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Abstract: The stability problem of stochastic networks with proportional delays and unsupervised
Hebbian-type learning algorithms is studied. Applying the Lyapunov functional method, a stochastic
analysis technique and the Itô formula, we obtain some sufficient conditions for global asymptotic
stability. We also discuss the estimation of the second moment. The correctness of the main results is
verified by two numerical examples.
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1. Introduction

In 2007, Gopalsamy [1] investigated a Hopfield-type neural network with an unsuper-
vised Hebbian-type learning algorithm and constant delays:

x′i(t) = −aixi(t) + ∑n
j=1 bij f j(xj(t− τj)) + ∑n

j=1 ∑n
k=1 Tijk f j(xj(t− τj)) fk(xk(t− τk))

+Di ∑n
j=1 zij(t)pj + Ii,

z′ij(t) = −αizij(t) + βi fi(xi(t))pj,
(1)

where i = 1, 2, · · · , n, t ≥ 0, xi(t) means the neuronal state of the ith neuron; ai > 0
represents the resetting feedback rate of the neuron i; zij(t) represents the synaptic vector;
Di means the uptake of the input signal; bij; Tijk denotes the synaptic weights; αi > 0 and
βi are disposable scaling constants; Ii is an external input signal vector; and f j(·) is the
neuronal activation function. Let

yi(t) =
n

∑
j=1

zij(t)pj and
n

∑
j=1

p2
j = c.

We rewrite (1) as
x′i(t) = −aixi(t) + ∑n

j=1 bij f j(xj(t− τj)) + ∑n
j=1 ∑n

k=1 Tijk f j(xj(t− τj)) fk(xk(t− τk))

+Diyi(t) + Ii,
y′i(t) = −αiyi(t) + βic fi(xi(t)).

(2)

If random disturbance terms and proportional delays are added to system (2), we
obtain the following stochastic networks:

dxi(t) = −aixi(t)dt + ∑n
j=1 bij f j(xj(qjt))dt + ∑n

j=1 ∑n
k=1 Tijk f j(xj(qjt)) fk(xk(qkt))dt

+Diyi(t)dt + Iidt + ∑n
j=1 cijgj(xj(t))dWi(t),

dyi(t) = −αiyi(t)dt + βic fi(xi(t))dt + ∑n
j=1 dijgj(yj(t))dWi(t),

(3)

where i = 1, 2, · · · , n, t ≥ 0, ∑n
j=1 cijgj(xj(t))dWi(t) and ∑n

j=1 dijgj(yj(t))dWi(t) represent
stochastic perturbations, W(t) = (W1(t), W2(t), · · · , Wn(t))T denotes n-dimensional Brow-
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nian motion with natural filtering {Ft}t≥0 on a complete probability space (Ω,F,P); and
0 < qj < 1 is a proportional delay factor with qjt = t− (1− qj)t. The meanings of other
terms are same as systems (1) and (2). We give the initial conditions of system (3) as follows:{

xi(v) = φi(v), v ∈ (−∞, 0], i = 1, 2, · · · , n,
yi(v) = ψi(v), v ∈ (−∞, 0], i = 1, 2, · · · , n,

(4)

where φi(v) and ψi(v) are all continuous and bounded functions on (−∞, 0]. One method
to expand the structure of Hopfield-type networks is to study higher-order or second-order
interactions of neurons. We found that learning algorithms have been used in the neural
network literature. Huang et al. [2] studied attractivity and stability problems for networks
with Hebbian-type learning and variable delays. Gopalsamy [3] considered a new model of
a neural network of neurons with crisp somatic activations which have some fuzzy synaptic
modifications and which incorporates a Hebbian-type unsupervised learning algorithm.
Chu and Nguyen [4] discussed Hebbian learning rules and their application in neural
networks. The authors of [5] investigated a type of fuzzy network with Hebbian-type
unsupervised learning on time scales and obtained stability via the Lyapunov functional
method. For more results on high-order networks, see, e.g., [6–10].

In the real world, network systems are inevitably affected by random factors, and
studying the dynamic behavior of stochastic network systems has important theoretical
and practical value. In recent decades, high-order stochastic network systems have been
receiving more attention. Liu, Wang and Liu [11] investigated the dynamic properties of
stochastic high-order neural networks with Markovian jumping parameters and mixed
delays by using the LMI approach. Using fuzzy logic system approximation, Xing, Peng
and Cao [12] dealt with fuzzy tracking control for a high-order stochastic system. In [13], a
stochastic nonlinear system with actuator failures has been studied. In very recent years, the
dynamic properties of higher-order neural networks have been studied, see, e.g., [14–17].

Motivated by the above work, this paper is devoted to studying a type of stochastic
network with proportional delays and an unsupervised Hebbian-type learning algorithm.
We study the dynamic behavior of system (3) by using random analysis techniques and
the Lyapunov functional method. Due to the presence of random terms and proportional
delays in system (3), constructing a suitable Lyapunov function will be very difficult. In
this article, we will fully consider the above special term and construct a new Lyapunov
function, which can conveniently obtain stability results. We give the main innovations of
this paper as follows:

(1) There exist few results for stochastic networks with proportional delays and unsu-
pervised Hebbian-type learning algorithms. Our research has enriched the research
content and developed the research methods for the considered system.

(2) In order to construct an appropriate Lyapunov function, the proportional delays and
random terms are taken into consideration. The Lyapunov function in the present
paper is different from the corresponding ones in [4,5].

(3) In contrast to the existing research methods, we introduce some new research methods
(including inequality techniques, stochastic analysis techniques and the Itô formula)
to deal with the proportional delays and the unsupervised Hebbian-type learning
algorithm. Particularly, we construct a new function and obtain the stochastic stability
results of system (3) using the stability theory of stochastic differential systems and
some inequality techniques. Furthermore, using the stochastic analysis technique and
the Itô formula, we obtained the estimation of the second moment.

The remaining parts are arranged as follows. Section 2 presents some basic lemmas
and definitions. In Section 3, we use the Lyapunov function method to deal with global
asymptotic stability and the estimation of the second moment for (3). Section 4 gives two
examples for verifying our main results. Finally, we give some conclusions.

Throughout the paper, the following assumptions hold.
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(H1) There are constants Mj, Lj ≥ 0 such that

| f j(u)| ≤ Mj, | f j(u)− f j(v)| ≤ Lj|u− v|, j = 1, 2, · · · , n, ∀u, v ∈ R.

(H2) There are constants Nj, L̃j ≥ 0 such that

|gj(u)| ≤ Nj, |gj(u)− gj(v)| ≤ L̃j|u− v|, j = 1, 2, · · · , n, ∀u, v ∈ R.

2. Preliminaries

Definition 1. If X∗ = (x∗1 , x∗2 , · · · , x∗n, y∗1 , y∗2 , · · · , y∗n)T ∈ R2n satisfies
0 = −aix∗i + ∑n

j=1 bij f j(x∗j ) + ∑n
j=1 ∑n

k=1 Tijk f j(x∗j ) fk(x∗k )
+Diy∗i + Ii,

0 = −αiy∗i + βic fi(x∗i ),

then X∗ is an equilibrium point of (2). If gj(x∗j ) = 0 and gj(y∗j ) = 0, then systems (3) and (2) have
the same equilibrium point X∗.

Let C1,2(R+ × Θr,R+) be a non-negative function space, where Θr = {X : ||X|| <
r} ⊂ Rn. V(t,X) ∈ C1,2 means that V(t,X) exists as the continuous first and second
derivatives for (t,X), respectively.

Definition 2 ([18]). The following stochastic differential system is given{
dX(t) = h(t,X(t))dt + e(t,X(t))dW(t), t ≥ t0,
X(t0) = X0.

(5)

Denote the operator as

LV(t,X) = Vt(t,X) + VX(t,X)h(t,X) +
1
2

trace
[
eT(t,X)VXX(t,X)e(t,X)

]
,

where X = (u1, u2, · · · , un), V(t,X) ∈ C1,2(R+ ×Θr,R+), Vt(t,X) = ∂V(t,X)
∂t ,

VX(t,X) =
(

∂V(t,X)
∂u1

,
∂V(t,X)

∂u2
, · · · ,

∂V(t,X)
∂un

)
, VXX(t,X) =

(
∂2V(t,X)

∂ui∂uj

)
n×n

.

Definition 3 ([19]). An n-dimensional open field containing the origin is defined by Ξ ⊂ Rn. If
there is positive definite function Γ(X) such that |V(t,X)| ≤ Γ(X), then the function V(t,X) has
an infinitesimal upper bound.

Definition 4 ([19]). If Γ(X) is positive definite and Γ(X)→ +∞ for ||X|| → ∞, then the function
Γ(X) ∈ C(Rn,R) is called an infinite positive definite function.

Definition 5. If X∗(t) = (x∗1(t), x∗2(t), · · · , x∗n(t), y∗1(t), y∗2(t), · · · , y∗n(t))> is a solution of
system (3) and X(t) = (x1(t), x2(t), · · · , xn(t), y1(t), y2(t), · · · , yn(t))> is any solution of
system (3) satisfying

P
{

lim
t→+∞

n

∑
i=1

(|xi(t)− x∗i (t)|+ |yi(t)− y∗i (t)|) = 0
}

= 1.

we call X∗(t) stochastically globally asymptotically stable.

Lemma 1 ([19]). If LV(t,X) is negative definite, where V(t,X) ∈ C1,2([t0,+∞) × Θr,R+),
then the zero solution of system (5) is globally asymptotically stable.
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In [1], we can find the detailed proof of the existence of the solution for system (3).

Theorem 1 ([1]). Suppose that assumptions (H1) and (H2) hold and

µ = max
1≤i≤n

Li
ai

( n

∑
j=1

bji +
n

∑
j=1

n

∑
k=1

(Tkji + Tkij)Mj + |Di|
c|βi|

αi

)
< 1.

Then, system (2) has a unique equilibrium point.

From Definition 1, the conditions of Theorem 1 also guarantee the existence of a unique
equilibrium point for system (3).

3. Stability of Equilibrium

Theorem 2. Suppose that all conditions of Theorem 1 are satisfied. Then, system (3) has an
equilibrium point which is stochastically globally asymptotically stable, provided that

− 2ai +
n

∑
j=1

|bji|L2
i

qi
+

n

∑
j=1

n

∑
k=1

(MjLj|Tijk|
qj

+
MiLi|Tjik|

qi

)

+
n

∑
j=1

n

∑
k=1

(MkLk|Tijk|
qk

+
MiLi|Tkji|

qi

)
+

n

∑
j=1
|bij|+ |Di|+ |βi|cLi +

n

∑
k=1

n

∑
j=1

c2
kj L̃

2
i < 0

(6)

and

−2αi + |Di|+ |βi|cLi +
n

∑
k=1

n

∑
j=1

d2
kj L̃

2
i < 0. (7)

Proof. Due to Theorem 1, system (3) has a unique equilibrium point X∗ = (x∗1 , x∗2 , · · · ,
x∗n, y∗1 , y∗2 , · · · , y∗n)T ∈ R2n. Let x̃i(t) = xi(t)− x∗i and ỹi(t) = yi(t)− y∗i . By (3), we have

dx̃i(t) = −ai x̃i(t)dt + ∑n
j=1 bij f̃ j(x̃j(qjt))dt + ∑n

j=1 ∑n
k=1 Tijk f̃ j(x̃j(qjt)) f̃k(x̃k(qkt))dt

+Di ỹi(t)dt + ∑n
j=1 cij g̃j(x̃j(t))dWi(t),

dỹi(t) = −αi ỹi(t)dt + βic f̃i(x̃i(t))dt + ∑n
j=1 dij g̃j(ỹj(t))dWi(t),

(8)

where

f̃ j(x̃j(t)) = f j(x̃j(t) + x∗j )− f j(x∗j ), g̃j(ỹj(t)) = gj(ỹj(t) + y∗j )− gj(y∗j ).

Let
X̃ = (x̃, ỹ) = (x̃1, x̃2, · · · , x̃n, ỹ1, ỹ2, · · · , ỹn)

and

V(t, X̃) =
n

∑
i=1

(
x̃2

i (t) + ỹ2
i (t)

)
+

n

∑
i=1

n

∑
j=1
|bij|

∫ t

qjt

1
qj

f̃ 2
j (x̃j(s))ds

+
n

∑
i=1

n

∑
j=1

n

∑
k=1
|Tijk|

∫ t

qjt

1
qj
|x̃i(s)| f̃ 2

j (x̃j(s))ds +
n

∑
i=1

n

∑
j=1

n

∑
k=1
|Tijk|

∫ t

qkt

1
qk
|x̃i(s)| f̃ 2

k (x̃k(s))ds.
(9)
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By (9), we get

Vt(t, X̃) =
n

∑
i=1

n

∑
j=1
|bij|

(
1
qj

f̃ 2
j (x̃j(t))− f̃ 2

j (x̃j(qjt))
)

+
n

∑
i=1

n

∑
j=1

n

∑
k=1
|Tijk|

(
|x̃i(t)|

qj
f̃ 2
j (x̃j(t))− |x̃i(t)| f̃ 2

j (x̃j(qjt))
)

+
n

∑
i=1

n

∑
j=1

n

∑
k=1
|Tijk|

(
|x̃i(t)|

qk
f̃ 2
k (x̃k(t))− |x̃i(t)| f̃ 2

k (x̃k(qkt))
) (10)

and
VX̃(t, X̃) = 2(x̃1, x̃2, · · · , x̃n, ỹ1, ỹ2, · · · , ỹn), VX̃X̃(t, X̃) = 2I2n×2n, (11)

where I2n×2n is a 2n× 2n identity matrix. It follows by (10), (11) and Definition 2 that

LV(t, X̃) =
n

∑
i=1

n

∑
j=1
|bij|

(
1
qj

f̃ 2
j (x̃j(t))− f̃ 2

j (x̃j(qjt))
)

+
n

∑
i=1

n

∑
j=1

n

∑
k=1
|Tijk |

(
|x̃i(t)|

qj
f̃ 2
j (x̃j(t))− |ũi(t)| f̃ 2

j (x̃j(qjt))
)

+
n

∑
i=1

n

∑
j=1

n

∑
k=1
|Tijk |

(
|x̃i(t)|

qk
f̃ 2
k (x̃k(t))− |x̃i(t)| f̃ 2

k (x̃k(qkt))
)

+ 2
n

∑
i=1

x̃i

(
− ai x̃i(t) +

n

∑
j=1

bij f̃ j(x̃j(qjt)) +
n

∑
j=1

n

∑
k=1

Tijk f̃ j(x̃j(qjt)) f̃k(x̃k(qkt)) + Di ỹi(t)
)

+ 2
n

∑
i=1

ỹi

(
− αi ỹi(t) + βic f̃i(x̃i(t))

)

+
n

∑
i=1

( n

∑
j=1

cij g̃j(x̃j(t))
)2

+
n

∑
i=1

( n

∑
j=1

dij g̃j(ỹj(t))
)2

.

(12)

Using the inequality a2 + b2 ≥ 2ab and (12), we get

LV(t, X̃) ≤
n

∑
i=1

n

∑
j=1
|bij|

(
1
qj

f̃ 2
j (x̃j(t))− f̃ 2

j (x̃j(qjt))
)

+
n

∑
i=1

n

∑
j=1

n

∑
k=1
|Tijk |

(
|x̃i(t)|

qj
f̃ 2
j (x̃j(t))− |x̃i(t)| f̃ 2

j (x̃j(qjt))
)

+
n

∑
i=1

n

∑
j=1

n

∑
k=1
|Tijk |

(
|x̃i(t)|

qk
f̃ 2
k (x̃k(t))− |x̃i(t)| f̃ 2

k (x̃k(qkt))
)

+
n

∑
i=1

(
− 2ai x̃2

i (t) +
n

∑
j=1
|bij| f̃ 2

j (x̃j(qjt)) +
n

∑
j=1
|bij|x̃2

i (t)

+
n

∑
j=1

n

∑
k=1
|Tijk ||x̃i(t)|

[
f̃ j(x̃2

j (qjt)) + f̃ 2
k (x̃k(qkt))

]
+ |Di |x̃2

i (t) + |Di |ỹ2
i (t)

)

+
n

∑
i=1

(
− 2αi ỹ2

i (t) + |βi |cLi x̃2
i (t) + |βi |cLi ỹ2

i (t)
)

+
n

∑
i=1

n

∑
k=1

n

∑
j=1

c2
kj L̃

2
i x̃2

i (t) +
n

∑
i=1

n

∑
k=1

n

∑
j=1

d2
kj L̃

2
i ỹ2

i (t)

≤
n

∑
i=1

[
− 2ai +

n

∑
j=1

|bji |L2
i

qi
+

n

∑
j=1

n

∑
k=1

( |Tijk |Mj Lj

qj
+
|Tjik |Mi Li

qi

)
+

n

∑
j=1

n

∑
k=1

( |Tijk |Mk Lk

qk
+
|Tkji |Mi Li

qi

)
+

n

∑
j=1
|bij|+ |Di |+ |βi |cLi +

n

∑
k=1

n

∑
j=1

c2
kj L̃

2
i

]
x̃2

i (t)

+
n

∑
i=1

[
− 2αi + |Di |+ |βi |cLi +

n

∑
k=1

n

∑
j=1

d2
kj L̃

2
i

]
ỹ2

i (t).

(13)
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It follows from (6), (7) and (13) that LV(t, X̃) < 0. Therefore, LV(t, X̃) is negative
definite. It is easy to see that V(t, Z̃) is positive definite. We claim that V(t, Z̃) has an
infinitesimal upper bound. In fact, in view of assumption (H1), we get

V(t, X̃) ≤
n

∑
i=1

(
x̃2

i (t) + ỹ2
i (t)

)
+

n

∑
i=1

n

∑
j=1
|bij|

∫ t

qjt

L2
j

qj
x̃2

j (s)ds

+
n

∑
i=1

n

∑
j=1

n

∑
k=1
|Tijk|

∫ t

qjt

L2
j

qj
|x̃i(s)|x̃2

j (s)ds +
n

∑
i=1

n

∑
j=1

n

∑
k=1
|Tijk|

∫ t

qkt

L2
k

qk
|x̃i(s)|x̃2

k(s)ds.

(14)

In view of Definition 3, there exists an infinitesimal upper bound of V(t, X̃). It follows
by (9) that

V(t, X̃) ≥
n

∑
i=1

(
x̃i)

2(t) + ỹ2
i (t)

)
.

Thus, V(t, X̃)→ +∞ for ||X̃|| → ∞. Therefore, in view of Definition 4, V(t, X̃) is an
infinite positive definite function for the second variable X̃. Based on Lemma 1, there is an
equilibrium point of (3) which is stochastically globally asymptotically stable.

We further study the properties of solutions of system (3) and discuss the estimation
of the second moment.

Theorem 3. Suppose that (H1) and (H2) are satisfied. Furthermore, there exists a positive constant
ri such that

ai = Di − αi = ri. (15)

Then, for any solution X = (x1, x2, · · · , xn, y1, y2, · · · , yn)T of system (3) that satisfies
initial condition (4), we obtain that

E|xi(t)|2 ≤ M̃3 and E|yi(t)|2 ≤ M̃2,

where

M̃1 = max
1≤i≤n

{
3[xi(0) + yi(0)]2 + 3

[ n

∑
j=1
|bij|Mj +

n

∑
j=1

n

∑
k=1
|Tijk|Mj Mk + |Ii|+ |βi|cMi

]2 1
ri

+ 3
( n

∑
j=1

(|cij|+ |dij)|Nj

)2 1
2ri

}
,

M̃2 = max
1≤i≤n

{
3y2

i (0) + 3|βi|2c2M2
i

1
αi

+ 3
( n

∑
j=1
|dij|Nj

)2 1
2αi

}
, M̃3 = 2M̃1 + 2M̃2.

Proof. By (3), we have

dxi(t) + dyi(t) + aixi(t)dt + (αi − Di)yi(t)dt

=
n

∑
j=1

bij f j(xj(qjt))dt +
n

∑
j=1

n

∑
k=1

Tijk f j(xj(qjt)) fk(xk(qkt))dt + Iidt + βic fi(xi(t))dt

+

( n

∑
j=1

cijgj(xj(t)) +
n

∑
j=1

dijgj(yj(t))
)

dWi(t).

(16)
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Multiplying erit on both sides of (16) and using (15) yields

d
[
eritxi(t) + erityi(t)

]
= erit

[ n

∑
j=1

bij f j(xj(qjt))dt +
n

∑
j=1

n

∑
k=1

Tijk f j(xj(qjt)) fk(xk(qkt))dt + Iidt + βic fi(xi(t))dt

+

( n

∑
j=1

cijgj(xj(t)) +
n

∑
j=1

dijgj(yj(t))
)

dWi(t)
]

.

(17)

Integrating two sides of (17) on [0, t], we get

xi(t) + yi(t)

= e−rit[xi(0) + yi(0)] +
∫ t

0
eri(s−t)

[ n

∑
j=1

bij f j(xj(qjs)) +
n

∑
j=1

n

∑
k=1

Tijk f j(xj(qjs)) fk(xk(qks)) + Ii + βic fi(xi(s))
]

ds

+
∫ t

0
eri(s−t)

( n

∑
j=1

cijgj(xj(s)) +
n

∑
j=1

dijgj(yj(s))
)

dWi(s).

Thus,

|xi(t) + yi(t)|2

≤ 3e−2rit[xi(0) + yi(0)]
2 + 3

( ∫ t

0
eri(s−t)

[ n

∑
j=1

bij f j(xj(qjs))

+
n

∑
j=1

n

∑
k=1

Tijk f j(xj(qjs)) fk(xk(qks)) + Ii + βic fi(xi(s))
]

ds
)2

+ 3
( ∫ t

0
eri(s−t)

( n

∑
j=1

cijgj(xj(s)) +
n

∑
j=1

dijgj(yj(s))
)

dWi(s)
)2

≤ 3[xi(0) + yi(0)]
2 + 3

[ n

∑
j=1
|bij|Mj +

n

∑
j=1

n

∑
k=1
|Tijk|Mj Mk + |Ii|+ |βi|cMi

]2 1− e−rit

ri

+ 3
( ∫ t

0
eri(s−t)

( n

∑
j=1

cijgj(xj(s)) +
n

∑
j=1

dijgj(yj(s))
)

dWi(s)
)2

.

(18)

Using the Schwarz inequality and Itô integration’s property, we get

E
( ∫ t

0
eri(s−t)

( n

∑
j=1

cijgj(xj(s)) +
n

∑
j=1

dijgj(yj(s))
)

dWi(s)
)2

=
∫ t

0
e2ri(s−t)E

( n

∑
j=1

cijgj(xj(s)) +
n

∑
j=1

dijgj(yj(s))
)2

ds

≤
( n

∑
j=1

(|cij|+ |dij)|Nj

)2 1− e−2rit

2ri
.

(19)
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Using (18) and (19) yields

E|xi(t) + yi(t)|2

≤ 3[xi(0) + yi(0)]2 + 3
[ n

∑
j=1
|bij|Mj +

n

∑
j=1

n

∑
k=1
|Tijk|Mj Mk + |Ii|+ |βi|cMi

]2 1
ri

+ 3
( n

∑
j=1

(|cij|+ |dij)|Nj

)2 1
2ri

:= M̃1.

(20)

On the other hand, from the second equation of (3), we have

deαityi(t) = eαitβic fi(xi(t))dt + eαit
n

∑
j=1

dijgj(yj(t))dWi(t). (21)

Integrating two sides of (21) on [0, t], we get

yi(t) = yi(0) +
∫ t

0
eαi(s−t)βic fi(xi(s))ds +

∫ t

0
eαi(s−t)

n

∑
j=1

dijgj(yj(s))dWi(s). (22)

Using the above proof and (22), we derive

E|yi(t)|2 ≤ 3y2
i (0) + 3|βi|2c2M2

i
1
αi

+ 3
( n

∑
j=1
|dij|Nj

)2 1
2αi

:= M̃2.

(23)

From (20) and (23), we derive

E|xi(t)|2 ≤ 2E|xi(t) + yi(t)|2 + 2E|yi(t)|2

≤ 2M̃1 + 2M̃2 := M̃3

The proof of Theorem 3 is completed.

4. Examples

Example 1. The following Hopfield-type stochastic networks with unsupervised Hebbian-type
learning algorithms and proportional delays are given:

du1(t) = −10u1(t)dt + h1(u1(
1
3

t))dt + h2(u2(
1
3

t))dt + h1(u1(
1
3

t))h1(u1(
1
3

t))dt

+ h1(u1(
1
3

t)) + h2(u2(
1
3

t))dt + h2(u2(
1
3

t))h1(u1(
1
3

t))dt

+ h2(u2(
1
3

t))h2(u2(
1
3

t))dt +
1
5

v1(t)dt + e1(u1(t))dW1(t),

dv1(t) = −10v1(t)dt +
1
2

h1(u1(t))dt + e1(v1(t))dW1(t),

du2(t) = −10u2(t)dt + h1(u1(
1
3

t))dt + h2(u2(
1
3

t))dt + h1(u1(
1
3

t))h1(u1(
1
3

t))dt

+ h1(u1(
1
3

t)) + h2(u2(
1
3

t))dt + h2(u2(
1
3

t))h1(u1(
1
3

t))dt

+ h2(u2(
1
3

t))h2(u2(
1
3

t))dt +
1
5

v2(t)dt + e2(u2(t))dW1(t),

dv2(t) = −10v2(t)dt +
1
2

h2(u2(t))dt + e2(v2(t))dW2(t),

(24)
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where

i, j, k = 1, 2, ai = αi = 10, h1(x) = h2(x) =
1

10
tanhx, e1(x) = e2(x) =

1
20

tanhx, qi =
1
3

, Ii = 0,

bij = cij = dij = 1, Di =
1
5

, c = 1, βi =
1
2

, Tijk = 1, Lj = Mj =
1
10

, L̃j = Nj =
1
20

.

After a simple calculation, we have

µ = max
1≤i≤n

Li
ai

( n

∑
j=1

bji +
n

∑
j=1

n

∑
k=1

(Tkji + Tkij)Mj + |Di|
c|βi|

αi

)
≈ 0.12 < 1,

− 2ai +
n

∑
j=1

|bji|L2
i

qi
+

n

∑
j=1

n

∑
k=1

( |Tijk|MjLj

qj
+
|Tjik|MiLi

qi

)
+

n

∑
j=1

n

∑
k=1

( |Tijk|MkLk

qk
+
|Tkji|MiLi

qi

)
+

n

∑
j=1
|bij|+ |Di|+ |βi|cLi +

n

∑
k=1

n

∑
j=1

c2
kj L̃

2
i

≈ −17.04 < 0

and

−2αi + |Di|+ |βi|cLi +
n

∑
k=1

n

∑
j=1

d2
kj L̃

2
i = −13.35 < 0.

Thus, all conditions of Theorems 1 and 2 are satisfied and for system (24) there exists a globally
asymptotically stable equilibrium X∗ = (0, 0, 0, 0)T . Figures 1 and 2 show that system (24) has an
equilibrium point which is stochastically globally asymptotically stable. Figures 1 and 2 show that
the solution of (24) approaches equilibrium at X∗ = (0, 0, 0, 0)T .

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

t

-1.5

-1

-0.5

0

0.5

1

(u
1
(t

),
v 1

(t
))

T

u
1

v
1

Figure 1. Simulation results for the solution (u1(t), v1(t))T in system (24).
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0

0.5

1

1.5

(u
2
(t

),
v 2

(t
))

T

u
2

v
2

Figure 2. Simulation results for the solution (u2(t), v2(t))T in system (24).

Example 2. To further verify the results of Theorems 1 and 2, according to system (3), we provide
the following example:

dx1(t) = −12x1(t)dt + h1(x1(
1
5

t))dt + h2(x2(
1
5

t))dt + h1(x1(
1
5

t))h1(x1(
1
5

t))dt

+ h1(x1(
1
5

t)) + h2(x2(
1
5

t))dt + h2(x2(
1
5

t))h1(x1(
1
5

t))dt

+ h2(x2(
1
5

t))h2(x2(
1
5

t))dt +
1
6

y1(t)dt + e1(x1(t))dW1(t),

dy1(t) = −12y1(t)dt +
1
4

h1(x1(t))dt + e1(y1(t))dW1(t),

dx2(t) = −12x2(t)dt + h1(x1(
1
5

t))dt + h2(x2(
1
5

t))dt + h1(x1(
1
5

t))h1(x1(
1
5

t))dt

+ h1(x1(
1
5

t)) + h2(x2(
1
5

t))dt + h2(x2(
1
5

t))h1(x1(
1
5

t))dt

+ h2(x2(
1
5

t))h2(x2(
1
5

t))dt +
1
6

y2(t)dt + e2(x2(t))dW1(t),

dy2(t) = −12y2(t)dt +
1
4

h2(x2(t))dt + e2(y2(t))dW2(t),

(25)

where

i, j, k = 1, 2, ai = αi = 12, h1(x) = h2(x) =
1

15
tanhx, e1(x) = e2(x) =

1
40

tanhx, qi =
1
5

, Ii = 0,

bij = cij = dij = 1, Di =
1
6

, c = 1, βi =
1
4

, Tijk = 1.

From the expressions of h1, h2, e1 and e2, we obtain

Lj = Mj =
1

15
, L̃j = Nj =

1
40

, j = 1, 2.
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Thus, assumptions (H1) and (H2) hold. After a simple calculation, we have

µ = max
1≤i≤n

Li
ai

( n

∑
j=1

bji +
n

∑
j=1

n

∑
k=1

(Tkji + Tkij)Mj + |Di|
c|βi|

αi

)
≈ 0.014 < 1,

− 2ai +
n

∑
j=1

|bji|L2
i

qi
+

n

∑
j=1

n

∑
k=1

( |Tijk|MjLj

qj
+
|Tjik|MiLi

qi

)
+

n

∑
j=1

n

∑
k=1

( |Tijk|MkLk

qk
+
|Tkji|MiLi

qi

)
+

n

∑
j=1
|bij|+ |Di|+ |βi|cLi +

n

∑
k=1

n

∑
j=1

c2
kj L̃

2
i

≈ −21.15 < 0

and

−2αi + |Di|+ |βi|cLi +
n

∑
k=1

n

∑
j=1

d2
kj L̃

2
i = −23.82 < 0.

Therefore, all conditions of Theorems 1 and 2 are satisfied and system (25) has a globally
asymptotically stable equilibrium X∗ = (0, 0, 0, 0)T . From Figures 3 and 4, it is easy to see
that system (25) has an equilibrium point at X∗ = (0, 0, 0, 0)T which is stochastically globally
asymptotically stable.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

t

-1.5

-1

-0.5

0

0.5

1

1.5

(x
1
(t

),
y 1

(t
))

T

x
1

y
1

Figure 3. Simulation results for the solution (x1(t), y1(t))T in system (25).
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Figure 4. Simulation results for the solution (x2(t), y2(t))T in system (25).

5. Conclusions

By using the Lyapunov functional method and stochastic analysis techniques, we
derive some sufficient conditions to ensure the global asymptotic stability of system (3). We
also give an estimation of the second moment for the solution of system (3). An example is
given to demonstrate the correctness of the obtained results.

There are still many issues worth further research in system (3), such as network
models with pulse structures, networks on time scales, networks with fuzzy terms, and
so on.
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