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Abstract: Addressing contemporary challenges in computed tomography (CT) demands precise and
efficient reconstruction. This necessitates the optimization of CT methods, particularly by improving
the algorithmic efficiency of the most computationally demanding operators—forward projection
and backprojection. Every measurement setup requires a unique pair of these operators. While fast
algorithms for calculating forward projection operators are adaptable across various setups, they fall
short in three-dimensional scanning scenarios. Hence, fast algorithms are imperative for backprojec-
tion, an integral aspect of all established reconstruction methods. This paper introduces a general
method for the calculation of backprojection operators in any measurement setup. It introduces a
versatile method for transposing summation-based algorithms, which rely exclusively on addition
operations. The proposed approach allows for the transformation of algorithms designed for forward
projection calculation into those suitable for backprojection, with the latter maintaining asymptotic
algorithmic complexity. Employing this method, fast algorithms for both forward projection and
backprojection have been developed for the 2D few-view parallel-beam CT as well as for the 3D
cone-beam CT. The theoretically substantiated complexity values for the proposed algorithms align
with their experimentally derived estimates.

Keywords: fast Hough transform; fast discrete radon transform; computed tomography

MSC: 65R32; 65R10; 68W30; 68W40; 94A08

1. Introduction
1.1. Problem Relevance

Computed tomography (CT) is a non-destructive X-ray technique used to probe the
internal morphological structure of objects [1,2]. It plays a pivotal role in diverse fields
such as medicine [3–5], industry [6–8], safety protocols [9,10], and scientific exploration,
particularly in scrutinizing the morphology of promising functional materials [11]. Despite
over 80 years of development in computed tomography algorithms [12,13], the pursuit of
innovation and optimization remains ongoing. This is driven by various factors, including
the imperative to reduce radiation dose in medical applications [14,15], augment sensitivity
in screening setups [16], and refine spatial resolution in scientific [17], industrial [18], and
medical [19,20] applications. Notably, CT has recently been harnessed for real-time imaging
of dynamic processes [21,22]. This breakthrough is made possible only by improving
classical tomographic reconstruction methods.

Modern challenges addressed by CT impose strict constraints on both reconstruction
time and accuracy. Increasing spatial resolution leads to an augmented dataset, demanding
enhanced computational speed for reconstruction algorithms. This goal can be pursued
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through two routes: optimizing the reconstruction algorithms and/or amping up com-
putational resources. Given the cost implications of bolstering computational power in
tomographic systems, improving algorithmic efficiency stands out as the more attractive
avenue.

The core of tomographic reconstruction algorithms lies in forward projection and
backprojection. While both of them are linear operators, they depend on the CT setup.
Various measurement setups, detailed in [23], are employed in tomograph designs. Each
scheme corresponds to its specific pair of matched forward projection and backprojection
operators. The scheme’s parameters encompass the scanning trajectory, probing beam
shape, and the dimensions and layout of the position-sensitive detector. The scanning
trajectory refers to the path followed, depending on whether the object or the emitter-
detector pair is stationary. The probing beam can be conical [24], fan-shaped [25], or
parallel [26]. Circular [27] and helical [28] trajectories are the most commonly used for
the emitter-detector pair. Some specialized tomographs utilize more intricate scanning
methods [29], and non-planar detectors are utilized [30].

Calculating the forward projection and backprojection operators is considered to be
the most computationally demanding aspect of tomographic reconstruction techniques.
Streamlining this process holds great promise for speeding up the entire reconstruction pro-
cess. The acceleration of classical algorithms of CT reconstruction is an on-going problem
with main efforts being directed towards effective GPU implementations [31,32], although
new fast algorithms are being developed as well [33,34]. There are fast algorithms for
calculating the forward projection operator for various tomographic setups. For example,
a fast approximate computation algorithm with asymptotic complexity of Θ

(
N3
√

N
)

addition operations, where N is the linear size of the reconstruction, has been proposed for
three-dimensional computer tomography [35]. Noteworthy, this algorithm can be adapted
to any scanning scheme. Regrettably, these findings, on their own, do not facilitate the
development of fast tomographic reconstruction methods for cone-beam and other three-
dimensional scanning setups. This is due to the fact that while there are reconstruction
algorithms that bypass the use of the forward projection operator (such as the Feldkamp
algorithm [36]), there are no algorithms that do not employ the backprojection operator.
To speed up reconstruction methods, fast algorithms for the forward projection operator,
akin to those in [35], must be paired with equally fast algorithms for backprojection. These
algorithms should be applicable across all scanning schemes. To address this challenge, this
paper introduces a general approach to the construction of fast algorithms for calculating
the transpose of operators. The proposed fast transposition algorithm efficiently handles
a category of linear operators depicted as binary matrices, encompassing cases where
application results rely solely on addition operations.

1.2. Related Works

Since the advent of CT, various approaches to speeding up tomographic reconstruction
have emerged. They can be broadly categorized into three groups: those utilizing Fast
Fourier Transform (FFT), methods employing hierarchical decomposition of the image to be
recovered, and approaches applying hierarchical decomposition of linear integrals. Many
researchers have proposed incorporating FFT in tomographic reconstruction algorithms.
These algorithms can be fast due to projection and convolution operations in Fourier
space, without completely offsetting this advantage during the transition to Fourier space.
Achieving precise reconstruction through Fourier transform demands an infinite number of
projections [37]. In practice, however, the available amount of projections is finite, thus the
accuracy of the result depends on the approximation schemes embedded in the algorithms.
As noted by Natterer [38], the presence of artifacts in reconstructed images, stemming from
the Fourier transform application, reduces their practical effectiveness. Natterer delves into
an analysis of the origins of these distortions in his work [38].

Various approximation schemes are tailored to maximize the accuracy of the resulting
reconstruction, depending on the specific instrument configuration. In the case of paral-
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lel beams, where the three-dimensional problem can be efficiently deconstructed into a
series of independent two-dimensional ones, Mersereau and Oppenheim [37] advocated
for reducing the approximation error by substituting the uniform polar coordinate grid in
Fourier space with a grid of concentric squares. For cone beams, aiming to refine reconstruc-
tion precision, Dusaussoy [39] proposed employing a grid of concentric cubes. Averbuch
et al. [40] later introduced the pseudo-polar Fourier transform for fast computation of
both forward and inverse Radon transforms, highlighting Radon transform’s potential
in addressing parallel beam tomography challenges. In parallel schemes, an optimized
Kaiser-Bessel interpolation was suggested for an algorithm utilizing non-uniform fast
Fourier transform [41]. Sullivan [42] proposed improving reconstruction precision through
the application of gridding methods in algorithms tailored for scenarios involving both
parallel and fan beams. Subsequently, Arcadu et al. [43] further refined this algorithm.

The widely-used FDK (Feldkamp, Davis and Kress) reconstruction algorithm [36] is
the go-to fast method for cone beams. Its primary limitation lies in the need for a gradual
change in morphological structure along the rotational axis [39]. However, incorporating
iterative strategies alongside the FDK algorithm [44] offers some flexibility in this regard.
In conclusion, two key points emerge. Firstly, there is currently no universal approach
to speeding up algorithms with FFT. Secondly, all known methods in this category are
approximate, and their precision is a subject of scrutiny.

The following two approaches to fast reconstruction rely on hierarchical decompo-
sition. In the first, the recoverable volume is decomposed and then the sub-volumes
are aggregated. The second approach employs hierarchical decomposition of linear in-
tegrals [45,46] along with repeated use of common subsums. For example, in a parallel
beam scheme [47], the square recoverable image is split into four images by vertical and
horizontal lines through the center. Each of these images is reconstructed individually.
This halves the linear size of the image and reduces the necessary projections by half
compared to reconstructing a full-sized image, thereby reducing required operations. This
approach is applied recursively. The computation speed depends on the stopping point in
the hierarchical decomposition of the volume to be recovered. Reconstruction accuracy is
crucially affected by the stopping point, the accuracy of interpolation used in the projection
aggregation steps for reconstructing the small image, and the method used to merge the
reconstructed small images. The hierarchical volume decomposition approach is not uni-
versally applicable. Different algorithms are needed and have been proposed for various
measurement schemes. For a circular fan beam CT system, the algorithm is detailed in [48].
For a circular cone beam CT system, refer to [49,50]. Additionally, for a helical cone beam
CT system, the algorithm is outlined in [51].

The hierarchical decomposition of linear integrals [45,46] presents a fundamentally
different approach. It speeds up the computation of linear operators for both forward pro-
jection and backprojection, crucial elements in reconstruction algorithms. The key concept
is based on the observation that in discrete space, lines share common subsequences of
pixels, referred to as patterns, rather than intersecting at a single point. Clearly, reusing
partial sums from these pattern intersections can significantly reduce the computational
complexity for linear operators. To achieve fast reconstruction algorithms, it suffices to
compute partial sums for a subset of possible patterns. The choice of patterns depends
on the specific measurement scheme, emphasizing the need for universal transposing
methods. In 1992, M. Brady and W. Yong introduced a method for fast computation of an
approximate discrete Radon transform (Hough transform) on a plane, based on repeated
use of common sub-sums [45]. This method, credited to Brady and Yong, appears to have
been independently developed by Walter Götz, who published it in his 1993 dissertation
in German. Götz’s work is referenced in an English-language article by Götz and Druck-
müller published in 1995 [46]. Although the Brady–Yong algorithm may not provide the
most accurate approximation of straight lines by discrete patterns, it maintains a bounded
approximation error. Brady and Yong’s original work [45] provided an initial estimate for
the deviation of position coordinates from the ideal straight line during summation. Subse-



Mathematics 2023, 11, 4759 4 of 37

quently, refined hypotheses were proposed [52,53], leading to the precise upper bound of
the approximation error [54]. A recent algorithm, ASD2, has emerged for fast and accurate
computation of the discrete Radon transform on a plane [55]. This approach [55] shares
similarities with the Brady–Yong method but incorporates the most accurate discretization
of lines (from possible discretizations), resulting in improved accuracy compared to the
Brady–Yong algorithm. In 1998, T.-K. Wu and M. Brady first extended the Brady–Yong
algorithm to the three-dimensional case [56]. The work [57] marked the first exploration of
the precision of dyadic approximations in three-dimensional space. In 2020, a significant
advancement was made by applying the Method of Four Russians, which modified the
Wu–Brady technique to calculate sums over Θ(N3) lines, rather than the excessive Θ(N4)
lines in the original Wu–Brady algorithm designed for three-dimensional tomography tasks
(where N denotes the linear size of the reconstruction) [35]. This resulted in a fast algorithm
for computing the forward projection operator. A notable advantage of this algorithm[35]
lies in its versatility throughout CT schemes.

1.3. Contributions

This work presents a novel general method for developing efficient algorithms to com-
pute both forward projection and backprojection linear operators. Our method transforms
fast algorithms designed for forward projection, solely reliant on addition operations, into
efficient algorithms for backprojection. It is noteworthy that the computational complexities
for both forward projection and backprojection operators are comparable. Furthermore, this
method is versatile, and applicable to computing the transpose of any operator represented
by a binary matrix. The algorithm for computing the transpose of the operator exhibits a
similar asymptotic computational complexity as that of the forward operator.

This work combines the Method of Four Russians with the Brady–Yong algorithm for
fast computation of the forward projection operator in arbitrary measurement schemes in
the 2D case. By integrating these approaches with a universal method for transposing sum-
ming algorithms, the study devises a fast algorithm for calculating backprojection operators
for both parallel and fan beams within the circular CT scheme (2D case). The computational
complexity of these algorithms depends on the chosen stopping point in calculating partial
sums over patterns. Experimental results validate the theoretically grounded potential for
fast reconstruction methods that involve computing the backprojection operator using the
proposed approach of transposing algorithms.

In previous research [35], a combination of the Wu–Brady and the Method of Four
Russians was utilized for the circular cone beam CT system (3D case). However, the con-
struction of the backprojection operator was not addressed in that work. The proposed
method, which transforms fast algorithms for computing forward projection operators
into efficient ones for computing backprojection operators, was applied to the algorithm
described in the same work [35]. An assessment of the complexity of the transposed algo-
rithm from [35] was conducted. Implementing our method for transposing accumulative
algorithms opens the door to obtaining efficient algorithms for computing backprojection
operators from those for computing forward projection operators, applicable to any CT
schemes in both two-dimensional and three-dimensional scenarios.

1.4. Paper Outline

The subsequent section defines the reconstruction problem and gives an overview of
the employed methodologies. In the third section, we detail and justify a novel method for
transposing summing algorithms. This method allows for deriving an algorithm to compute
the transpose of an operator represented by a binary matrix through the original operator
computation algorithm. The evaluation of the algorithmic complexity of the forward and
transposed operators computation is presented within Section 3.3. In the fourth section,
we apply this transposition method to established fast algorithms for computing forward
projection operators in both 2D and 3D scenarios. Section 4 introduces novel fast algorithms
for computing both forward projection and backprojection operators based on the fast
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Hough transform (FHT), accompanied by a complexity assessment. The 2D case is dealt
with in Section 4.2 and the 3D case is the subject of Section 4.4. These algorithms are
derived through the application of our proposed method for transposing algorithms, and a
thorough complexity analysis is performed. The fifth section delves into the experimental
validation of our proposed method of algorithm transposition. Finally, the paper concludes
with a discussion highlighting the advantages of the proposed approach.

2. CT Reconstruction: Problem Statement and Solutions Overview

CT reconstruction entails creating a digital representation of an object based on a collec-
tion of measured X-ray images or tomographic projections. This digital depiction represents
a discrete spatial distribution of the linear attenuation coefficient of X-ray radiation.

2.1. Projection Image Model in Parallel-Beam Circular CT

The classical mathematical model for generating a CT projection image is based on the
following assumptions:

- Monochromatic radiation is used for scanning;
- The imaging process is approximated with geometric optics;
- There are no radiation sources (primary or secondary) within the examined sample;
- Radiation attenuation depends on the absorptive properties of the material and follows

the Bouguer–Beer–Lambert law;
- the detector only records the attenuated probing radiation. The detector cell has an

infinitesimal size, a linear response function, and unit sensitivity.

The basic scheme for measuring projections with a parallel beam on an object is
illustrated in Figure 1.

Figure 1. A schematic illustration of parallel-beam CT. Red point in the center illustrates the rotation
axis, dashed lines are the X-ray propagation directions, φ is the rotation angle, ρ is detector cell
coordinate and the blue line is the effective signal registered by detector.

When an object is probed with a parallel beam and the axis of rotation is perpendicular
to the beam, we can analyze the CT problem on a plane without loss of generality. Consider
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a parallel set of planes perpendicular to the rotation axis. Measurements in each of these
regions are independent. Let us take advantage of this and focus on a single plane.

The Cartesian coordinate system x0y in the plane aligns with the center of rotation of
the source-detector system, and the spatial distribution of the linear attenuation coefficient
µ(x, y) of the probing radiation is described by a finite function. In this coordinate system,
we will use the standard parameterization of a line: (ρ, ϕ). All rays in the probing beam at
one projection position share the same ϕ coordinate. The image is captured by a planar
position-sensitive detector located perpendicular to the probing direction. The ρ coordinate
precisely locates the detector cell. For an infinitely thin X-ray beam at an angle ϕ reaching
the detector at ρ, the radiation attenuation law through the object is expressed as:

I(ρ, ϕ) = I0 exp
(
−
∫ ∞

−∞
µ(ρ cos ϕ− l sin ϕ, ρ sin ϕ + l cos ϕ) dl

)
, (1)

where I0 is the source’s radiant exitance, and I is the irradiance of the detector cell. Nor-
malizing by I0 and taking the logarithm yields the function g(ρ, φ), referred to as the ray
integral:

g(ρ, φ) = − ln
I(ρ, φ)

I0
=
∫ ∞

−∞
µ(ρ cos φ− l sin φ, ρ sin φ + l cos φ) dl. (2)

Through tomographic measurements, we acquire linear integrals of the function µ(x, y)
along each straight line `. This process, known as the Radon transform, maps a function
from Euclidean space to its set of linear integrals. Radon introduced an explicit inversion
formula for an infinite set of straight lines in 1917 [58]. Building on this, the problem of
tomographic reconstruction involves recovering the function µ(x, y) when linear integrals
are known for a finite set of straight lines. The arrangement of these lines is referred to
as the measurement scheme, which is determined by the tomograph’s design, including
the shape of the probing beam and the scanning scheme. Consequently, the reconstruction
process must align with the chosen measurement scheme.

In practice, synchrotron radiation sources primarily employ monochromatic probing.
Medical and industrial tomographs, on the other hand, utilize polychromatic radiation. Dif-
ferent approaches have been suggested to linearize the relationship between measurement
results and the function describing attenuation. These methods vary from those needing
extra calibration measurements [59,60] to fully automated techniques [61,62]. Note that
using parallel beams for scanning is primarily a feature of synchrotrons. In laboratory
settings, achieving a parallel scheme necessitates the incorporation of extra optical compo-
nents in the tomograph setup. Conversely, when employing an X-ray tube to generate the
beam without extra optical elements, a cone beam is formed. In this setup, the source is
situated at the apex of the cone, while the detector rests in the plane of its base. The object
being probed is located within the cone. The collection of rays composing a tomographic
projection under the current angle in a cone scheme differs from that in a parallel scheme
for the same angle.

Consider a circular scanning path. In tomographic research, measurements are taken
along a specified finite number of directions C, which determine the set of projection angles
Φ = {φi}C

i=1. For each projection angle, the linearized measurements are recorded as a
vector g(φ) = (g1, . . . , gN)

T , where N represents the number of cells in the detector array
(in the two-dimensional scenario). The measurements for all angles can be consolidated into
a single vector G = (g(φ1), . . . , g(φC))

T = (gi : i ∈ Z1,N·C)
T . The set of rays constituting

the vector for the current projection angle in a cone beam differs from the set of rays forming
the vector in a parallel beam for the same angle.

To perform reconstruction, we need to produce measured data discretization first. For
µ discretization, the reconstructed area is divided into a regular grid of square pixels. The
number of pixels in the horizontal direction is the same as in the vertical direction, and it
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matches the number of detector cells N. This grid contains a total of N2 elements, which
can be expressed as a vector M = (µ1,1, . . . , µ1,N , µ2,1, . . . , µN,N)

T = (µi : i ∈ Z1,N2)T .
The vector M represents a 2D slice of the reconstructed 3D image. Ray integral

values (2) are approximated using sums. The model for generating projection data is
expressed in matrix form:

WM = G, (3)

where W is the projection matrix of size N · C × N2. The elements 0 ≤ wi,j ≤ 1 in this
matrix specify each pixel’s contribution to the sum. This W matrix defines the measurement
setup.

The dimensions of the projection matrix depend on the number of detector cells and
the quantity of projection angles. Its configuration is influenced by factors like scanning
path, probe shape, the number of projection angles, and their absolute values.

2.2. CT Reconstruction Algorithms

In the formulation (3), the CT problem involves reconstructing a digital image of
the studied object M given the known projection matrix W and the vector of linearized
measured values G.

The matrix W is a sparse non-negative matrix, with elements representing weights
calculated based on the chosen ray-pixel intersection model [23]. We will treat the projection
matrix W as a binary matrix for the forward projection operator in the natural basis of the
introduced Cartesian coordinate system x0y. The value wi,j of the projection matrix element
at indices i, j equals 1 if and only if the X-ray beam intersects the pixel of the reconstructed
object’s cross-section at coordinates i, j.

Various approaches have been proposed for reconstructing images from measured
projections. Integral methods rely on the numerical implementation of the Radon transform
inversion formulas. The most widely used method, found in most medical tomographs, is
the convolution and backprojection technique.

2.3. CT Reconstruction Algorithms for Parallel Scanning Scheme
2.3.1. Convolution and Back-Projection Algorithms (Filtered BackProjection, FBP)

In tomography, a widely used family of algorithms for reconstructing images is
based on the convolution and backprojection method, known as Filtered Back-Projection
(FBP) [63]. Buzug et al. [23] demonstrated that with the matrix representation from (3), the
following relationship can be derived:

M = (WT ·W)−1 ·WT · G = WT · (W ·WT)−1 · G, (4)

where WT represents the backprojection operator matrix. The matrices (WT ·W)−1 and
(W ·WT)−1 are filtering operators that can be applied either after or before the projection,
respectively.

The convolution and backprojection method is a fast two-step approach. Initially,
measured projections are convolved with a filter [64]. Subsequently, a backprojection
operation is conducted. Proposed optimizations targeted hardware solutions. Myagotin et
al. presented an implementation of the method on multi-core processors [65]. The method
operates with low memory requirements due to its sequential execution. However, it
requires a substantial number of projections. To ensure accurate reconstruction, projection
angles should be evenly distributed within the 0 to 180-degree range, with the number
of angles meeting the Nyquist criterion. Otherwise, additional data interpolation may be
necessary [66], potentially impacting reconstruction accuracy. In cases of limited projections,
an algebraic reconstruction approach has demonstrated effectiveness.
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2.3.2. Algebraic Reconstruction: SIRT (Simultaneous Iterative Reconstruction Technique)

The algebraic approach to CT reconstruction, used alongside FBP [67], treats (3) as a
system of linear algebraic equations, seeking a solution for M. Due to the system’s high
dimensionality, direct methods for solving linear systems of equations are not feasible.
Specialized algorithms have been proposed for this purpose [68,69]. In contrast to the
algebraic reconstruction techniques proposed by Gordon et al. [68], where solution vector
values are updated sequentially, the SIRT method, introduced by Gilbert in 1972 [69],
updates all coordinates of the solution vector at each step. For each coordinate, the current
value is calculated, taking into account all registered contributions. The solution at each
iteration in matrix form is updated as follows:

M(p+1)
= M(p)

+ λp ·R ·WT ·Q · (G−W ·M(p)
), (5)

where λp is the relaxation parameter [70] andWT represents the matrix of the backprojection
operator. The diagonal matrices R and Q are of dimensions N2 × N2 and N · C× N · C,
respectively. Their elements are computed using the following formulas: rii = 1/ ∑

j
wij and

qjj = 1/ ∑
i

wij. When the number of projection angles and/or the angle range are restricted,

employing the Total Variation (TV) method [71] for regularization yields a highly precise
result. In such cases, the reconstruction is acquired by solving the convex optimization
problem:

‖WM− G‖+ α‖M‖TV → min
M

, (6)

where α is the regularization parameter [71]. The optimized expression, and thus the itera-
tively obtained solution, includes both forward projection and backprojection operations.
While the algebraic approach to CT reconstruction demands more computational resources
compared to the convolution and backprojection method, its significant advantage lies in its
lack of strict limitations on the number and quality of tomographic projections, as well as its
independence from uniform distribution of observed projection angles. Fast reconstruction
using iterative algorithms can be achieved through two approaches. The first involves
augmenting computational resources and devising methods for parallel processing [72].
The second focuses on designing and utilizing algorithms with reduced computational
complexity. While given specific measurement schemes, there are efficient algorithms for
forward projection operator computation [52], and fast computation of the backprojection
operator is not guaranteed.

2.3.3. Neural Network-Based Reconstruction Techniques

The development of neural network-based approaches to tomographic reconstruction
began in 1995 with the landmark work by Kerr et al. [73]. They demonstrated that a
neural network could produce tomographic images of comparable accuracy to those used
in its training. This was based on the neural network’s capacity to discern and evaluate
intricate functional relationships. The neural network was trained using reconstructions
obtained through the FBP method. Nowadays, the integration of neural network models
into reconstruction algorithms facilitates high-quality reconstructions in few-view CT [74],
especially in cases when the full range of angles is limited [75,76], or when the measured
projections are noisy [77]. The method’s groundbreaking applications, such as tomographic
measurements with nanometer resolution, real-time CT, and studying dynamic processes,
pose challenges for traditional methods. In neural network approaches, the operations of
forward projection and backprojection remain the mathematical cornerstone.

2.4. Fast Approximation Schemes

Efficient CT reconstruction algorithms can be built with fast approximate computa-
tional schemes that utilize the Fast Hough Transform (FHT), also known as the Fast Discrete
Radon Transform [45,78–81]. The Brady–Yong algorithm [45] approximates straight lines
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using discrete dyadic patterns. While these patterns enable optimized summation calcula-
tions, they exhibit some degree of approximation inaccuracy. For comprehensive insights
into the general properties and practical applications of FHT in 2D cases, refer to [82,83].

In [84], FHT was proposed for speeding up the Simultaneous Algebraic Reconstruction
Technique (SART) [85] in 2D reconstruction. The authors applied FHT for both forward
projection operator calculation of residuals and for transposed operator calculation of
corrections in the iterative scheme. This led to a reduction in the asymptotic complexity of
a single iteration from Θ

(
N3) to Θ

(
N2 log N

)
. Additionally, in [86], a modification of the

FBP algorithm, which employs FHT to speed up the most computationally intensive step
(backprojection) is introduced. This modification allows for the image reconstruction with
Θ
(

N2 log N
)

addition operations and Θ
(

N2) multiplication operations.
In 3D CT reconstruction schemes, ref. [35] demonstrated that summing over Θ(N3)

patterns can be computed in Θ(N7/2) addition operations by utilizing a generalization of
FHT for 3D introduced by Ershov et al. [87]. However, ref. [35] provides only a theoretical
estimate and a general outline of the algorithm without a specific implementation, and the
algorithm for the fast computation of the transposed operator was not discussed.

Thus, reducing the constant in the computation complexity of the forward projection
algorithm and devising fast schemes for the transposed operator will substantially improve
the efficiency of various CT reconstruction algorithms.

3. Transposing the Summation Algorithm for Computing the Summation Operator,
Represented as a Product of Boolean Matrices
3.1. Notations and Definitions

Let B represent a Boolean matrix defined as

B def
= (by,x ∈ {0, 1} : y ∈ Z0,H−1, x ∈ Z0,W−1), (7)

where y denotes the index of the row in matrix B, x represents the index of the column in
matrix B, H ≡ H(B) signifies the number of matrix rows, and W ≡ W(B) indicates the
number of matrix columns, H(B), W(B) ∈ Z1,∞.

The number of ones in matrix B is denoted as C1(B) and can be computed using the
formula:

C1(B)
def
= ∑

y,x
by,x. (8)

The count of summations for a Boolean matrix B is denoted as CSumm(B) and is
calculated as follows:

CSumm(B)
def
= C1(B)− H(B). (9)

The number of duplications for a Boolean matrix B is denoted as CCopy(B) and is
determined as

CCopy(B)
def
= C1(B)−W(B). (10)

Let decp(·) represent a predefined decomposition of a Boolean matrix into the product
of p Boolean matrices:

decp(B) def
=

1

∏
i=p

decp
i (B) =

1

∏
i=p

Bi = BpBp−1 . . .B1 = B, (11)

where decp
i (B)

def
= Bi is the i-th component of the decomposition. In general, we assume

dec1(B) ≡ B.
Similar related functions C1(decp(·)), H(decp(·)), W(decp(·)), CSumm(decp(·)) and

CCopy(decp(·)) for the decomposition of a Boolean matrix into the product of p Boolean



Mathematics 2023, 11, 4759 10 of 37

matrices are computed by summing the corresponding function over all matrices in the
decomposition:

C1(decp(B)) def
=

p

∑
i=1

C1(decp
i (B)), (12)

H(decp(B)) def
=

p

∑
i=1

H(decp
i (B)), (13)

W(decp(B)) def
=

p

∑
i=1

W(decp
i (B)), (14)

CSumm(decp(B)) def
=

p

∑
i=1

CSumm(decp
i (B)) =

p

∑
i=1

[C1(decp
i (B))− H(decp

i (B))] =

C1(decp(B))− H(decp(B)),
(15)

CCopy(decp(B)) def
=

p

∑
i=1

CCopy(decp
i (B)) = C1(decp(B))−W(decp(B)). (16)

3.2. Correspondence of Decompositions for Forward and Transposed Operators in Boolean
Matrix Products

Let us consider the approximation of ray sum values in matrix form as shown in
Equation (3). We use a linear operator:

B : Rn → Rm. (17)

The matrix B of this operator is Boolean within the previously introduced Cartesian
coordinate system x0y (n, m ∈ Z1,∞). Without loss of generality, we further assume that
the matrix B of the operator B and all matrices decp

i (B) in the decomposition do not
contain zero rows and columns. This is because, if they did, the algorithmic complexity
of computing BM could be reduced by excluding a portion of the input data M from
consideration, where M = (µi ∈ R : i ∈ Z1,n)

T .
The transposed operator (17) of B, denoted as BT , defined by the matrix BT :

BT : Rm → Rn. (18)

For every decomposition decp(B) of the matrix B representing the forward operator
B, there is a corresponding decomposition decp(BT) of the matrix BT for the transposed
operator BT . This is computed by considering the transposition of matrix products:

decp(BT) = BT = (BpBp−1 . . .B1)
T = BT

1 . . .BT
p−1BT

p =
1

∏
i=p

BT
p−i+1. (19)

3.3. Summation-Based Algorithms and Matrix Decompositions for Forward and Transposed
Operators as the Product of Boolean Matrices—Algorithmic Complexity in Computing Forward
and Transposed Operators

Let us label an algorithm as summation-based if it relies solely on addition operations
for data manipulation.

The algorithm for computing the result BM after applying the operator B defined as
(17) to the input vector M, expressed as

BM = decp(B)M, (20)
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employs a sequential (row-wise) multiplication of matrix components decp
i (B) ≡ Bi, i ∈

Z1,p, in the decomposition decp(B) of the operator’s matrix B with the input vector M.
This process employs only summation, hence its algorithmic complexity is CSumm(decp(B)).
In this algorithm, the j-th component of the vector V(i)

= BiV
(i−1), i ∈ Z1,p (V(0)

= M,

V(p)
= BM), is computed as the product of the j-th row of the matrix Bi and the column

vector V(i−1). This computation requires one less addition operation than the number
of non-zero elements in the j-th row of the matrix Bi. Consequently, to compute all

components of the vector V(i)
= BiV

(i−1), C1(Bi)− H(Bi) ≡ CSumm(Bi), i ∈ Z1,p addition

operations are performed. In total, the algorithm requires
p
∑

i=1
CSumm(Bi) ≡ CSumm(decp(B))

addition operations.
In a similar manner, the algorithm for computing the result of applying the transposed

operator BT to the input vector, achieved through sequential (row-wise) multiplication
of matrix components decp

i (B
T) ≡ BT

p−i+1, i ∈ Z1,p, in the decomposition decp(BT) of

the matrix BT for the operator BT , is also summation-based only with an algorithmic
complexity of CSumm(decp(BT)).

Now, let us determine the complexity relationship between the algorithms for com-
puting the results of applying the forward and transposed operators when utilizing a pair
of corresponding decompositions:

CSumm(decp(B))− CSumm(decp(BT)) =
p

∑
i=1

(C1(decp
i (B))− H(decp

i (B)))−
p

∑
i=1

(C1(decp
i (B

T))− H(decp
i (B

T))) =

p

∑
i=1

(C1(decp
i (B))− C1(decp

i (B
T))) +

p

∑
i=1

(H(decp
i (B

T))− H(decp
i (B))).

(21)

Since the number of non-zero elements in the corresponding matrix components of
the decompositions decp(B) and decp(BT) for the matrices B and BT of the forward and
transposed operators B and BT is the same (i.e., C1(decp(B)) = C1(decp(BT))), and for the
decomposition decp(B), the relationships H(decp

i (B)) = W(decp
i+1(B)), i ∈ Z1,p−1, hold

due to the compatibility of the dimensions of the multiplied matrix components Bj, j ∈ Z1,p
in the decomposition decp(B), equality (21) can be extended:

p

∑
i=1

(C1(decp
i (B))− C1(decp

i (B
T))) +

p

∑
i=1

(H(decp
i (B

T))− H(decp
i (B))) =

p

∑
i=1

(H(decp
i (B

T))− H(decp
i (B))) = H(decp

p(BT))− H(decp
p(B)) =

W(decp
1 (B))− H(decp

p(B)) = W(B)− H(B).

(22)

Combining (21) and (22), we derive the following:

CSumm(decp(B))− CSumm(decp(BT)) = W(B)− H(B) = n−m. (23)

Hence, the difference in algorithmic complexities when computing the results of
applying forward and transposed operators using corresponding Boolean decompositions
is a constant determined by the dimensions of the input and output vectors. The former
result is illustrated in Figure 2.

Given that the precise computation of forward or transposed operators requires no less
than n addition operations, the formula (23) implies that if n−m(n) = Θ(n) as n→ ∞, then
CSumm(decp(BT)) = Θ(CSumm(decp(B))) and CSumm(decp(B)) = Θ(CSumm(decp(BT))) as
n→ ∞. In other words, the asymptotic algorithmic complexities for the precise computa-
tion of forward and transposed operators are of the same order.
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Figure 2. Relations between dimensions of Boolean decomposition factors and the count of summa-
tions of forward and transposed decompositions.

3.4. Universal Method for Deriving Efficient Transposed Operator Calculation Algorithms

Consider a Boolean matrix B representing the linear operator B, which can be decom-
posed into the product of Boolean matrices as decp(B) = BpBp−1 . . .B1, which aligns with
established fast algorithm for computing the operator B. Subsequently, the decomposition
derived from decp(B), denoted as decp(BT) = BT

1 BT
2 . . .BT

p or the matrix BT of transposed
operator BT , leads to an efficient algorithm for computing BT . The algorithmic complexity
is asymptotically of the same order as that of computing the original operator B.

The described method is a versatile approach for transposing the algorithm used
to compute the forward operator. This can be implemented in the form of sequential
multiplications of Boolean matrices, which are derived from the known computationally
efficient forward operator matrix decomposition, with an input data vector. It enables the
derivation of an algorithm for computing the transposed operator with a well-defined
asymptotic complexity, which is on par with that of computing the forward operator.

Next, we will explore the practical implementations of this generalized transposi-
tion method in the context of summation-based algorithms for computing backprojection
operators in CT reconstruction.

4. Inverting the Projection Operator Calculation Algorithm (FHT Approximation)
4.1. Fundamental 2D FHT Concepts

Consider a standard rectangular Cartesian coordinate system denoted as X0Y associ-
ated with an image. This image can be represented as a 2n × 2n, n ∈ Z1,∞ matrix, I2n . The
bottom-left corner of the image corresponds to the point 0, and each element of the image,
known as a pixel, is depicted as a square with a side length of 1 (see Figure 3).

Let us consider the parametrization (s, t) of straight lines on the plane X0Y [81]. This
defines a continuous straight line passing through points on the lines that bound the image
(refer to Figure 3):

- A predominantly vertical straight line (PVL) passes through points (sC, 0) and (sC +
tC, 2n), situated on the straight lines that bound the image from above and below;

- A predominantly horizontal straight line (PHL) passes through points (0, sC) and
(2n, sC + tC), situated on the straight lines that bound the image from the left and right.

For simplicity (similar to [45]), we focus exclusively on predominantly vertical straight
lines with a negative slope t ≤ 0.
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Figure 3. Illustration of X0Y axes, I24 , and the structure of the dyadic pattern approximating a straight
line (s = 10, t = −5). The black dots indicate the centers of the dyadic pattern pixels.

The discrete set
Ω = Z0,2n−1 ×Z0,2n−1 (24)

defines the coordinates of the pixels (x, y) ∈ Ω. A discrete straight line (straight-line
pattern) is a subset of Ω that approximates a continuous straight line. It is defined by a
pair of pixels with coordinates (sD, 0) ∈ Ω and (sD − tD, 2n − 1) ∈ Ω along the image
boundaries. Here, sD ∈ Z0,2n−1 represents the integer shift at the pattern’s beginning,
and tD ∈ Z0,2n−1 denotes the integer shift of the pattern’s end relative to its beginning
(see Figure 3). The continuous straight lines extending beyond the image are approximated
by a straight-line pattern defined as the pattern for the original continuous straight line
within the region of the extended zero-padded image.

The creators of the FHT algorithm [45] proposed using a dyadic pattern as a discrete
straight line, which can be defined both recursively [45] and analytically [53]. The properties
of this pattern, including estimates of its maximum deviation from a continuous straight
line, have been explored in [46,53,54].

4.2. Two-Dimensional Operator Computation Algorithms

In the development of CT reconstruction algorithms, particularly in cases with a small
number of angles (few-view CT) [88] and/or monitored reconstruction (monitored CT) [89],
the process of summing over all directions may prove to be excessive (refer to the analysis
in Section 4.2.5). Hence, we will now explore a more adaptable approach. This entails
computing sums for patterns of length 2k, k < n, followed by aggregating these partial
sums to derive totals along all discrete straight lines in the specified set of directions.

4.2.1. Two-Dimensional Projection Algorithm with FHT Termination and Aggregation (for
Arbitrary Set of Straight Lines)

The original Brady–Yong algorithm [45] calculates sums for all discrete straight lines
passing through the image. The algorithm dirPFHT (Directed Partial Fast Hough Trans-
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form) is a modification of the Brady–Yong algorithm. For an input image I2n with dimen-
sions 2n × 2n, it computes the output vector of sums s = (sj)

q−1
j=0 for q discrete straight lines

parameterized in (s, t), defined as a set L = {(xj, aj)}
q−1
j=0 .

Main Computation Stages:

1. (Right) zero padding the original image I2n to R0;
2. Computing partial sums along patterns of length 2k (using dirPFHTk);
3. Aggregating sums for each discrete straight line from L (using dirSUMk).

Algorithm 1 provides pseudocode for two-dimensional projection algorithm with
termination on kth iteration and aggregation.

Algorithm 1 Algorithm for forward FHT with termination and aggregation

1: procedure dirPFHT(L, I2n , n, k)
2: R0(x, y, 0)← I2n(x, y) ∀x ∈ Z0,2n−1, y ∈ Z0,2n−1 . copy the original data
3: R0(x, y, 0)← 0 ∀x ∈ Z2n ,2n+1−1, y ∈ Z0,2n−1 . (right) zero padding
4: Rk ← dirPFHTk(Rk, n, k) . compute sums along patterns with length 2k

5: sj ← dirSUMk(xj, aj, Rk, n, k) ∀j ∈ Z0,q−1, (xj, aj) ∈ L . calculate sums along
discrete straight lines from L

6: return s

Algorithm 2 dirPFHTk computes and stores the sums for the input tensor R0 in the
form of a tensor Rk, summing over sub-patterns of length 2k. When k = n, the result
conforms to the output of the Brady algorithm [45].

Algorithm 2 Forward FHT with termination

1: procedure dirPFHTk(R0, n, k)
2: for i = 1 to k do . along the exponent range of the pattern length
3: for a = 0 to 2i − 1 do . along the absolute 0X shift of the pattern end
4: for y = 0 to 2n − 2i step 2i do . along the 0Y shift of the pattern beginning
5: for x = 0 to 2n+1 − 1 do . along the 0X shift of the pattern beginning
6: x2 ← (x− da/2e) mod 2n+1 . circular shift
7: y2 ← y + 2i−1

8: Ri(x, y, a)← Ri−1(x, y, ba/2c) + Ri−1(x2, y2, ba/2c) . saving the sum
of two sub-patterns

9: return Rk

Algorithm 3 dirSUMk aggregates the sum along a pattern with specified parameters
(x, a), where x ∈ Z0,2n−1, a ∈ Z0,2n−1, for the tensor Rk with sums along sub-patterns of
length 2k. It does so through a recursive call to recSUMk.

Algorithm 3 Aggregation for the forward projection operator

1: procedure dirSUMk(x, a, Rk, n, k)
2: return recSUMk(x, 0, a, n, Rk, n, k)

The Algorithm 4 recSUMk recursively aggregates the precomputed partial sums over
patterns of length 2i, i ∈ Zk,n, in Rk along a discrete straight line given by (x, a).
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Algorithm 4 Aggregation

1: procedure recSUMk(x, y, a, i, Rk, n, k)
2: if i = k then . precomputed sum from Rk
3: s← Rk(x, y, a) . precomputed sum from Rk
4: else
5: x2 ← (x− da/2e) mod 2n+1 . circular shift
6: y2 ← y + 2i−1

7: s← recSUMk(x, y, ba/2c, i− 1, Rk, n, k) + recSUMk(x2, y2, ba/2c, i− 1, Rk, n, k)
8: return s

We will now introduce a matrix representation for the algorithm dirPFHT with speci-
fied values of n, k, L.

4.2.2. Matrix Representation of the 2D Projection Algorithm with FHT Termination
and Aggregation

For i ∈ Z1,k, the element of the tensor Ri(x, y, a) stores the sum value along a pattern
of length 2i along the 0Y axis. Here, the pattern initiates at point (x, y), and the pattern’s
end is shifted by −a along the 0X axis. The tensor R0 is expanded through zero-padding of
the original image

R0(x, y, 0) =

{
I2n(x, y), x ∈ Z0,2n−1, y ∈ Z0,2n−1,
0, x ∈ Z2n ,2n+1−1, y ∈ Z0,2n−1.

(25)

Let us denote the set of indices used in the tensor Ri by XYA(i),

(x, y, a) ∈ XYA(i) = X(i) ×Y(i) × A(i), (26)

where

x ∈ X(i) = {j}2n+1−1
j=0 ,

y ∈ Y(i) = {j2i}2n−i−1
j=0 ,

a ∈ A(i) = {j}2i−1
j=0 .

(27)

It is worth noting that

dim(XYA(i)) = 22n+1, ∀i ∈ Z0,n. (28)

For all i ∈ Z0,n, each element of Ri can be represented in terms of V(i). More precisely,
let J(i) be the bijective function mapping index (x, y, α) ∈ XYA(i) of the element of tensor

Ri to the index j of the corresponding element of vector V(i):

J(i) : XYA(i) → Z0,22n+1−1 (29)

is according to formula

J(i)(x, y, a) = x + y · 2n+1−i + a · 22n+1−i. (30)
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Then, the inverse mapping H(i) = (J(i))−1, H(i) : Z0,22n+1−1 → XYA(i) is computed
using

x = j mod 2n+1,

y = (b j
2n+1 c mod 2n−i) · 2i,

a = b j
22n+1−i c.

(31)

A 22n+1 × 22n+1 Boolean matrix Bi allows for the calculation of

V(i)
= BiV

(i−1). (32)

The value of element Bi(p, t) for (p, t) ∈ Z0,22n+1−1 ×Z0,22n+1−1 is determined by the
following formula

Bi(p, t) =


1, if t = J(i−1)(xp, yp, bap/2c) ∨

t = J(i−1)((xp − dap/2e) mod 2n+1, yp + 2i−1bap/2c),
0, otherwise,

(33)

where (xp, yp, ap) = H(i)(p).
In each row and each column of the matrix Bi, there are exactly two ones; therefore,

C1(Bi) = 2H(Bi) = 2 · 22n+1 = 22n+2. (34)

According to the definition (9), the number of summations for the matrix Bi is

CSumm(Bi) = C1(Bi)− H(Bi) = 22n+2 − 22n+1 = 22n+1. (35)

For some n, k, the discrete straight line given by (x, a) defines a set Uk
n(x, a) of indices

for elements in Rk, the values of which are employed to aggregate sums during the recursive
call recSUMk:

Uk
n(x, a) = {(xj, yj, aj)}2n−k−1

j=0 ∈ XYA(k). (36)

The aggregating matrix S is of size q× 22n+1 and allows for the computation of the
vector of sums

s = SV(k). (37)

The values of the elements in S are determined by the set of discrete straight lines (L):

S(p, t) =

{
1, (xp, ap) ∈ L ∧ H(k)(t) ∈ Uk

n(xt, at),
0, otherwise.

(38)

According to the algorithm, each row of matrix S contains precisely 2n−k ones; hence,

C1(S) = q2n−k (39)

and following the definition in (9), the count of summations for matrix S is

CSumm(S) = C1(S)− H(S) = q2n−k − q = q(2n−k − 1). (40)

The sequential application of (32) and (37) leads to the matrix representation of
dirPFHT, which takes the form

s = SBk . . .B1V(0). (41)
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The algorithm’s computational complexity, considering both (35) and (40), is deter-
mined as follows:

CSumm(SBk . . .B1) = CSumm(S) +
k

∑
i=1

CSumm(Bi) = q(2n−k − 1) + k22n+1. (42)

4.2.3. Complexity Analysis of 2D Projection Algorithm with FHT Termination
and Aggregation

Given that projection directions are uniformly distributed, let the parameter α ∈
(0, 1] ∈ R determine the proportion of directions compared to the maximum possible
number (2n for each type of lines). This results in the number of distinct discrete straight
lines for each type, as expressed below

q = dim(s) = 2nα2n = α22n. (43)

Considering the four types of lines in the 2D scenario, the total number of summations,
denoted as TB(n, k, α), in the implementation (42), is as follows

TB(n, k, α) = 4CSumm(SBkBk−1 . . .B1) = 4α22n(2n−k − 1) + 4k22n+1

= α23n−k+2 − α22n+2 + k22n+3 = 22n+2(α(2n−k − 1) + 2k).
(44)

Note that
TB(n, 0, 1) = 22n+2(2n − 1) (45)

for naive summation along all discrete lines, considering image padding, and for the full
FHT in the Brady–Yong method (without aggregation):

TB(n, n, 1) = n22n+3. (46)

Next, let us explore how k and α influence the number of operations, introducing the
following notation

δ = n− k, δ ∈ Z0,n. (47)

We will analyze the normalized difference ∆Bn (δ, α) between the complexity of the
proposed algorithm TB(n, n − δ, α) and the original Brady–Yong algorithm TB(n, n, 1),
normalized by factor 22n+2 (representing the number of discrete straight lines for all types
and shifts),

∆Bn (δ, α)
def
=

1
22n+2 (TB(n, n− δ, α)− TB(n, n, 1)) = α(2δ − 1)− 2δ. (48)

Without aggregation (δ = 0), the complexities coincide: ∆Bn (0, α) = 0. To analyze the
function’s properties, let us take the second derivative of ∆Bn (δ, α) with respect to δ. This
leads to

∂∆Bn
∂δ

= α2δ ln 2− 2, (49)

∂2∆Bn
∂2δ

= α2δ ln2 2. (50)

With ∂2∆Bn
∂2δ

> 0, the function ∆Bn (δ, α) is convex with respect to δ. Let us determine the
minimum value of the expression with respect to δ, yielding the following

∂∆Bn
∂δ

= α2δ ln 2− 2 = 0, (51)
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2δ =
2

α ln 2
, (52)

δ = log2
2

α ln 2
= 1− log2(α ln 2). (53)

Therefore, the function ∆Bn (δ, α) attains its minimum at

δmin(α) = 1− log2 ln 2− log2 α. (54)

The optimal value, δopt, can be approximated by rounding δ to the nearest integer:

δopt(α)
def
= argmin

δ∈Z0,n

∆Bn (δ, α). (55)

The optimal iteration for terminating the summation is

kopt(α) = n− δopt(α). (56)

Table 1 provides the values of δopt for various α.

Table 1. Dependence of values δopt on α.

α 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
δopt 5 4 3 3 3 or 2 2 2 2 2 2 or 1

Figure 4 illustrates the dependency of ∆Bn (δ, α) on δ.

Figure 4. ∆Bn (δ, α) as a continuous function of δ for selected α = 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0.
Various colours correspond to different values of parameter α. Values of α decrease from left to right.
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Our analysis demonstrates the advantage of the proposed 2D projection algorithm
with FHT termination and aggregation compared to the classical Brady–Yong algorithm.
Moreover, when α, the proportion of projections used in reconstruction, decreases, the
potential computational gain grows.

4.2.4. Transposition of the 2D Projection Algorithm with FHT Termination
and Aggregation

To develop a fast algorithm for the calculation of transposed operator, we will analyze
the 2D projection algorithm with FHT termination and aggregation (see Section 4.2.1)
as a sequential application of partial sum computations for sub-patterns followed by
aggregation. In line with the general transposition scheme for summation-based algorithms,
the transposition of this algorithm involves executing the transposed stages in reverse
order:

(1) “Spreading” the value of each ray-sum along each pattern across all sub-patterns of
length 2k (summing value to all sub-patterns of length 2k that constitute it);

(2) Transposing the algorithm for computing partial sums.

The implementation of this algorithm, denoted as revPFHT (Reversed Partial Fast
Hough Transform), computes the transposed operator for the vector of ray-sums s = (si)

q−1
i=0

and the set of discrete straight lines L = {(xi, ai)}
q−1
i=0 within the specified range of line

directions. Key stages:

1. Preparation of the tensor Rk;
2. Utilizing revSUMk (transpose of aggregation algorithm dirSUMk);
3. Employing revPFHT (transpose of algorithm dirPFHT for computing sums over

patterns of length 2k).

Algorithm 5 provides pseudocode for transposition two-dimensional projection Algorithm 1.

Algorithm 5 Transpose of the algorithm dirPFHT for calculating sums along patterns of
length 2k

1: procedure revPFHT(L, s, n, k)
2: Rk(x, y)← 0 ∀ x ∈ Z0,2n+1−1, y ∈ Z0,2n−1
3: Rk ← revSUMk(sj, xj, aj, Rk, n, k) ∀j ∈ Z1,q . transpose of the aggregation

algorithm
4: R0 ← revPFHTk(Rk, n, k) . transpose of the summation algorithm
5: I2n(x, y)← R0(x, y) ∀ x ∈ Z0,2n−1, y ∈ Z0,2n−1 . copying the result
6: return I2n

Given n and k, the revSUMk Algorithm 6, for a discrete straight line specified by (x, a),
stores the value s in the tensor Rk corresponding to the sums over sub-patterns of length 2k

using a recursive call to the function recSPRk.

Algorithm 6 Transpose of the aggregation algorithm dirSUMk

1: procedure revSUMk(s, x, a, Rk, n, k)
2: Rk ← recSPRk(s, x, 0, a, n, Rk, n, k)
3: return Rk

The Algorithm 7 recSPRk recursively “spreads” (adds) the value s across (to) all
elements of tensor Rk, which are used to calculate the sum along the discrete straight line
specified by (x, a).
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Algorithm 7 Algorithm for recursive spreading for computing the transposed operator

1: procedure recSPRk(s, x, y, a, i, Rk, n, k)
2: if i = k then
3: Rk(x, y + a)← Rk(x, y + a) + s
4: else
5: Rk ← recSPRk(s, x, y, ba/2c, i− 1, Rk, n, k)
6: Rk ← recSPRk(s, x− da/2e, y + 2i−1, ba/2c, i− 1, Rk, n, k)
7: return Rk

To transpose the algorithm for calculating partial sums over sub-patterns of length
2k, we “reverse” the loop with respect to the variable k and replace the sum accumulation
with “spreading”. The Algorithm 8 revPFHTk completes the process of computing the
fully transposed operator for the matrix Rk, which contains the results of transposing the
aggregation algorithm (the results of calculating sums over sub-patterns of length 2k).

Algorithm 8 Completing the process of computing the fully transposed operator for the
matrix Rk

1: procedure revPFHTk(Rk, n, k)
2: for i = k to 0 step −1 do
3: Ri−1(x, y, 0)← 0 ∀ x ∈ Z0,2n+1−1, y ∈ Z0,2n−1

4: for a = 0 to 2i − 1 do
5: for y = 0 to 2n − 1 step 2i do
6: for x = 0 to 2n+1 − 1 do
7: v← Ri(x, y, a) + Ri−1(x, y, ba/2c)
8: Ri−1(x, y, ba/2c)← v
9: x2 ← (x− da/2e) mod 2n+1 . circular shift

10: v← Ri(x, y, a) + Ri−1(x2, y + 2i−1, ba/2c)
11: Ri−1(x2, y + 2i−1, ba/2c)← v
12: return R0

4.2.5. Analyzing the Complexity of the Transposed 2D Projection Algorithm with FHT
Termination and Aggregation

When transposing the 2D projection algorithm with FHT termination and aggregation
from (19) and (41), the matrix representation of the transposed operator is as follows

BT = (SBk . . .B1)
T = BT

1 . . .BT
k S

T . (57)

The estimation of the complexity for computing the transposed 2D projection algorithm
with FHT termination and aggregation, denoted as TBT (n, k, α), is determined (see Section 4.2.3)
as

TBT (n, k, α) = 4CSumm(BT
1 . . .BT

k S
T) = 4CSumm(BT

1 . . .BT
k ) + 4CSumm(ST). (58)

In general, the matrix S may have zero columns. Consequently, ST may have zero
rows. The number of summations in the transposed aggregation algorithm is defined as

CSumm(ST) = C1(ST)− CNZR(ST), (59)

where CNZR(ST) > 0 represents the number of non-zero rows in the matrix ST .
Let us introduce

T̂BT (n, k, α)
def
= TBT (n, k, α) + 4CNZR(ST) = 4CSumm(BT

1 . . .BT
k ) + 4C1(ST) (60)

as an upper bound estimate for the number of summations

TBT (n, k, α) ≤ T̂BT (n, k, α). (61)
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Considering (21) and (35), we can calculate the number of summations in the trans-
posed algorithm for partial sum calculation over sub-patterns:

CSumm(BT
1 . . .BT

k ) = CSumm(Bk . . .B1) =
k

∑
i=1

CSumm(Bi) = k22n+1. (62)

By taking into account (39) and (43), we can compute

C1(ST) = C1(S) = q2n−k = α22n2n−k = α23n−k. (63)

Substituting (62) and (63) into (60), we get

T̂BT (n, k, α) = k22n+3 + α23n−k+2 = 22n+2(2k + α2n−k). (64)

When transposing the original Brady algorithm, aggregation is not performed
(k = n, α = 0). Thus, the complexity estimate is as follows:

TBT (n, n, 0) = T̂BT (n, n, 0) = TB(n, n, 0) = 22n+3n. (65)

Similarly to the analysis of the forward operator calculation algorithm (Section 4.2.3)
let us examine the normalized difference ∆B

T
n (δ, α) between the numbers of required

operations

∆B
T

n (δ, α)
def
=

1
22n+2 (T̂BT (n, n− δ, α)− TBT (n, n, 0)) = 2k + α2n−k − 2n = α2δ − 2δ. (66)

Analytically (similarly Section 4.2.3), we can demonstrate that

∀n ∈ Z2,∞ ∀0 < α < 1 ∃δ ∈ Z1,n−1 → ∆B
T

n (δ, α) < 0. (67)

Hence, when α < 1, the proposed algorithm (revPFHT) for computing the transposed
2D projection operator is computationally more efficient when compared to the transposed
Brady–Yong algorithm.

Figure 5 illustrates the dependency of ∆B
T

n (δ, α) on δ.

Figure 5. ∆B
T

n (δ, α) as a continuous function of δ for selected values of parameter α = 0.1,
0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0. Various colours correspond to different values of parameter α.
Values of α decrease from left to right.
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4.3. Fundamental 3D FHT Concepts

For detailed definitions of discrete patterns and extensions of the Brady–Yong algo-
rithm for 3D straight lines, please refer to [87]. In 3D, the image is represented by a cubic
matrix, where each element, called a voxel, is a unit cube with a side length of 1. The
(s, t) parameterization classifies 3D lines into three types based on their alignment with
respective coordinate axes, as outlined in [87]. A straight line is deemed predominantly
aligned with a specific axis if the acute angle between it and that axis is less than or equal
to the angle between this straight line and the other axes. In the following discussion, we
focus on lines primarily aligned with the 0Z axis. Each of these straight lines is defined by
two points, (sX , sY, 0) and (sY + tX , sY + tY, 2n − 1), through which it passes (see Figure 6).

Figure 6. Illustration of parametrization predominantly 0Z-axis oriented line in 3D, tX < 0, tY < 0.
Different coloured dashed lines demonstrate the values of parameters used in parametrization.

Moreover, lines within each type are further classified into four subtypes based on the
signs of parameters tX and tY, determined by their orientation relative to the coordinate
axes 0X and 0Y. In this study, we consider cases where there is a negative slope along both
axes, i.e., tX < 0, tY < 0.

4.4. Fast 3D Forward Projection and Back-Projection Algorithm with FHT and Aggregation
4.4.1. A Fast 3D Forward Projection Operator Algorithm for Arbitrary Set of Straight Lines
with Termination at k-th Iteration and Aggregation

In [35,87], a technique based on FHT termination and aggregation was introduced for
the efficient computation of the projection operator in 3D, akin to the dirPFHT algorithm
detailed in Section 4.2.1. Now, let us discuss the implementation of the dirPFHT3D
Algorithm 9, introduced in [35]. Its primary stages involve padding the original image I
with zeros, computing partial sums, and aggregating the sum for each straight line from L.
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Algorithm 9 Forward projection operator computation in 3D

1: procedure dirPFHT3D(L, I, n, k)
2: R0(x, y, z, 0, 0)← I2n(x, y, z) ∀x ∈ Z0,2n−1, y ∈ Z0,2n−1, z ∈ Z0,2n−1 . copy the

original data
3: R0(x, y, z, 0, 0)← 0 ∀x ∈ Z2n ,22n−1, y ∈ Z2n ,22n−1, z ∈ Z0,2n−1 . zero padding
4: Rk ← dirPFHTk3D(R0, n, k) . compute partial sums (along patterns with length

2k)
5: sj ← dirSUMk3D(xj, yj, aj, bj, Rk, n, k) ∀j ∈ Z0,q−1(xj, yj, aj, bj) ∈ L . aggregation

of sums along discrete straight lines from L
6: return s

The tensor element Ri(x, y, z, a, b) encapsulates the summation over a pattern of length
2i. The pattern commences at point (x, y, z), and its terminus shifts along the 0X axis by −a
and along the 0Y axis by −b. Tensor R0 represents the original image padded with zeros.
The set of voxel indices employed at the i-th step of the algorithm in tensor Ri,

(x, y, z, a, b) ∈ XYZAB(i) = X(i) ×Y(i) × Z(i) × A(i) × B(i), (68)

is defined as follows

x ∈ X(i) = {j}2n+1−1
j=0

y ∈ Y(i) = {j}2n+1−1
j=0

z ∈ Z(i) = {j · 2i}2n−i−1
j=0

a ∈ A(i) = {j}2i−1
j=0

b ∈ B(i) = {j}2i−1
j=0 .

(69)

The Algorithm 10 for computing partial sums, denoted as dirPFHTk3D, mirrors the
previously described 2D version.

Algorithm 10 Partial Sums Computation Algorithm in 3D

1: procedure dirPFHTk3D(R0, n, k)
2: for i = 1 to k do . along the pattern length 2i

3: for a = 0 to 2i − 1 do . along the absolute 0X shift of the pattern end
4: for b = 0 to 2i − 1 do . along the absolute 0Y shift of the pattern end
5: for x = 0 to 2n+1 − 1 do . along the 0X shift of the pattern beginning
6: for y = 0 to 2n+1 − 1 do . along the 0Y shift of the pattern beginning
7: for z = 0 to 2n−i step 2i do . along the 0Z shift of the pattern

beginning
8: x2 ← (x− d a

2e) mod 2n+1 . circular shift along 0X
9: y2 ← (y− d b

2e) mod 2n+1 . circular shift along 0Y
10: z2 ← z + 2i−1

11: Ri(x, y, z, a, b) ← Ri−1(x, y, z, b a
2c, b

b
2c) +

Ri−1(x2, y2, z2, b a
2c, b

b
2c)

12: return Rk

The Algorithm 11 dirSUMk3D operates on the tensor Rk, containing sums over sub-
patterns of length 2k. It conducts aggregation of sums along a discrete 3D straight line with
parameters (x, y, a, b), using a recursive call to recSUMk3D.
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Algorithm 11 Algorithm for 3D sums aggregation

1: procedure dirSUMk3D(x, y, a, b, Rk, n, k)
2: return recSUMk3D(x, y, 0, a, b, n, Rk, n, k)

The Algorithm 12 recSUMk3D recursively accumulates sums along the discrete
straight line given by (x, y, a, b) from the precomputed partial sums over patterns of length
2i, i ∈ Zk,n, stored in Rk.

Algorithm 12 Recursive call for sums aggregation over patterns in 3D case

1: procedure recSUMk3D(x, y, z, a, b, i, Rk, n, k)
2: if i = k then
3: s← Rk(x, y, z, a, b) . precomputed sum from Rk
4: else
5: x2 ← (x− d a

2e) mod 2n+1 . circular shift along 0X
6: y2 ← (y− d b

2e) mod 2n+1 . circular shift along 0Y
7: z2 ← z + 2i−1

8: s ← recSUMk3D(x, y, z, b a
2c, b

b
2c, i − 1, Rk, n, k) +

recSUMk3D(x2, y2, z2, b a
2c, b

b
2c, i− 1, Rk, n, k)

9: return s

Next, we will establish the matrix representation for the algorithm dirPFHT3D given
n, k, L.

4.4.2. Matrix Representation of 3D Forward Projection Operator Computation Algorithm

It is worth noting that

dim(XYZAB(i)) = 23n+2+i, ∀i ∈ Z0,n. (70)

For any i ∈ Z0,n, we can represent Ri as the vector V(i). Let the index (x, y, z, a, b) ∈
XYZAB(i) of the tensor element Ri and the index j of the corresponding element in the

vector V(i) be bijectively mapped: J(i) : XYZAB(i) → Z0,23n+2+i−1. The inverse mapping is
denoted as

H(i) = (J(i))−1. (71)

The Boolean matrix Bi of size 23n+2+i × 23n+1+i allows us to compute

V(i)
= BiV

(i−1). (72)

The value of element Bi(p, t) for (p, t) ∈ Z0,23n+2+i−1 × Z0,23n+1+i−1 is determined by
the following formula:

Bi(p, t) =


1, if t = J(i−1)(xp, yp, zp, bap/2c, bbp/2c) ∨

t = J(i−1)((xp − dap/2e) mod 2n+1,
(yp − dbp/2e) mod 2n+1, zp + 2i−1, bap/2c, bbp/2c),

0, otherwise,

(73)

where (xp, yp, ap) = H(i)(p). Each row of the matrix Bi contains exactly 2 ones, hence

C1(Bi) = 2H(Bi) = 2 · 23n+2+i = 23n+3+i. (74)
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By substituting into (9), we arrive at

CSumm(Bi) = C1(Bi)− H(Bi) = H(Bi) = 23n+2+i. (75)

The aggregation matrix S has dimensions q× 23n+2+k and is employed to calculate
the vector of sums:

s = SV(k). (76)

In each row of the matrix S, there are exactly 2n−k ones, thus, based on the (9), we find

CSumm(S) = C1(S)− H(S) = H(S)(2n−k − 1) = q(2n−k − 1). (77)

The successive application of (72) and (76) yields the following matrix representation
of dirPFHT3D

s = SBk . . .B1V(0). (78)

4.4.3. Number of Addition Operations in the 3D Forward Projection Operator Calculation
Algorithm with Aggregation

For one type of straight lines, the number of unique discrete straight lines is determined
by the range of different origin and end shifts, which in 3D amounts to N2N2 = N4.

Let the proportion of considered straight lines be α. Since there are 12 types of straight
lines and taking into account (75) and (77), the number of addition operations TB(n, k, α)
when computing the forward operator (Section 4.4.1) can be calculated as follows:

TB(n, k, α) =12CSumm(SBkBk−1 . . .B1) = 12(CSumm(S) +
k

∑
i=1

CSumm(Bi)) =

12(α24n(2n−k − 1) +
k

∑
i=1

23n+2+i) = 12(α24n(2n−k − 1) + 23n+2
k

∑
i=1

2i) =

3 · 23n+2(α2n(2n−k − 1) + 23(2k − 1)).

(79)

Fast summation for all directions without aggregation has a complexity of

TB(n, n, 1) = 3 · 23n+2 · 23(2n − 1). (80)

In 3D, forward projection requires summation along Θ(N3) straight lines, correspond-
ing to

α =
1
N

=
1
2n , (81)

which, when substituted, yields

TB(n, k,
1
2n ) = 3 · 23n+2((2n−k − 1) + 23 · (2k − 1)). (82)

Naive summation corresponds to k = 0, and the total number of summations during
the operator calculation is

TB(n, 0,
1
2n ) = 3 · 23n+2(2n − 1) = 3 · 23n+2(2n − 1). (83)

In [35], a theoretical estimate of the asymptotically optimal k = n
2 is provided for the

summation algorithm along Θ(23n) lines, substituting which, we get

TB(n,
n
2

,
1
2n ) =3 · 23n+2((2n− n

2 − 1) + 23 · (2
n
2 − 1))

=3323n+2(2
n
2 − 1) = Θ(2

7
2 n).

(84)
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The complexity estimate derived from the analysis of the matrix decomposition of
the algorithm proposed in [35], Θ(2

7
2 n), aligns with the theoretical estimate provided by

authors [35].
Next, we will construct the algorithm for calculating the transposed operator, achieved

by transposing the algorithm introduced in [35] for computing the forward operator in 3D
(FHT with aggregation).

4.4.4. Transposing 3D Forward Projection Algorithm with FHT Termination at k-th
Iteration and Aggregation

The transposition of the algorithm for computing the forward projection operator
in 3D with aggregation closely follows the process in the 2D case (see Section 4.2.4). It
entails the sequential application of the transposed aggregation algorithm, referred to as
revSUMk3D, and the transposed algorithm for computing sums over patterns of length 2k,
denoted as revPFHT3D. Although line parameterization becomes more complex, and the
aggregating tensor’s dimensionality increases, the fundamental structure of the algorithm
remains unchanged.

Implemented as a function called revPFHT3D Algorithm 13 (Reversed Partial Fast
Hough Transform 3D), the algorithm computes the transposed operator. Given parameters
n, k, it takes a vector of ray sums s = (si)

q−1
i=0 for q directions defined as a set of discrete

straight lines L = {(xi, yi, ai, bi)}
q−1
i=0 , and returns a 2n × 2n × 2n image I.

Algorithm 13 Algorithm for computing the transposed operator in 3D

1: procedure revPFHT3D(L, s, n, k)
2: Rk(x, y, z, a, b)← 0 ∀x, y ∈ Z0,2n+1−1, ∀z = j2k, j ∈ Z0,2n−k−1, ∀a, b ∈ Z0,2k−1
3: Rk ← revSUMk3D(sj, xj, yj, aj, bj, Rk, n, k) ∀j ∈ Z1,q . transposed algorithm for

aggregation in 3D
4: R0 ← revPFHTk3D(Rk, n, k) . transposed algorithm for summation in 3D
5: I(x, y, z)← R0(x, y, z, 0, 0) ∀x ∈ Z0,2n−1, y ∈ Z0,2n−1, z ∈ Z0,2n−1 . copying the

result
6: return I

The Algorithm 14 revSUMk3D is the transposed aggregation algorithm. Given param-
eters n and k, it adds value s to the elements of tensor Rk, corresponding to partial sums
over sub-patterns of length 2k, along the discrete straight line defined by starting point
(x, y) and shift of the end (a, b).

Algorithm 14 Transposed algorithm for aggregation when computing the transposed
operator in 3D

1: procedure revSUMk3D(s, x, y, a, b, Rk, n, k)
2: Rk ← recSPRk3D(s, x, y, 0, a, b, n, Rk, n, k)
3: return Rk

The accumulation of partial summation results is accomplished through a recursive
call to the Algorithm 15 recSPRk3D.
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Algorithm 15 Algorithm for recursive call when accumulating partial summation results

1: procedure recSPRk3D(s, x, y, z, a, b, i, Rk, n, k)
2: if i = k then
3: Rk(x, y, z, a, b)← Rk(x, y, z, a, b) + s
4: else
5: x2 ← (x− d a

2e) mod 2n+1

6: y2 ← (y− d b
2e) mod 2n+1

7: Rk ← recSPRk3D(s, x, y, z, b a
2c, b

b
2c, i− 1, Rk, n, k)

8: Rk ← recSPRk3D(s, x2, y2, z + 2i−1, b a
2c, b

b
2c, i− 1, Rk, n, k)

9: return Rk

The Algorithm 16 revPFHTk3D implements the transposed algorithm for computing
partial sums along pattern of size 2k.

Algorithm 16 Transposed algorithm for computing partial sums along pattern of size 2k

1: procedure revPFHTk3D(Rk, n, k)
2: for i = k to 1 step −1 do
3: Ri−1(x, y, z, a, b)← 0 ∀x, y ∈ Z0,2n+1−1, ∀z = j2i, j ∈ Z0,2n−i−1, ∀a, b ∈ Z0,2i

4: for a = 0 to 2i − 1 do
5: for b = 0 to 2i − 1 do
6: for x = 0 to 2n+1 − 1 do
7: for y = 0 to 2n+1 − 1 do
8: for z = 0 to 2n−i step 2i do
9: v← Ri(x, y, z, a, b) + Ri−1(x, y, z, b a

2c, b
b
2c)

10: Ri−1(x, y, z, b a
2c, b

b
2c)← v

11: x2 ← (x− d a
2e) mod 2n+1

12: y2 ← (y− d b
2e) mod 2n+1

13: v← Ri(x, y, z, a, b) + Ri−1(x2, y2, z + 2i−1, b a
2c, b

b
2c)

14: Ri−1(x2, y2, z + 2i−1, b a
2c, b

b
2c)← v

15: return R0

Next, let us evaluate the algorithmic complexity of the proposed approach.

4.4.5. Number of Addition Operations in the 3D Transposed Operator Algorithm
with Aggregation

Just as in the 2D case (Section 4.2.5) considering (59), the complexity estimate TBT for
the algorithm revPFHT3D computing the transposed operator in 3D can be expressed as

TBT (n, k, α) =12CSumm(BT
1 . . .BT

k S
T)

=12(
k

∑
i=1

CSumm(BT
i ) + CSumm(ST))

=12(
k

∑
i=1

CSumm(BT
i ) + C1(ST)− CNZR(ST)),

(85)

where CNZR(ST) > 0 denotes the count of non-zero rows in the matrix ST .
Taking into account the matrix structure with the substitution (74), we derive

k

∑
i=1

CSumm(BT
i ) =

k

∑
i=1

(C1(BT
i )− H(BT

i )) =
k

∑
i=1

(23n+i+3 − 23n+i+1) = 23n+16(2k − 1). (86)
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The transposed algorithm for fast summation across all directions, without aggrega-
tion, bears a complexity of

TBT (n, n, 1) = 12
n

∑
i=1

CSumm(BT
i ) = 12 · 23n+16(2n − 1) = 9 · 23n+4(2n − 1). (87)

To provide an upper-bound estimate T̂BT for the complexity of computing the trans-
posed projection operator

TBT ≤ T̂BT , (88)

let us define

T̂BT
def
= TBT + 12CNZR(ST) = 12(

k

∑
i=1

CSumm(BT
i ) + C1(ST)). (89)

By substituting (75), (77), and (86), we find

T̂BT (n, k, α) =12(23n+16(2k − 1) + α24n2n−k) =

3 · 23n+2(12(2k − 1) + α22n−k).
(90)

In 3D, CT reconstruction methods necessitate the calculation of the operator for Θ(N3)
straight lines, corresponding to

α =
1
N

=
1
2n . (91)

Substituting, we obtain

T̂BT (n, k,
1
2n ) = 3 · 23n+2(12(2k − 1) + 2n−k). (92)

The transposed algorithm [35] does not implement aggregation, which means k = 0,
so the number of summations is

T̂BT (n, 0,
1
2n ) = 3 · 23n+22n = 3 · 24n+2. (93)

When employing aggregation (similar to the estimation for the forward operator, see
Section 4.4.3), we adopt the asymptotically optimal value of kopt =

n
2 , and by substituting

it, we acquire

T̂BT (n,
n
2

,
1
2n ) = 3 · 23n+2(12(2

n
2 − 1) + 2

n
2 ) = 3 · 23n+2(13 · 2

n
2 − 12). (94)

Hence, the proposed and analyzed algorithm for fast computation of the transposed
projection operator in 3D, obtained by transposing the algorithm proposed in [35], in the
practical case of summing over Θ(N3) straight lines, exhibits an asymptotic complexity
no less favorable than the algorithm outlined in [35] for fast computation of the forward
operator Θ(N3

√
N) (with N denoting the linear size of the reconstruction).

5. Experiments and Discussion

We tested the proposed general transposition method for summation-based algorithms
by implementing efficient forward projection and backprojection operators for the two-
dimensional scenario. The implementation, conducted in C++, followed the computational
framework outlined in Section 4.2: FHT computation with termination and aggregation.
The optimized implementation of the algorithms prompted numerical experiments to gauge
the speed and quality of their performance. The realization of the method was performed
using our closed libraries for fast image processing to achieve a realistic execution time
together with adequate comparison to classical methods. For this reason, unfortunately, the
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implementation can not be provided in open access. Although we hope that our detailed
pseudo code implementations would be enough to reproduce the results.

We compared the quality of reconstruction in the case of parallel-beam circular CT.
As reference methods for CT reconstruction, we employed the classical FBP method [63]
and the accelerated FBP for computed tomography image reconstruction (referred to as
HFBP) from [86]. The modified HFBP method, utilizing fast forward and backprojection
operators obtained through the proposed transposition method, is denoted as HFBP-L. The
reconstructions were acquired using the Smart Tomo Engine v.2.0.0 software [90].

For our experiments, we selected the Shepp–Logan phantom model (see Figure 7)
with dimensions of N × N, N = 1024. The set of projections simulated measurements with
a detector size of N for 4N − 3 source rotation angles around the object’s center, with a
uniform angle step from 0 to π. The projections were simulated in parallel geometry of the
experiment as a simple forward projection, which can be reproduced by any open-source
software for CT simulation.

Phantom FBP HFBP HFBP-L

FBP diffmap HFBP diffmap HFBP-L diffmap

Figure 7. The Shepp–Logan phantom with N = 1024, the reconstruction results using the considered
methods along with the difference maps compared to the ideal phantom image. The entire set of
projection data was utilized for the reconstruction (α = 1.0). The HFBP-L method employed an
optimal aggregation depth δ, determined by the formulas for δopt from Sections 4.2.3 and 4.2.5 for
both forward projection and backprojection operators.

The reconstruction results, obtained using the listed methods, are displayed in Figure 7.
The entire set of projection data was utilized for the reconstruction. It is important to note
that in the case of the HFBP-L method, we applied optimal aggregation depth determined
by corresponding formulas for δopt outlined in Sections 4.2.3 and 4.2.5 for both forward
projection and backprojection operators (with α = 1.0).

To evaluate the performance of the reconstruction methods (refer to Table 2), we
employed numerical metrics including NRMSE, SSIM [91], and STRESS [92]. The NRMSE

metric for the reconstructed image (r̂i : i ∈ Z1,N)
T is calculated as

√
∑N

i=1 |r̂i−ri |2√
∑N

i=1 |ri |2
, where

(ri : i ∈ Z1,N)
T represents the vector of pixel values in the ideal phantom image.

The consistency in accuracy metrics between the HFBP and HFBP-L reconstruction
methods is not coincidental. This confirms the validity of our algorithm implementation
and the proposed aggregation approach. The algorithm’s accuracy should not be influenced
by the aggregation level δ, and the reconstruction outcome should be indistinguishable
from the result of the same algorithm without aggregation, as evidenced by matching
accuracy metrics. At the same time, according to the performance measurements, both
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HFBP and HFBP-L fall slightly behind the classical FBP algorithm, as they employ a less
precise straight line approximation for the sake of speed. Nonetheless, the visual quality of
reconstruction using HFBP and HFBP-L is quite satisfactory, with no significant distortions
observed in the images (refer to Figure 7).

Table 2. Reconstruction accuracy assessment for N = 1024. NRMSE: Smaller values indicate higher
accuracy; SSIM ∈ [0, 1]: larger values indicate higher accuracy; STRESS: smaller values indicate
higher accuracy. In the HFBP-L method, the aggregation depth is optimized and determined by
formulas similar to Equation (55).

Metrics FBPα=1.0 HFBPα=1.0 HFBP-Lα=1.0 FBPα=0.1 HFBPα=0.1 HFBP-Lα=0.1

NRMSE 0.16 0.16 0.16 0.19 0.25 0.25
SSIM 0.93 0.77 0.77 0.56 0.33 0.33

STRESS 0.07 0.16 0.16 0.11 0.24 0.24

Comparing algorithm speed, it is crucial to highlight that the distinction between
HFBP and HFBP-L methods lies solely in the computation of the backprojection operator.
HFBP employs the transposed Brady–Yong algorithm without aggregation, whereas HFBP-
L utilizes the revPFHT algorithm (refer to Section 4.2.5). When discussing execution time,
the number of operations, or the algorithms’ asymptotic complexity, we specifically focus
on the projection operators, excluding additional consistent costs for both methods.

Both HFBP and HFBP-L share identical asymptotic algorithmic complexities. However,
HFBP-L displays superior speed, characterized by a constant factor. For instance, at α = 1.0,
HFBP-L requires at least 0.1N2 fewer addition operations than HFBP. And at α = 0.1, this
difference is at least 22.5N2 (assuming optimal aggregation depth as per formula (55)).

Experimental measurements of algorithm execution time were conducted on a Win-
dows 10 system with x64 architecture, driven by an AMD Ryzen 7 2700X processor clocked
at 3.70 GHz, featuring a 16 MB L3 cache, and 64 GB of RAM. All measurements were
executed in a single thread, and each measurement was repeated 1000 times. The recorded
time values were averaged with an assessment of the standard deviation. The recorded
time corresponds to the computation duration of the projection operation. Additionally, although
computing the forward projection operator is not essential for HFBP and HFBP-L algorithms,
corresponding values were measured for completeness and for comparison with theoretical
dependencies. These values are also annotated in reference to their respective algorithm.

The computation time of both the forward projection and backprojection operators for
the HFBP method is independent of α and can be represented by a single value. Specifically,
the computation time for the forward projection operator is tHFBP

dir = 44.0± 1.1 ms, while
for the backprojection operator, it is tHFBP

rev = 79.8± 1.8 ms.
For the HFBP-L method, the computation time is influenced by both the number of

projections, denoted by the parameter α, and the aggregation depth δ. The computation
time for the forward projection and backprojection operators is detailed in Tables 3 and 4
respectively. Case δ = 0 corresponds to computing the operator fully using the Brady–Yong
method without termination.

As the number of projection directions increases, the overall computation time for the
forward projection operator also rises. In the range of 0 < α ≤ 0.3, aggregation leads to
time savings (refer to Table 3). The most significant reduction in computation time for the
forward projection operator, by 15.8%, is achieved at α = 0.01, δ = 3.

In the computation of the backprojection operator within the HFBP-L method, op-
timizing the aggregation depth speeds up the process for α values within the range of
0 < α ≤ 0.4 for the considered phantom (see Table 4). The highest acceleration, 21.5%, is
attainable at α = 0.01, δ = 3 for computing the backprojection operator.

It is worth noting that even with a zero aggregation level (δ = 0), the computation
time of the operators is influenced by the number of projections, despite the absence of
aggregation. This arises from additional overhead costs related to the explicit formation of
the straight line list.
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Table 3. The average time tHFBP−L
dir of computing the forward projection operator for a phantom with

N = 1024. Here, α signifies the proportion of the total (4N − 3) projections. Time is measured in
milliseconds. The minimum computation time for the forward projection operator, which corresponds
to the experimental optimal aggregation depth, is emphasized in bold.

δ = 0 δ = 1 δ = 2 δ = 3 δ = 4 δ = 5

α = 0.01 42.66± 1.9 38.24± 1.9 36.90± 1.8 35.92± 1.8 36.27± 1.8 38.29± 1.7
α = 0.02 43.07± 2.0 39.03± 1.9 37.66± 1.8 37.33± 1.8 38.91± 1.7 43.43± 1.7
α = 0.03 42.91± 1.9 38.97± 1.8 38.13± 1.8 38.22± 1.7 41.17± 1.7 48.99± 1.7
α = 0.05 43.87± 2.0 39.71± 2.0 39.64± 1.8 40.85± 1.7 45.72± 1.7 59.82± 1.7
α = 0.1 44.56± 1.9 41.80± 1.9 42.85± 1.8 46.93± 1.8 57.74± 1.7 86.49± 1.8
α = 0.2 46.66± 1.9 45.17± 1.9 49.10± 1.7 58.77± 1.7 82.56± 1.3 139.10± 1.5
α = 0.3 48.88± 1.9 48.75± 1.8 55.32± 1.7 70.68± 1.3 105.61± 1.4 184.75± 1.6
α = 0.4 50.55± 1.9 51.64± 1.8 61.73± 1.8 82.56± 1.3 130.43± 1.4 243.39± 1.5
α = 0.5 52.21± 1.9 54.97± 1.7 66.88± 1.6 93.94± 1.4 152.30± 1.3 296.08± 1.6
α = 0.6 54.68± 1.8 58.22± 1.7 74.69± 1.6 106.06± 1.4 176.91± 1.3 344.08± 1.4
α = 0.7 55.98± 1.8 61.04± 1.8 79.14± 1.5 117.01± 1.3 200.84± 1.1 399.64± 1.5
α = 0.8 58.02± 1.9 65.02± 1.7 85.91± 1.5 128.92± 1.4 225.00± 1.3 446.75± 1.5
α = 0.9 60.51± 1.8 68.22± 1.7 92.12± 1.4 141.92± 1.3 247.06± 1.4 498.56± 1.4
α = 1.0 62.45± 1.8 70.93± 1.5 98.55± 1.5 152.94± 1.4 268.12± 1.4 536.28± 2.2

Table 4. The average computation time tHFBP−L
rev for computing the backprojection operator during

reconstruction using the HFBP-L algorithm for a phantom with N = 1024. The parameter α corre-
sponds to a fraction of the total (4N − 3) number of projections. Time is measured in milliseconds.
The minimum computation time for the backprojection operator, corresponding to the experimental
optimal aggregation depth, is shown in bold.

δ = 0 δ = 1 δ = 2 δ = 3 δ = 4 δ = 5

α = 0.01 64.43± 2.2 57.69± 2.1 53.86± 2.1 50.58± 2.0 51.82± 2.1 50.95± 2.0
α = 0.02 64.85± 2.2 58.87± 2.1 55.24± 2.1 52.48± 2.1 55.25± 2.19 58.81± 2.1
α = 0.03 65.38± 2.2 58.80± 2.1 55.60± 2.0 53.80± 2.0 57.94± 2.0 65.90± 1.9
α = 0.05 65.81± 2.3 59.83± 2.2 57.11± 2.1 56.92± 2.0 65.30± 1.9 81.89± 1.8
α = 0.1 66.82± 2.2 61.47± 2.1 61.28± 2.1 65.17± 1.9 83.76± 1.9 120.80± 1.8
α = 0.2 69.33± 2.2 66.10± 2.1 68.76± 2.0 83.08± 1.9 122.06± 2.0 198.38± 2.0
α = 0.3 72.35± 2.1 70.51± 2.0 77.19± 2.0 101.70± 1.9 158.65± 1.9 274.02± 2.3
α = 0.4 75.02± 2.1 74.34± 2.0 86.06± 2.0 120.17± 2.0 196.88± 2.1 349.87± 2.5
α = 0.5 77.70± 2.1 79.16± 2.0 94.90± 2.1 138.64± 2.0 232.26± 2.1 430.20± 2.4
α = 0.6 81.57± 2.1 83.62± 2.0 105.85± 2.3 160.70± 2.2 271.90± 2.2 505.73± 2.4
α = 0.7 84.13± 2.1 88.03± 2.1 114.66± 2.1 176.09± 2.2 309.91± 2.3 587.20± 2.5
α = 0.8 87.12± 2.1 93.55± 2.1 124.95± 2.2 194.32± 2.4 346.99± 2.6 658.04± 2.7
α = 0.9 91.21± 2.2 99.01± 2.2 135.23± 2.2 214.12± 2.4 382.09± 2.7 733.19± 2.9
α = 1.0 94.37± 2.2 104.53± 2.2 145.02± 2.2 232.94± 2.5 424.16± 2.8 811.04± 3.1

The time values for computing the forward projection and backprojection operators,
provided in Tables 3 and 4, are represented as plots in Figure 8a,b. The plot illustrates
the difference in time compared to δ = 0 for the corresponding α value. This facilitates
comparison with the theoretical plots in Section 4.2. The key distinction from theoretical
calculations lies in the fact that the optimal aggregation depth, δopt, deviates from the
theoretical value (refer to Section 4.2). Moreover, for α ≥ 0.5, there is no optimal integer ag-
gregation level that would lead to a time improvement in computing the forward projection
and backprojection operators. Essentially, in these scenarios, δ = 0 proves to be optimal.

In summary, the conducted experiments validate the theoretically grounded potential
for accelerating reconstruction methods. This is achieved through a fast algorithm for
computing the forward projection operator using FHT with termination and aggregation,
and a fast algorithm for computing the backprojection operator, achieved by applying a
common transposition technique for summation-based algorithms to the forward projec-
tion calculation. Time is saved by reducing the number of projection frames used in the
reconstruction process. The proposed methods enable accelerations of up to 15% for the
forward projection operator and 21% for the backprojection operator when compared to
fast calculation methods based on the Brady–Yong algorithm. This acceleration is most pro-
nounced when dealing with a small number of angles and utilizing the optimal aggregation
depth δ = δopt. This outcome holds particular significance in the realm of few-view CT.
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(a) (b)

Figure 8. The computation time for the forward projection and backprojection operators with FHT
and aggregation at a specified depth level (the HFBP-L method) as the difference from the time at δ = 0
for the corresponding α value. (a) Dependency for the forward projection operator, (b) Dependency
for the backprojection operator.

6. Conclusions

This work introduces a versatile method for transposing summation-based algorithms,
which rely exclusively on addition operations. This method facilitates the efficient com-
putation of the transpose of linear operators represented as Boolean matrices, assuming a
known fast computation algorithm is available. Importantly, this transposition technique
maintains the asymptotic complexity of the algorithms, ensuring consistent asymptotic
algorithmic complexity for both the original and derived algorithms.

The summation-based transposition method holds significant promise in computer to-
mography, particularly in algorithms for computing forward projection and backprojection
operators, where matrices are transposed in pairs. By applying this method to a known
algorithm for computing the forward projection operator, we can derive an algorithm for
computing the backprojection operator. The number of addition operations in the resulting
algorithm align with the copy operations in the original, and vice versa.

In this study, for the first time, we present fast summation-based algorithms for com-
puting forward projection and backprojection operators in 2D tomographic reconstruction,
tailored for parallel-beam CT, especially suitable for few-view CT (FVCT). Although the
asymptotic complexity remains at Θ

(
n2 log n

)
(where n represents the linear size of the

reconstruction), consistent with the Brady–Yong algorithm, our proposed algorithms are
superior in terms of constant factors.

We also extend the method to cone-beam 3D CT. Previously, a forward projection
algorithm with a complexity of Θ

(
n7/2

)
was introduced for this setup [35]. While the num-

ber and linear dimensions of the projections scale proportionally with n, a fast algorithm
for backprojection was lacking. In this study, we devised such an algorithm, also with a
complexity of Θ

(
n7/2

)
.

Therefore, the summation-based transposition method serves as a versatile approach
for developing fast algorithms in CT reconstruction, applicable across various measure-
ment schemes, both in two and three-dimensional scenarios. Implementing this method
with existing forward projection algorithms, such as [35], adaptable to diverse measure-
ment schemes, facilitates the creation of fast algorithms for computing the backprojection
operator in any measurement setup.
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We implemented the computation of the backprojection operator by transposing the
algorithm for computing the forward projection operator based on FHT with termination
and aggregation. This allowed us to assess the accuracy and speed of the new algorithm,
comparing it with theoretical dependencies and experimental baselines. The results confirm
the theoretically justified potential for accelerating classical reconstruction methods using
this transposition method. They also suggest a minimum time depending on the chosen
aggregation level. Notably, applying the transposed algorithm, which employs FHT with
termination and aggregation, to a fraction of 0.01 of the considered projection directions
during reconstruction led to a 15% increase in speed for computing the forward projection
operator and a 21% increase for the backprojection operator, with visually insignificant
degradation of the result.

Further research into the dynamics of the parameters, particularly the fraction of
projections used for reconstruction, where the application of aggregation allows for time
savings, is considered worthwhile. This should be explored for various linear sizes of
reconstruction. Moreover, the intriguing potential of applying the proposed summation-
based transposition method to algorithms computing the forward projection operator,
particularly those based on cutting-edge, accurate, fast algorithms for Hough transforms,
warrants attention. Employing this method in tandem with precise, fast algorithms such
as those in [55] could offer a promising avenue for achieving both speed and accuracy in
reconstruction simultaneously.
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Abbreviations
The following abbreviations are used in this manuscript:

CT computed tomography
FVCT few-view computed tomography

Nomenclature
b·c rounding down to the nearest integer (integer part or floor

function)
d·e rounding up to the nearest integer (ceil function)
{} set
() vector
dim(·) = ‖ · ‖0 number of elements of a set or number of vector components
Z set of integer numbers
Za,b = {a, a + 1, . . . , b− 1, b} set of integer numbers from a to b, a ≤ b
Z0,∞ = {0,1,. . . } set of non-negative integer numbers
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Z1,∞ = N1 = {1, 2, . . .} set of positive integer numbers
a = (a1, ..., an)T = (ai : i ∈ Z1,n)

T column vector of length n
aT = (a1, ..., an) = (ai : i ∈ Z1,n) row vector of length n
W matrix
W(y, x) matrix element, where y denotes a row index and x stands for

a column index
W(y, ·) row of matrix W with index y
W(·, x) column of matrix W with index x
B Boolean matrix
H(B) number of rows in matrix B
W(B) number of columns in matrix B
a(i) i-th iteration step (state of variable a at i-th iteration step)
N = 2n number of linear detector cells
C number of projection images (observed distinct projection

angles)
n exponent of the image linear size (input image is of size 2n × 2n)
k exponent of the pattern length (pattern is of length 2k ≤ 2n)
I2n image of size 2n × 2n

Rk tensor of sums over patterns of length 2k

q number of ray sums
(x, y) point or pixel coordinates in the coordinate system X0Y
a shift of the pattern’s end (coordinate)
α number of projection images expressed as a proportion

of Cmax = 2n+2

Θ(·) asymptotic computational complexity (O-symbology)
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