed parameters are called random parameters [13]). In this paper, we use the
following formulation in linear-in-parameter ARUM.

V* = β0 +
(

β−price
)’x−price − exp

(
βprice

)’xprice. (10)

The first term represents the ASCs, the second reflects the attribute terms related to
the nonprice (−price), and the third reflects the attribute terms related to the price (price).
βn =

(
β0, βn,−price, βn,price

)
∼Normal

(
µβn , Σβn

)
; then, exp

(
βn,price

)
follows a (multivariate)

lognormal distribution, where µβn is the vector of expected values, and Σβn is the covariance
matrix of βn.

With the choice probability formulation, the MIXL model econometrically relaxes (4)
the IIA. The ratio of the choice probabilities is:

∀j 6= i, Pni/Pnj =
∫ exp(V∗ni)

∑j∗ exp
(
V∗nj∗

) f(βn)dβn/
∫ exp

(
V∗nj

)
∑j∗ exp

(
V∗nj∗

) f(βn)dβn (11)

Closed-form solutions generally do not exist. Therefore, the IIA is entirely relaxed
because the ratio of choice probabilities depends on the definite terms of the indirect utility
functions of the alternatives other than i and j.

The apparent preference parameter vector βn allows for the correlations between
elements, and Σβn may include nonzero off-diagonal elements. For estimation, a Cholesky
decomposition is used as in Σβ = ΓΓ’. Then,

βn = µβn + Γvn, v’ = (vn0, vn1, vn2, · · · , vnK), ∀vnk ∈ vn∼i.i.d.Normal(0, 1) (12)

This allows apparent preference heterogeneity [11,13].
In some previous studies, the MIXL model with correlation was modified when

the MIXL model includes nonzero off-diagonal elements of Σβn . According to Hess and
Train [18], the MIXL model is a formulation that already allows correlations; thus, there is
no need to specify a MIXL with correlation. However, since many original empirical papers
assumed 0 for the covariance parameter, to be cautious, they are separately described here
as the MIXL model and the MIXL model with correlation. Hess and Train [18] discussed that
the correlation expresses behavioral phenomena and scale heterogeneity, where behavioral
phenomenon is an interaction effect between true choice attribute preferences. Mariel and
Artabe [34] gave a mathematical interpretation and provided the following three conditions
under which the apparent preference covariance parameter can be interpreted: All the
apparent preference parameters should be positively estimated; the interpretation is based
on the negatively signed covariances only; and covariances should not be interpreted
quantitatively.

From the above observations, the challenges of the MIXL model can be presented.
Indeed, the MIXL model mitigates (3) the homogeneity of preferences in unobservable
variables and (4) the IIA. McFadden and Train [17] proved that the MIXL model can
approximate all discrete choice models that are consistent only with a random utility model.
Therefore, extensions of the CL model should be discussed with a focus on the MIXL
model. However, the implicit control of the logit scale does not allow for a quantitative
examination of scale heterogeneity, and the use of covariance parameters for preferences is
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limited. In behavioral welfare economics, Grüne-Yanoff [35] suggested that it is necessary
to distinguish welfare-related preferences from those that are not based on some notion
of deliberation error. Moreover, because heterogeneity was incorporated into the apparent
preferences, it cannot be construed as the true heterogeneity of preferences. The estimated
parameters can be interpreted either (1) as the product of overall and cognitive choice
behavior control costs and true preferences, (2) as true preferences with the logit scale
for all individual and choice opportunities specified to be normalized to 1, or (3) as the
monetary value of the preference, removing the effect of the logit scale by producing an
MWTP value. The MWTP is estimated by dividing the apparent preference parameters for
non-price-related attributes by the price-related parameters [11–13].

3.2. The Generalized Multinomial Logit Model and Its Challenges

Following the challenges of the MIXL model described in the previous section, the G-
MNL model represents an attempt to explicitly alleviate (1) simultaneous unidentifiability.
According to Webb [9], incidentally, (2) is also mitigating. The contribution of the G-
MNL model is that the logit scale was given a distribution, and the observable individual
characteristics were expressed as covariates to be incorporated into the mean and the
unobservable portion as an error term [11]. Thus, unlike the MIXL model, the signs of the
covariance parameters for all preference parameters are interpretable. β can be decomposed
as follows [11].

βn = ϕnαn + (γ + (1− γ)ϕn)Γ̃ṽn,

ϕn = exp
(
µϕn + τwn

)
, wn∼i.i.d.Normal(0, 1), E[ϕn] = 1,

αn∼Normal(µα, Σα), Σα = Γ̃Γ̃’,

∀vnk ∈ ṽ’
n = (v1, v2, · · · , vK)∼i.i.d.Normal(0, 1),

γ ∈ [0, 1] (13)

where µϕn is the logit scale location parameter, τ is the lognormal scale, and ϕn follows
a lognormal distribution. Here, covariate zn effects on ϕn can be included: In general,
ϕn = exp

(
µϕn + ϑ′zn + τwn

)
. The section on covariates in Equation (13) was omitted in

this paper to simplify the discussion. γ is a probability weight to define the following two
types of G-MNL models in one equation:

G−MNL type I : βn = ϕnαn + Γ̃ṽn, (∴ γ = 1) (14)

G−MNL type II : β = ϕnαn + ϕnΓ̃ṽn, (∴ γ = 0) (15)

γ = exp(γ∗)/(1 + exp(γ∗)) can be set to ensure the condition 0 < γ < 1. Fiebig
et al. [19] treated ASCs as fixed parameters in their empirical demonstrations, eliminating
unobserved heterogeneity in the ASCs, although they incorporated random effects due to
the panel structure of their DCE datasets. They also choose not to multiply the ASCs by the
logit scale.

Since issue (1) of simultaneous unidentifiability cannot be completely mitigated due to
the identification problem, in the estimation of the G-MNL model, ∀n, E[ϕn] = 1. We note
that in the G-MNL framework, the true preference parameter is always multiplied by the
expected value of the logit scale. Therefore, we must inseparably treat the true preference
parameter and the expected marginal utility value for the choice behavior control cost.
From here, we can say that the logit scale in the G-MNL model is a mean-normalized
relative logit scale. The implication is the degree to which each individual makes consistent
choices relative to the average. From this perspective, in this paper, quantitative scale
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heterogeneity expressed by the logit scale in the G-MNL model is referred to as the relative
consistency index.

At this stage, an issue with the G-MNL model can be identified. To reiterate the
discussion regarding the redefinition of the linear-in-parameter ARUM in Section 2, the
logit scale is multiplied by all factors in the linear-in-parameter ARUM aside from the
Gumbel error [18]. Therefore, the G-MNL model type I is an unnatural extension of the CL
model since the G-MNL model type I accounts for heterogeneity that is not explained by
true choice attribute preferences in a way that is not multiplied by the logit scale, and the
ASC is a fixed parameter, i.e., there is no unobserved heterogeneity in the ASC.

According to Hess and Train [18], the G-MNL model of Fiebig et al. [19] restricts
the MIXL model. However, the G-MNL model type II can potentially improve the MIXL
model because the MIXL model makes the probability distribution assumption only on
the product of the true preference parameter and the logit scale parameter, eliminating the
possibility that it may not be. Based on the G-MNL model type II, it is possible to relax
the assumption of the MIXL model by assuming a tractable probability distribution for
the logit scale. Therefore, our research focuses on the G-MNL model type II and examines
the validity of a formulation that multiplies the ASCs by the logit scale; we treat all true
preference parameters, including the ASCs, as random parameters.

In G-MNL estimation, a truncated normal distribution is used for wn [19,20]. The lack
of a reasonable behavioral explanation for the truncated normal distribution suggests a
technical issue in estimation stability. Therefore, we assume a normal distribution for the
true preference defined in general G-MNL application studies and examine the product
or multiplicative convolution of random variables with the logit scale according to a
lognormal distribution with an expected value of 1. When we suppose that the true
preference parameter is assumed to be lognormally distributed for price-related choice
attributes, the apparent preference parameter is also lognormally distributed. Therefore, we
omitted this case.

The apparent preference parameter is the multiplicative convolution of the logit scale
and the true preference, where these are two continuous random variables that are statisti-
cally independent. Subscripts are omitted hereafter except when necessary. The probability
density function can be expressed as follows, according to Rohatgi and Saleh [36].

fβ(β) =
∫ ∞

−∞

1
|ϕ| fϕ(ϕ) fα

(
β

ϕ

)
dϕ (16)

ϕ∼Lognormal
(
µϕ, τ2); then, the probability density function is defined as:

fϕ(ϕ) =
1√

2πτϕ
exp

(
−
(
ln(ϕ)− µϕ

)2

2τ2

)
, 0 < ϕ < ∞ (17)

The expected value is:

E[ϕ] = exp
(

µϕ +
τ2

2

)
. (18)

The G-MNL assumption is E[ϕ] = 1. Thus:

µϕ = −τ2

2
< 0. (19)

For the true preference parameter, α∼Normal
(
µα, σα

2), the probability density func-
tion is:

fα(α) =
1√

2πσα

exp

(
− (α− µα)

2

2σα
2

)
,−∞ < α < ∞. (20)
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By incorporating Equation (17) into (16) with (20), we obtain:

fβ(β) =
1

2πσατ

∫ ∞

0

1
ϕ2 exp

− (ln(ϕ) + τ2/2
)2

2τ2 −

(
β
ϕ − µα

)2

2σα
2

dϕ. (21)

No further closed-form solutions can be obtained. Thus, we performed simulations
in R 4.2.1 [37] for illustration along with a simple algorithm diagram in Appendix C. In
this paper, we use an elementary numerical simulation because the correlation of choice
attribute variables and their true preference parameters can be complicated when multiple
choice attributes are considered. Since the correlation of choice attribute variables can at
least be set to zero in DCE data through an experimental design that preserves orthogo-
nality, we consider it sufficient to examine the true preference parameters and logit scale
parameters for a single choice attribute in this paper, which is mainly intended for use in
DCE data. It is essential to examine what happens when multiple-choice attributes are
considered, including misspecification, which is an issue to be addressed in the future.

In the numerical simulations, with emphasis on visibility in the illustrations, numerical
examples were selected concerning empirical DCE studies. Before providing the numerical
examples, we refer to Hess and Rose [38], who doubt the G-MNL model when using DCE
data on route choice. First, they estimated by using the G-MNL model with correlation,
assuming a bivariate normal distribution for the true preference parameter vector. The
mean and standard deviation of the true preference parameters for travel time and travel
cost were estimated as (µ̂α, σ̂α) = (−0.1558, 0.1991), (−0.4205,−0.1412). The standard
deviation of the logit scale with the expected value of 1 is τ̂ = −2.0843 The estimated
standard deviations of the logit scale with an expected value of 1 were obtained. Next,
assuming a bivariate lognormal distribution for the true preference parameter vector, they
obtained (µ̂α, σ̂α) = (−1.7353, 1.9004), (−0.9238, 1.5296) for the travel time and travel cost,
respectively, and τ̂ = −0.1169 for the logit scale. For visibility and simplicity, absolute
values were taken for the parameters under the assumption of a normal distribution and for
the standard deviation of the logit scale of an expected value of 1, while the travel time was
omitted. The same simulation results were obtained by using the travel time parameter.

When conducting the numerical simulation, the R package distrSim [39] was used to
run the simulations. In the simulations, given that the G-MNL estimation uses a truncated
normal distribution to limit the variance of the logit scale, we decided to investigate the
impact of τ in the G-MNL model. We also decided to include simulation results by using
the estimate of τ in Hess and Rose [38] to ensure realism. For illustrative purposes, we set
a relatively wide range of values in the defined region of τ around the mean estimated
value of Hess and Rose [38] when the logit scale depends on lognormal distribution. The
robustness of the results at the analytical limit values was elaborated in Appendix D.

The simulation results are shown in Figure 1. As τ → 0 (from Figure 1c to Figure 1a),
the apparent preference parameter distribution converges to the normal distribution set for
the true preference parameter. On the other hand, as τ → ∞ (from Figure 1d to Figure 1f),
the distribution loses its significance after converging to a point in the parameter domain
of 0 through a distribution with high kurtosis. Because of mathematical properties of the
assumption of logit scale as lognormally distributed in Appendix D, these properties hold
for general continuous probability distributions with moments, rather than only when the
true preference parameter is normally or lognormally distributed.
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This brings us to another issue of the G-MNL model. As the variance of the logit
scale decreases, the apparent preference parameter distribution comes to match the true
preference parameter, which is a reasonable property. On the other hand, as the variance
of the logit scale increases, the apparent preference parameter loses its meaning through
distribution with a high kurtosis. This phenomenon results from the assumption of the
lognormal distribution as set to the logit scale. Of course, it is possible that a situation of
enormous variance on the logit scale does not occur in the actual data and that the use of a
truncated normal distribution is reasonable. Assuming a lognormal distribution for the
logit scale is also a reasonable interpretation since it corresponds to modeling in which
more people have less consistent choices than in the average. In comparison, there are
slightly fewer people faced with extremely inconsistent choices. However, the arbitrariness
of the use of the lognormal distribution in the logit scale cannot be denied. There is also a
question as to whether the possibility of higher kurtosis is a natural approximation. Thus,
we can consider the possibility of applying other distributions to the logit scale.

4. Proposed Mixed Logit with Integrated Pareto-Distributed Scale Model

In this paper, we propose the MIXL-iPS model, the application of which can alleviate
the issues described in the previous section. The apparent preference parameter of the
MIXL-iPS model is defined as follows:

βn = ϕnαn + ϕnΓvn,

v’ = (vn0, vn1, vn2, · · · , vnK),

∀vnk ∈ vn∼i.i.d.Normal(0, 1),

ϕn∼Pareto(κ, 1/(1− κ)), E[ϕn] = 1,

1/2 < κ < 1 (22)

where κ is the Pareto scale of Pareto distribution type I with shape parameter 1/(1− κ).
The MIXL-iPS model is based on the G-MNL model type II, and the ASCs are also treated
as random parameters multiplied by the logit scale. As described below, the assumption of
a probability distribution for the logit scale ensures reasonable constraints both statistically
and behaviorally.

As discussed in our assessment of the G-MNL model, we consider the multiplicative
convolution of a mutually independent Pareto distribution type I and some continuous
distribution. Let ζ be the shape parameter and ϕ∼Pareto(κ, ζ), and let the probability
density function and cumulative distribution function be [23]:

fϕ(ϕ) =

{
ζκζ

ϕζ+1 = ζκ

(ϕ/κ)ζ+1 (if κ ≤ ϕ, 0 < ζ)

0 (if 0 ≤ ϕ < κ, 0 < ζ)
,

Fϕ(ϕ) =

{
1−

(
κ
ϕ

)ζ
(if κ ≤ ϕ, 0 < ζ)

0 (if 0 ≤ ϕ < κ, 0 < ζ)
(23)

The expected value and variance are:

E[ϕ] =
ζκ

ζ − 1
(ζ > 1), (24)
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Var(ϕ) =
ζκ2

(ζ − 1)2(ζ − 2)
(ζ > 2) (25)

Here, we normalized the expected value to 1 to obtain the MIXL-iPS model.

E[ϕ] =
ζκ

ζ − 1
= 1. (26)

In other words,

κ =
ζ − 1

ζ
= 1− 1

ζ
, ζ =

1
1− κ

(27)

Therefore, to make sense of the variance, ζ > 2, the constraint of κ becomes 1/2 <
κ < 1. The following sigmoid function can be used to ensure κ ∈ (1/2, 1):

κ =
1

1 + exp(−exp(κ∗))
, κ∗ ∈ (−∞, ∞). (28)

The constraints that 1/2 < κ < 1 of the MIXL-iPS model are highly behaviorally
explainable. First, when ζ → ∞ , κ → 1 , and fϕ(ϕ)→ δ(ϕ− 1) (see Appendix E for
details). If we denote the probability density functions of α and β as fα(α) and fβ(β),
respectively, then:

lim
ζ→∞,κ→1

fβ(β) = lim
ζ→∞,κ→1

∫ ∞

−∞

1
|ϕ| fϕ(ϕ) fα

(
β

ϕ

)
dϕ

= lim
ζ→∞,κ→1

∫ ∞

−∞

1
|ϕ|

ζκζ

ϕζ+1 fα

(
β

ϕ

)
dϕ

=
∫ ∞

0
δ(ϕ− 1)

1
|ϕ| fα

(
β

ϕ

)
dϕ

=
1
|1| fα

(
β

1

)
,

= fα(β) (29)

Thus, the apparent preference parameter distribution of the MIXL-iPS model converges
to the true preference parameter distribution. In other words, once the unobserved het-
erogeneity of the logit scale is lost, the distribution of the apparent preference parameter
distribution always matches that of the true preference parameter. This property holds for
general continuous probability distributions with moments, rather than only when the true
preference parameter is normally or lognormally distributed. Moreover, because ϕ is a
relative consistency index, it implicitly ensures that the range of the substantive logit scale
will be (0, ∞) rather than [κ, ∞ ).

In general, there is no closed-form solution for the probability density function of
the product of the Pareto distribution type I and the normal or lognormal distribution.
Therefore, numerical simulations were also performed here for illustrative purposes along
with a simple algorithm diagram in Appendix C. The numerical example is based on Hess
and Rose [38] and the G-MNL model as described in the previous section. For illustrative
purposes, we set a relatively wide range of values in the defined region of κ when the logit
scale depends on Pareto distribution type I. The robustness of the results at the analytical
limit values was elaborated in Appendix E. The results corresponding to the assumption
of a normal distribution for the true preference parameters are shown in Figure 2, and
those corresponding to the assumption of a lognormal distribution are shown in Figure 3.
In general, the result of multiplicative convolution is a skewed distribution. However,
because Pareto distribution type I has the property of converging to Dirac’s delta function,
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the apparent preference parameter distribution converges to the true preference parameter
distribution as the Pareto scale approaches 1. In other words, the apparent preference,
which incorporates both true preference and scale heterogeneity with an expected value
of 1, generally becomes a skewed distribution in the MIXL-iPS model framework. As the
variance of the logit scale loses its significance, the true and apparent preference parameters
converge. Finally, as a qualitative impression, judging from the graphs and compared with
the results displayed in Figure 1, which were obtained from the G-MNL model, the kurtosis
is not overly high in the results of multiple convolutions displayed in Figures 2 and 3.

Finally, as the most extreme case, we examined how well the MIXL-iPS model can rep-
resent choice inconsistency. The cumulative distribution function of the Pareto distribution
with expectation fixed at one becomes:

Fϕ(ϕ) = 1−
(

κ

ϕ

) 1
1−κ

(30)

When Fϕ(ϕ) is evaluated, the values up to E[ϕ] = 1, then,

Fϕ(1) = 1−
(κ

1

) 1
1−κ

= 1− κ
1

1−κ (31)

Since 1/2 < κ < 1,

lim
κ→ 1

2

(
1− κ

1
1−κ

)
= 0.7500, lim

κ→1

(
1− κ

1
1−κ

)
= 1.0000 (32)

Thus, the share that is below the expected value is between 0.7500 and 1.0000. Thus,
the MIXL-iPS model is an appropriate formulation of bounded rationality because many
people are less consistent than in the average, and this is a model in which the share
increases rapidly toward those who make extremely inconsistent choices.
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5. Conclusions

In this paper, we proposed the MIXL-iPS model, which can be used to alleviate several
significant issues inherent to the CL model, and we examine its parameter distribution
properties. First, we summarized four issues inherent to the CL model: (1) simultaneous
unidentifiability, (2) the immediacy of decision-making, (3) the homogeneity of preferences
in unobservable variables, and (4) the IIA. Second, we discussed the limitations of the
MIXL and G-MNL models. The former implicitly controls for the heterogeneity of the
logit scale, which limits the use of covariance parameters and suggests that care must be
taken in interpreting the estimated apparent preference parameters. For the latter, the
assumption of a lognormal distribution for the logit scale suggests that the kurtosis of
the distribution of the apparent preference parameters can be high when the variance is
significant and that the estimation of the apparent preference parameters can fail when
the variance is even more significant. Therefore, we constructed the MIXL-iPS model to
address these issues. Third, we constructed a basic MIXL-iPS model that represents the
situation with only one choice opportunity to resolve the restrictions of the MIXL and
G-MNL models and to alleviate challenges (1) to (4) of the CL model. The basic MIXL-
iPS model expresses the diversity of the relative consistency index for the choice set by
introducing a logit scale according to the Pareto distribution type I with an expected value
of 1 while also expressing the preference heterogeneity by assuming a normal or lognormal
distribution for the true preference parameters. Numerical simulations confirm that the
apparent preference parameters are generally skewed and become consistent with the true
preference parameters as the variance implications of the logit scale disappear. Moreover,
the kurtosis of the apparent preference parameter is not overly high in the MIXL-iPS model.

When estimating MIXL-iPS, the simulated maximum likelihood method developed
by Train [13] for estimating MIXL and used by Fiebig et al. [19] for estimating G-MNL is
promising. In addition to relatively small survey data, it was used to estimate MIXL on
extensive consumer scanner data, as in Ankamah-Yeboah et al. [40], so we can expect it
to be valid for a wide range of datasets. According to Fiebig et al. [19], in the estimating
procedure of the simulated maximum likelihood method, the simulated choice probability
takes the following form:

Pi =
1
S∑S

s=1
exp((ϕsα + ϕsΓvs)xi)

∑j∗ exp
(
(ϕsα + ϕsΓvs)xj*

) (33)

where s(s = 1, 2, · · · , S) denotes the number of pseudorandom variables drawn from
∀vks ∈ vs∼i.i.d.Lognormal(0, 1) for price-related attributes, ∀vks ∈ vs∼i.i.d.Normal(0, 1),
for nonprice-related attributes, and for the logit scale, ϕs∼Pareto(κs, 1/(1− κs)) where
1/2 < κs < 1.

It is necessary to empirically confirm the validity of the basic MIXL-iPS model and to
compare it with the G-MNL model type II, which was modified to multiply the ASCs by
the logit scale, and with the MIXL model, which considered the multiplicative distribution
of true preference and the logit scale parameters assumed to be normal or lognormal. This
is because there is no justification in behavioral theory for adopting a Pareto distribution
on the logit scale a priori.

Then, it becomes necessary to consider how to resolve two relevant challenges, which
require experimental eye-tracking data along with DCE questions. First, because there can
be multiple-choice opportunities in various situations, the history of past choices can affect
the current choice opportunity. In DCE studies, the possibility of a background contrast
effect or a contextual effect between choice opportunities or choice sets was noted [41].
Studies considering the effects of multiple-choice opportunities on the logit scale have
indicated the possibility of a learning and fatigue effect [42]. However, we usually construct
the likelihood function when estimating CL as follows [12].

Likelihood = ∏Q
q=1 ∏J

j∗=1 Pj∗q
Dj∗q (34)
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where Dj∗q is a dummy variable that takes the value 1 when the choice is made and 0
otherwise; q(q = 1, 2, · · · , Q) is the choice opportunity, and Q is the total number of choice
sets in the DCE. Thus, the CL model assumes local independence where multiple-choice
responses from the same individual are statistically independent given the latent parameter
values. If compatibility with microeconomics is to be maintained, the true preference
parameter distribution must be treated as fixed across choice opportunities, and time-series
correlations cannot be established. Therefore, a promising model is one that allows the logit
scales involved in the information processing costs of the overall choice set to be correlated
across choice opportunities. The validity of this formulation can be confirmed by examining
the correlation of logit scales used in each choice opportunity with the response time.

Second, we should try to consistently formulate the rational inattention ARUM [43,44].
The assumption that individuals know their true preferences eliminates the partial in-
formation processing strategy of examining the preferences of alternatives. Matějka
and McKay [43] added the partial information processing strategy term to the linear-
in-parameter ARUM under the assumption of rational inattention. This term represents the
partial information cost for reducing the uncertainty of the utility of alternatives. Fosgerau
et al. [44] called it the rational inattention ARUM.

In the rational inattention ARUM, the utility of alternative i becomes Ui = Vi +
lnP0

i + εi, where P0
i denotes the expected value of the choice probability of alternative

i. Therefore, the utility of the alternative, Vi, may be obtained by sufficient cognitive
information processing, but inattention reduces the utility by an amount equal to the
information cost lnP0

i . This information cost can correspond to either epistemic or intrinsic
value, which in the context of the free energy principle is the value of uncertainty in the
utility of the alternative [45]. Thus, the rational inattention ARUM can be compatible
with neuroscientific free energy minimization. The information processing strategy term
can be used to express context effects within a choice set, and the CL model is a case
where this term is assumed to be zero. Thus, the CL model and the extensions assume
complete certainty of preferences. If we want to mitigate the assumption, for example,
the appropriateness of using the gaze dwelling time as used by Grebitus et al. [46] can be
verified by adding the partial information processing preference term for each attribute in
each alternative to the deterministic term used in the ARUM. All the above is a subject for
future research.

Author Contributions: T.O.: Conceptualization; Formal analysis; Methodology; Visualization;
Writing—Original Draft, Review and Editing. S.K.: Funding acquisition; Project administration;
Validation; Writing—Original Draft, Review and Editing. All authors have read and agreed to the
published version of the manuscript.

Funding: This work was supported by JSPS KAKENHI Grant Number 19K12446 and the Science and
Technology Research Partnership for Sustainable Development (SATREPS) in collaboration between
the Japanese Science and Technology Agency (JST, JPMJSA2101) and the Japanese International
Cooperation Agency (JICA). No separate funding was specifically used for this work. The funding
source had no involvement in the study design, the analysis and interpretation, the writing of the
report, or the decision to submit the article for publication.

Data Availability Statement: We have shared an R source code example on the Open Science Frame-
work repository (https://osf.io/kygxq?view_only=d119ce571d9f4e328eaf53ef8adb9de5, accessed on
19 November 2023).

Acknowledgments: The authors thank the editors and four anonymous referees for their constructive
comments and suggestions to improve the quality of an earlier version of the manuscript. Takahiro
Tsuge of the Graduate School of Sophia University and Naoki Shiota of Dokkyo University gave us
beneficial advice on the history of CL research and on microeconomic theory, respectively.

Conflicts of Interest: The authors declare no conflict of interest.

https://osf.io/kygxq?view_only=d119ce571d9f4e328eaf53ef8adb9de5


Mathematics 2023, 11, 4727 17 of 22

Appendix A. Simple Derivation of CL in Train [13]

Assuming the ARUM, the choice probability i ∈ J:

Pi = Prob
(
Ui > Uj, ∀j 6= i

)
= Prob

(
Vi + εi > Vj + ε j, ∀j 6= i

)
= Prob

(
ε j − εi < Vi −Vj, ∀j 6= i

)
where ε j∼i.i.d.Gumbel(0, ξ) and introducing the indicator function I(x) = I(X ≤ x), we
have Pi = E[I(ε)]. Thus, we have:

Pi =
∫ ∞

−∞
I
(
ε j − εi < Vi −Vj, ∀j 6= i

)
f(ε)dε

=
∫ εi+Vi−Vj

−∞
I
(
ε j < εi + Vi −Vj, ∀j 6= i

)
f(ε)dε

=
∫ ∞

−∞
Pi|εi· f (εi)dεi

=
∫ ∞

−∞
f (εi)∏

j 6=i
E
[
I
(
ε j < εi + Vi −Vj, ∀j 6= i

)]
dεi

=
∫ ∞

−∞
f (εi)∏

j 6=i
F
(
εi + Vi −Vj

)
dεi

=
∫ ∞

−∞

1
ξ

exp
(
− εi

ξ

)
exp
(
−exp

(
− εi

ξ

))
∏
j 6=i

exp
(
−exp

(
−

εi + Vi −Vj

ξ

))
dεi

=
∫ ∞

−∞

1
ξ

exp
(
− εi

ξ

)
∏
j∗

exp
(
−exp

(
−

εi + Vi −Vj∗

ξ

))
dεi

=
∫ ∞

−∞

1
ξ

exp
(
− εi

ξ

)
exp

(
−∑

j∗
exp
(
−

εi + Vi −Vj∗

ξ

))
dεi

=
∫ ∞

−∞

1
ξ

exp
(
− εi

ξ

)
exp

(
−exp

(
− εi

ξ

)
∑
j∗

exp
(
−

Vi −Vj∗

ξ

))
dεi

=
∫ ∞

0
exp

(
−η∑

j∗
exp
(
−

Vi −Vj∗

ξ

))
dη

=
∫ ∞

0
−

d
dη exp

(
−η∑j∗ exp

(
−Vi−Vj∗

ξ

))
∑j∗ exp

(
−Vi−Vj∗

ξ

) dη

=
1

∑j∗ exp
(
−Vi−Vj∗

ξ

)

=
exp
(

Vi
ξ

)
∑j∗ exp

(Vj∗
ξ

)
Thus, we obtain the CL model. We note that η = exp(−εi/ξ).
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Appendix B. Simple Derivation of CL in Marsili [25]

Let us consider a decision-maker who balances the expected utility of the ARUM with
the expected value of the information content or Shannon entropy of the choice set [27].

max
Pi

E[Ui] = ∑i PiVi + ξ∑i Piln Pi, s.t.∑i Pi = 1, ξ > 0.

L(Pi, ω) = ∑i PiVi + ξ∑i Piln Pi −ω
(
∑i Pi − 1

)
where ω is the Lagrange multiplier or marginal utility for the controlled choice probability.
Regarding the ξ∑i PilnPi. We note that this derivation procedure is based on the same idea
of derivation of the softmax [47].

First, let us assume that ∂L/∂Pi = 0; then:

Vi − ξ(1 + ln Pi)−ω = 0,

⇔ ln Pi =
Vi −ω

ξ
− 1,⇔ Pi = exp

(
Vi
ξ

)
exp
(
−ω

ξ
− 1
)

.

Next, from ∂L/∂ω = 0,
∑i Pi = 1.

Thus, we have:

∑i Pi = 1 = exp
(
−ω

ξ
− 1
)

∑i exp
(

Vi
ξ

)
,

exp
(
−ω

ξ
− 1
)
= 1/∑i exp

(
Vi
ξ

)
Thus, we obtain CL as follows:

Pi =
exp

(
Vi
ξ

)
∑j∗ exp

(Vj∗
ξ

)
We note that there is no uncertainty regarding the Vj∗s, and the functional form

resembles the softmax with temperature [48].
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Appendix D. Properties of the Lognormal Distribution of the Logit Scale in the
G-MNL Model

Now, r1∼Normal
(

a1, b1
2
)

and r2∼Normal
(

a2, b2
2
)

are statistically independent. Then,

exp(r1)∼Lognormal
(

a1, b1
2
)

, and exp(r2)∼Lognormal
(

a2, b2
2
)

, respectively. The product of
the two is exp(r1)exp(r2) = exp(r1 + r2). From the reproducibility of the normal distribution,
r1 + r2∼Normal

(
a1 + a2, b1

2 + b2
2
)

. Therefore, exp(r1 + r2)∼Lognormal
(

a1 + a2, b1
2 + b2

2
)

.
Thus, when the logit scale and true preference parameters both follow a lognormal distribution
in the G-MNL model, the product of the two, the apparent preference, also follows a lognormal
distribution.

In the G-MNL model, ϕ∼Lognormal
(
µϕ, τ

)
, 0 < ϕ < ∞, let r∼Normal

(
µr, σr

2),−∞ <
r < ∞, and 0 < ϕ = exp(r) < ∞; then:

lim
τ→0

1√
2πτϕ

exp

(
−
(
ln(ϕ)− µϕ

)2

2τ2

)
=

1
ϕ

lim
τ→0

1√
2πτ

exp

(
−
(
r− µϕ

)2

2τ2

)

=
δ
(
r− µϕ

)
ϕ

=
δ
(
ln(ϕ)− µϕ

)
ϕ

.

E[ϕ] = 1, then, µϕ = −τ2/2. The probability density function according to the
apparent preference parameters can be obtained from Rohatgi and Saleh [36]. As τ → 0 ,
µϕ → 0 , and:

lim
τ→0

fβ(β) = lim
τ→0

∫ ∞

−∞

1
|ϕ| fϕ(ϕ) fα

(
β

ϕ

)
dϕ

= lim
τ→0

∫ ∞

−∞

1
|ϕ|

δ
(
ln(ϕ)− µϕ

)
ϕ

fα

(
β

ϕ

)
dϕ

= lim
τ→0

∫ ∞

−∞
δ
(
ln(ϕ)− µϕ

) 1

|ϕ|2
fα

(
β

ϕ

)
dϕ

= lim
τ→0

∫ ∞

−∞
δ
(

ϕ− exp
(
µϕ

)) 1

|ϕ|2
fα

(
β

ϕ

)
dϕ

=
1

|1|2
fα

(
β

1

)
= fα(β).

Thus, it matches the probability distribution according to the true preference parame-
ters. Additionally, when τ → ∞ , from l’Hôpital’s rule, it follows that:

lim
τ→∞

1√
2πτϕ

exp

(
−
(
ln(ϕ)− µϕ

)2

2τ2

)
=

1
ϕ

lim
τ→∞

1√
2πτ

exp

(
−
(
ln(ϕ) + τ2/2

)2

2τ2

)

=
1
ϕ

1√
2π lim

τ→∞
τ

exp

(
− lim

τ→∞

2τ
(
ln(ϕ) + τ2/2

)
4τ

)

=
1
ϕ

1√
2π lim

τ→∞
τ

exp

(
− lim

τ→∞

(
ln(ϕ) + τ2/2

)
2

)
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=
1√
2πϕ
·0·0 = 0.

Appendix E. Properties of Type I Pareto Distribution of Logit Scale in the MIXL-iPS
Model

Here, we consider the case where the logit scale follows the Pareto distribution type
I, i.e., ϕ∼Pareto(κ, ζ). Let us suppose κ < ϕ. As ζ → ∞ , ζκ → ∞ , and (ϕ/κ)ζ+1 → ∞ .
Then, from l’Hôpital’s rule, the probability density function is:

lim
ζ→∞,κ<ϕ

fϕ(ϕ) =

lim
ζ→∞,κ<ϕ

ζκ

lim
ζ→∞,κ<ϕ

(ϕ/κ)ζ+1 =

lim
ζ→∞,κ<ϕ

κ

lim
ζ→∞,κ<ϕ

ζ(ϕ/κ)ζ
= 0.

Additionally, let us suppose κ = ϕ. Then:

lim
ζ→∞,κ=ϕ

fϕ(ϕ) = lim
ζ→∞,κ=ϕ

ζκ = ∞.

Therefore,
lim

ζ→∞
fϕ(ϕ) = δ(ϕ− κ).

Then, from the constraint of expected value 1, we can see that:

Var(ϕ) =
ζκ2

(ζ − 1)2(ζ − 2)

=
ζκ

ζ − 1
· κ

(ζ − 1)(ζ − 2)

=
κ

(ζ − 1)(ζ − 2)

=
κ(

1
1−κ − 1

)(
1

1−κ − 2
)

=
κ(1− κ)2

(1− 1 + κ)(1− 2 + 2κ)

=
κ(1− κ)2

κ(1 + 2κ)

=
(1− κ)2

(1 + 2κ)
.

Let us consider the following, where ξ is the Gumbel scale of the Gumbel distribution
Gumbel(0, ξ). When ϕ = 1/ξ follows a Pareto distribution Pareto(κ, ζ), ξ follows a
power-function distribution. The probability density function and cumulative distribution
function become [49]:

fξ(ξ) = ζκζ ξ, Fξ(ξ) = (κξ)ζ
(

0 ≤ ξ ≤ 1
κ

, 0 < ζ

)
Let us suppose E[ϕ] = 1; then, from the fact that 1/2 < κ < 1, the MIXL-iPS

model has a Gumbel scale of at most 0 ≤ ξ < 2, and for the Gumbel error variance of
ARUM before the redefinition, it assumes a reasonable range of possible values of at most



Mathematics 2023, 11, 4727 21 of 22

0 ≤ ξ2π2/6 < 4π2/6 ≈ 2.094. We note that E[ξ] = 1; thus, the Gumbel scale here should
be considered relatively.
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