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Abstract: Electroencephalography (EEG) signals can be used as a neuroimaging indicator to an-
alyze brain-related diseases and mental states, such as schizophrenia, which is a common and
serious mental disorder. However, the main limiting factor of using EEG data to support clinical
schizophrenia diagnosis lies in the inadequacy of both objective characteristics and effective data
analysis techniques. Random matrix theory (RMT) and its linear eigenvalue statistics (LES) can
provide an effective mathematical modeling method for exploring the statistical properties of non-
stationary nonlinear systems, such as EEG signals. To obtain an accurate classification and diagnosis
of schizophrenia, this paper proposes a LES-based deep learning network scheme in which a series
of random matrixes, consisting of EEG data sliding window sampling and their eigenvalues, are
employed as features for deep learning. Due to the fact that the performance of the LES-based scheme
is sensitive to the LES’s test function, the proposed LES-based deep learning network is embedded
with two ways of combining LES’s test functions with learning techniques: the first is to have the
LES’s test function assigned, while, using the second way, the optimal LES’s test function should
be solved in a functional optimization problem. In this paper, various test functions and different
optimal learning methods were coupled in experiments. Our results revealed a binary classification
accuracy of nearly 90% in distinguishing between healthy controls (HC) and patients experiencing
the first episode of schizophrenia (FES). Additionally, we achieved a ternary classification accuracy of
approximately 70% by including clinical high risk for psychosis (CHR). The LES-embedded approach
yielded notably higher classification accuracy compared to conventional machine learning methods
and standard convolutional neural networks. As the performance of schizophrenia classification is
strongly influenced by test functions, a functional optimization problem was proposed to identify
an optimized test function, and an approximated parameter optimization problem was introduced
to limit the search area of suitable basis functions. Furthermore, the parameterization test function
optimization problem and the deep learning network were coupled to be synchronously optimized
during the training process. The proposal approach achieved higher classification accuracy rates of
96.87% between HC and FES, with an additional 89.06% accuracy when CHR was included. The
experimental studies demonstrated that the proposed LES-based method was significantly effective
for schizophrenic EEG data classification.

Keywords: resting state EEG data; schizophrenia; deep learning; random matrix theory; linear
eigenvalue statistics; functional optimization problem
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1. Introduction

Schizophrenia is a relatively serious mental illness, and the specific causes of this
disease are currently unclear. In clinical practice, it mainly manifests as disharmony in
mental activities and various obstacles in terms of emotions, perception, thinking, and
other features. If not promptly and effectively treated, it can lead to mental disabilities.
Approximately 80% of patients with schizophrenia may experience mental and behavioral
abnormalities that do not meet the diagnostic criteria within 2–5 years of onset. In the
diagnosis and treatment of schizophrenia, participants are classified as having first-episode
schizophrenia (FES), as healthy controls (HC), or as being clinically high risk for psychosis
(CHR). CHR is difficult to determine but it is crucial for diagnosis [1]. It is not easy to
recognize FES or CHR using EEG data, resulting in obstacles in terms of studying the
pathology of schizophrenia.

Electroencephalography (EEG) measures electrical fields produced by an active brain.
EEG signal analysis has been used as a diagnostic tool both within and outside of the clinical
domain for nearly 90 years. However, EEG still requires strict and objective analysis, as
it is a non-stationary nonlinear signal and its interpretation mostly remains intuitive and
heuristic. In particular, the cross-channel relations of the signal and its reference to the
sources, and hence to certain morphological structures, functional brain structures, or
both, are not sufficiently understood and therefore remain a matter of intense research [2].
This study focuses on the application of a resting-state EEG with eyes closed (REC) [3]
during the clinical assistant diagnosis and classification of patients with schizophrenia, in
an attempt to establish an effective neuroimaging biomarker from EEG signals.

The signal processing of EEG data faces many challenges. It has been previously
observed that EEG data feature low signal-to-noise ratios (SNR), non-stationary signals,
and high inter-subject variability, which limit the usefulness of EEG applications [4]. A
common procedure for EEG-based biometrics involves data collection, preprocessing,
feature extraction, and pattern recognition [5]. However, resting-state EEG lacks task-
related features, making it difficult to design the best feature for manual extraction. In
this study, we considered the non-stationary brain [6], implying that their tasks change
over time. This time interval can be divided into thousands of non-overlapping stationary
windows. In this manner, we obtained a set of thousands of matrices. The application of
eigenvalues to express features in EEG data has a long history, particularly in relation to the
random matrix, which makes the fluctuations in eigenvalues somewhat interpretable [7].

1.1. Related Works

Of all the clinical manifestations of mental disorders, schizophrenia is the most com-
plex. The severity of schizophrenia is reflected in the complexity of its symptoms. This
paper explores EEG data with the aim of finding an effective method by which to diag-
nose and discriminate between the diverse clinical manifestations of individuals with
schizophrenia. Many methods have been developed to understand EEG characteristics
in terms of schizophrenia. Early traditional methods have relied on experienced doctors
to observe EEG data and provide clinical diagnostic results based on their experience [8].
However, different doctor make different judgments that are influenced by many factors,
such as their understanding of the pathogeny and the patients, and even their personal
emotions. Schizophrenia has been hypothesized to be a brain connectivity disorder that
results from abnormal structural and functional connectivity networks [9]. Maran indi-
cated that such abnormalities exist within functional connectivity in resting-state and
task-related EEG data [10]. Statistical methods can be used to detect and visualize brain
function dynamics and complexity, so as to then identify abnormal mental disorders [11].
Conventional univariate statistical methods neglect the highly interrelated nature of the
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functional and structural aspects of the brain data, as well as the difficulties in dealing with
large amounts of EEG data. Choosing the appropriate feature extraction for schizophrenia
diagnosis is a challenging task that requires extensive knowledge of signal processing and
artificial intelligence.

Machine learning algorithms have been used to diagnose schizophrenia using EEG
data. Extensive research has shown that traditional classifiers, such as support vector
machines (SVM) [12], K nearest neighbors (KNN) [13], Naive Bayes [14], decision trees [15],
and random forests [16], are already being used. With the rapid development of artificial
intelligence technology, although the classification accuracy of these methods is sufficient
enough to provide a clinical reference, their generalization ability needs to be improved. A
convolutional neural network (CNN) was used to classify EEG-derived brain connectivity
in schizophrenia [17], which achieved a remarkable accuracy of 93.06% with decision-level
fusion. The high accuracy achieved by the CNN could be attributed to its ability in terms of
end-to-end learning and utilizing hierarchical structures between data [18]. Deep learning
is also used for identifying individuals with schizophrenia through applying a CNN to
capture the unique physical features of resting-state EEG data, reaching a good degree of
accuracy at 88% [19]. However, these works lacked interpretability for clinical applications.

Many classical statistical methods induce large, sometimes intolerable, errors. It is
important to develop new approaches to deal with high-dimensional data [20]. Random
matrix theory (RMT) is a very appropriate candidate model, since the classification methods
based on RMT rely on singular values of a large-dimension random matrix. RMT origi-
nated in physics and is naturally composed by sampling sequences of multiple random
variables [21]. Under some assumption, the eigenvalues or singular values distribution of
RMT, spectral statistics, is estimated by the regular form or upper and lower bounds [22].
For instance, early research on random matrices XN×T, where N stands for the number of
multivariates and T refers to the sampling length, was introduced when the Chi-square
distribution was extended to multivariate random data. If we assume that each dimension
of random data is i.i.d. with a mean of zero, XXT is a p-order symmetric matrix that follows
the Wishart distribution. In 1967, Marchenko and Pastur conducted a study of matrices of
the order XTX. When N is sufficiently large and all variables follow an independent, identi-
cally distributed normal distribution variable, its eigenvalue density distribution converges
to follow the Marchenko Pastur law [23]. Today, it is a perspective method widely applied
in financial analysis, physics, biological statistics, and computer sciences [24].

However, each variable does not follow a normal distribution or other standardized
distribution assumptions, singular values of X, or, in other words, the eigenvalues of
its covariance matrix of X are not sufficiently regular as statistical features of multiple
random variables. A linear eigenvalues statistic (LES) of X and LES-associated appropriate
test functions can be used to identify the statistical features of the multivariate random
matrices X. Musco provided the theoretical upper and lower bounds of LES with respect
to different test functions; for example, the log-determinant, the trace inverse, and the
Schatten p-norms [25]. By introducing a more general assumption of the multivariate
variance distribution, the existing bounds of linear eigenvalue statistics for random matrix
ensemble were re-established [26]. For testing the additive effect of the expected familial
relatedness, according to a dataset from the UK Biobank, a study was conducted based
on LES [27] where the four test statistics, the likelihood ratio test (LRT), the restricted
likelihood ratio test (RLRT), and the sequence kernel association test (SKAT) statistics were
employed. For ozone measurements, Han proposed an LES statistical estimation in which
the LES-associated test function included a log-determinant, the trace of the matrix inverse,
the Estrada index, and the Schatten p-norm to estimate over 6 million variables [28]. Four
test functions were used for anomaly detection in the IEEE 118-bus system, including LRT
and Chebyshev Polynomials [29]. However, there are still very limited applications of RMT
in neuroscience. The adoption of RMT in studying EEG data in this research is driven by its
ability to provide insights into the statistical properties, noise characteristics, and universal
features of the data.
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In summary, we can conclude that the different test functions of LES for the same
random matrix X have different classification performances. The questions are: which test
function is best? Or, how do we find a better one?

In additional, when using EEG data to diagnose schizophrenia, the methods mentioned
above focus on the binary classification of FES and HC. Thus far, very little attention has
been paid to the role of ternary classifications with the addition of CHR. Distinguishing
CHR from HC and FES and preventing the development of CHR in its prodromal stage
plays a critical role in treating schizophrenia.

In this paper, we employed LES statistical characteristics, a nonlinear law estab-
lished for random multivariate, to diagnose schizophrenia, and studied the most appro-
priate test functions to identify the statistical features of X derived from multivariate
random matrices.

1.2. Our Contributions

This study proposes a deep learning method, LES-NN, in which a sequence of LES is
the input of a successive deep learning neural network to identify a patient’s mental status
in schizophrenia research. The statistical performance of the LES relies on the test function.
However, the optimal statistical test function is a functional optimization problem. The
proposed LES-based deep learning neural network method involves an iterative learning
procedure for the proposed test function optimization problem coupled with the successive
parameter optimization of a neural network.

First, EEG data can be divided into matrices, then, the data feature can be characterized
using the RMT, within which LES designs are systematically studied. LES is a high-
dimensional statistical indicator with different test functions. LES gains insight into systems
from different perspectives. In addition, by exploring suitable test functions within the
existing functions with physical and statistical significance, it can be found that entropy
performs well as a test function for classifying EEG data.

Furthermore, to determine an optimal statistical test function, a functional optimiza-
tion problem is proposed that relies on the final precision of the model’s output. Finally, we
introduce an LES-based deep learning neural network model that synchronously couples
the proposed statistical test function functional optimum problem and NN evolution to
simultaneously determine the optimal form of the test function and NN parameters. The
proposed LES-NN method achieves excellent results for HC, FES, and CHR classification
problems. By delving into different instances of schizophrenia, we aim to offer valuable
insights into its diagnosis and management.

The paper is organized as follows: The first section includes an introduction to EEG
with the prodromal phase of schizophrenia and a learning algorithm with RMT. The second
section provides a general overview of the EEG data sources and preprocessing. Section 3
describes the fundamentals of a RMT and LES. Section 4 presents the design of the LES test
function with machine learning and deep learning neural networks. Finally, the results,
discussion, and conclusion are presented in Sections 5 and 6.

2. Data Source and Preprocessing

This study aimed to investigate classification issues with resting-state EEG by evaluat-
ing three types of participants: high-risk (CHR) individuals, clinically stable first-episode
patients with schizophrenia (FES), and healthy controls (HC). Our study included 120
participants (40 CHRs, 40 FESs, and 40 HCs), and 80% of all these data were used as
training sets and 20% were used as test sets. The participants investigated in this study
were recruited from a mental health center hospital in Shanghai, and all participants signed
informed consent forms to participate in the study. Continuous EEG activity was recorded
while the participants were comfortably seated with their eyes closed. The EEG recordings
were placed between 09.00 and 17.00. The participants were monitored for electroen-
cephalographic signs of somnolence for the entire recording duration (5 min). Recordings
were conducted using 64-channel Ag/AgCl electrodes (two reference electrodes, M1 and
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M2) arranged according to a modified 10/20 system at a sampling rate of 1 kHz. Electrode
impedance was kept below 5 Ω. As the raw EEG signal was contaminated with noise and
artifacts of external and physiological origin, a 0.1–50 Hz band-pass filter and automatic
artifact rejection based on ICA were applied offline to remove power-line interference,
ocular artifacts (EOG), and muscle tension. The spatial positions of the EEG sensors are
shown in Figure 1A. And the EEG data are illustrated in Figure 1B.
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(B) 64-channel preprocessed EEG time series data.

Let N be the numbers of channel electrodes and T be the sample size. The EEG
sampling can be denoted as a N × T matrix X. Let W be the sliding window size and L be
the windows number, that is L = T/W. Then, the sample time series data X is divided into
a sequence of random matrix: X = (∑1, ∑2, · · · , ∑L−1, ∑L) as shown in Figure 2. Here, each
∑i is N ×W dimensional.
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One advantage of data blocking is to avoid the problem of non-stationary data, as
EEG data are non-stationary signals. The EEG data were blocked and assumed to be stable
within each block. However, we tried to turn big EEG data into tiny data for practical
use, and some recently advanced data-driven estimators could be adopted to obtain state
evaluation without knowledge of medical parameters or connectivity [30]. Considering
that the characteristic of the data is an extremely long time series, this study illustrates the
conceptual representation of the structure of the massive streaming EEG data.

We can obtain a data matrix for each block Σi, which are in a high-dimensional
space but not infinite; more explicitly, we take a finite-dimensional parameter optimiza-
tion problem in a tensor space according to the universality theory [31] of RMT for a
real-world system.

3. Fundamentals of Random Matrix Theory
3.1. Large-Dimensional Data and Random Matrix

In multivariate statistics, we obtain a W sampling of N-dimensional random vectors:
x1, x2, · · · , xL ∈ RN . We then form the data matrix X = (x1, · · · , xL) ∈ RN×W, which,
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naturally, is a random matrix that needs high-dimensional data analysis. Remarkably, N
and W were large and comparable. The classical “large W, fixed N” theory fails to provide
useful predictions for many of these applications. Classical methods can be significantly
broken down into high-dimensional regimes. The possibility of an arbitrary sample size N
renders classical statistical tools infeasible. We consider the asymptotic regime to be

N → ∞, W→ ∞, but
N
W
→ c ∈ (0, ∞) (1)

Compared with traditional probability theory, a random matrix is defined as a random
variable for the elements of the matrix. Given an N × N Hermitian matrix AN, let λ1,
λ2, · · · , λN be eigenvalues of AN. If the eigenvalues λi of AN are real, we can define a
one-dimensional empirical spectral distribution function (ESD) as

FAN (x) = 1
N |{1 ≤ i ≤ N : λi{AN} ≤ x}|

= 1
N

N
∑

i=1
I(λi{AN} ≤ x),

(2)

The main task of RMT is to study the limit properties of FAN when AN is random,
and the order n tends to infinity. If FAN has a limit distribution, then we call this limit the
limiting spectral distribution (LSD) of the matrix AN. Currently, two main research methods
are used to determine the limit properties of FAN : the moment estimation method and the
Stieltjes transformation. The convergence rate from the ESDs of a large-dimensional random
matrix to its corresponding LSD is very important for applying RMT. The best-known
convergence rate for the expected ESD of the Wigner matrix and sampling covariance
matrix is O(N−1/2), and the corresponding ESDs are O(N−2/5) and O(N−2/5+η) [32].

3.2. Marchenko-Pastur Law

There are various types of random matrix models, with the Gaussian unitary ensemble
(GUE) and the Laguerre unitary ensemble (LUE) being the most common [33]. The LUE
can be a rectangular matrix that comes closer to real-world data and has a wider range of
applications. Therefore, this study adopts a sample covariance matrix for data modeling.

Consider a sample covariance matrix of the form.

SN = N−1XXH (3)

where X is a matrix whose entries
{

Xjk

}
j=1,...,N;k=1,...,T

are independent random variables

satisfying the following conditions [34].

E
{

Xjk

}
= 0, E

{(
Xjk

)2
}

= 1 (4)

Let
{

λj
}N

j=1 be the eigenvalue of SN. The RMT deals with the statistical properties of
the eigenvalues λj of the sample covariance matrix SN

SN
∣∣λj
〉
= λj

∣∣λj
〉

(5)

where
∣∣λj
〉

represents the sample covariance matrix corresponding eigenvectors. The
simplest property of the eigenvalue family related to a matrix ensemble is the eigenvalue
density ρ(λ). This counts the mean number of eigenvalues contained in intervals (a, b).

{
λj; λj ∈ (a, b)

}
=
∫ b

a
ρ(λ)d

{
λj; λj ∈ (a, b)

}
=
∫ b

a
ρ(λ)dλ (6)

According to the above distribution entries of matrix X, we obtain an ensemble of
random matrices, which Marchenko and Pastur mathematically studied. In particular, the
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density ρ(λ) of the ensemble is known and given by the formula, if c ≤ 1, the density of
which is given by [35]:

ρc(λ) =
1

2πcλ

√
(b− λ)(λ− a)

where, a =
(
1−
√

c
)2, b =

(
1 +
√

c
)2 (7)

The Marchenko-Pastur law is an analog of Wigner’s Semicircle law in this setting of
multiplicative rather than additive symmetrization, and the assumption of Gaussian entries
may be significantly relaxed.

3.3. Feasibility for Modoling EEG Data in RMT

According to the definition of spectral density, the data must be independent. Since
EEG is not a random signal, it is synchronous and related to the corresponding brain
activity. We can expect that the spectral density does not follow the prediction of the
Marchenko-Pastur law and is related to human activities. Fortunately, the real EEG data
are not completely inconsistent with this spectral distribution. The results are shown in
Figure 3. We randomly chose the data frame from one object because these three groups of
data show an approximate result to keep the results simple to comprehend.
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The blue bar in Figure 3 A represents the empirical spectral distribution of the eigen-
values of N−1XXH, and the red curve represents the Marchenko-Pastur law with a density
function. There were some differences between the actual and simulated data. In Figure 3B,
at the head of the distribution, there are a certain number of eigenvalues near zero. At
the tail of the distribution, several large eigenvalues are outliers. When we magnify the
empirical spectral distribution of the eigenvalues (blue bar) below the spectral distribution
limit (Marchenko-Pastur law, red curve), we are surprised to find that the distribution of
the empirical and limit of this part coincides to a certain extent. According to the definition
of the random matrix, the part below the Marchenko-Pastur law shows that the data con-
form to the characteristics of random noise, named “noise subspace”. However, the noise
subspace here does not fully fit the theoretical value because this part contains a few parts
of the information. Other parts, including the eigenvalues near zero and outliers, show
information about the data, named “signal subspace”. Eigenvalues near zero indicate a
correlation between the data and actual activities that can affect outliers. A test statistic that
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embodies the characteristics of all the eigenvalues should be adopted to derive profound
and subject-independent information from EEG data.

3.4. Linear Eigenvalue Statistics

Definition 1. Since the pioneering work of Wigner [36], it has been known that if we consider the
linear eigenvalue statistic of the random matrix corresponding to any continuous test function ϕ(·).

LESX(ϕ) =
N

∑
j=1

ϕ
(
λj
)

(8)

The law of large numbers is an important step in studying eigenvalue distributions for a certain
random matrix ensemble. Then, N−1LESX(ϕ) converges in probability to the limit [37]:

lim
N→∞

N−1LESX(ϕ) =
∫

ϕ(λ)ρ(λ)d (9)

where ρ(λ) is the probability density function (PDF) of the eigenvalues.

Similarly, different test functions can be designed to obtain diverse LES as indicators
and theoretical values. The classical test functions are listed in Table 1.

Table 1. Some classical test functions to design LES’s test functions.

Source Original Form Equivalent LES Test Function

Folklore-LRT Tr(A) − log det(A) − Tr(IN)
n
∑

i=1
(λi − log λi − 1) x − log x −1

Wasserstein Distance Tr
(

A− 2
√

A + IN

) n
∑

i=1

(
λi − 2

√
λi + 1

) x− 2
√

x + 1

Nagao (1973) Tr(A − IN)2 n
∑

i=1
(λi − 1)2 (x − 1)2

von Neumann Entropy −Tr(A log det A)
n
∑

i=1
(−λilog λi) −x log x

An appropriate form of the LES test function could be a feature for classification
among different schizophrenia states.

4. Methods
4.1. LES-Based Algorithm Frameworks

The EEG data obtained from the experiments were analyzed using machine learn-
ing and deep learning models. Here, we focused on the random matrix and its linear
eigenvalue statistics. We developed traditional machine learning algorithms and deep
learning networks to obtain the baseline classification performance and compared them
with a proposal LES-based deep learning neural network model. The benefits of traditional
machine learning and deep learning approaches depend more on the data itself; however,
there is no clear statistical or physical significance. The construction of the LES-based
deep learning approaches conforms to the definition of LES, which attempts to construct
appropriate test functions for the spectrum of data matrices and has certain physical and
statistical significance. In this paper, we propose a LES-based deep learning network
scheme in which a LES series of the random matrixes, consisting of EEG data sliding
window sampling, is employed as a feature preprocessing layer for the learning network.
Due to the performance of LES-based scheme being too sensitive to choose the LES’s test
function. The proposed LES-based deep learning network has two types of combination of
LES test functions and learning techniques: the first type is the LES’s test function selected
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(shown in Figure 4A); while the second type is the optimal LES’s test function that should
be solved in a functional optimization problem (shown in Figure 4B).
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Data preprocessing was previously explained in the paper, and the remaining structure
and functions of each block diagram are explained in the following sub-sections. The
calculating LES-related processes are shown in Algorithm 1.

Algorithm 1: EEG data classification with LES features using machine learning and deep learning.

Input: Raw EEG data matrix X is a N × T dimensional, which is time series data of N dimensions
within the T sampling period
Output: a binary or ternary classification result.

1: large EEG data are cut into suitable data blocks, according to Figure 2, and sliding windows
of size W, X = (∑1, ∑2, · · · , ∑L−1, ∑L)

2: for each sample matrix, X = Σi do

3: Standardization: all entries satisfying the conditions E
{

X(N)
jk

}
= 0, E

{(
X(N)

jk

)2
}

= 1

4: Obtaining a sample covariance matrix of matrix X of the form S = N−1XXH
5: Calculating eigenvalues λi of X ;
6: end for
7: Selecting or learning the appropriate test function ϕ to calculate LES as the feature

ζi, 1 ≤ i ≤ L; and {ζ1, ζ2, . . . , ζL} are input in classification algorithms.

4.2. Machine Learning Scheme with LES in Selected Test Functions

Values or attributes with information meanings extracted from raw data constitute the
input of the machine-learning model, and they generate prediction results through various
classic models. The LES test functions as a feature that can reduce the number of features
and dimensionality to enhance the model’s generalization ability.
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4.2.1. Feature Extraction

The main feature extraction task is to derive salient features that map the EEG data
into different states. Feature extraction is related to dimensionality reduction techniques
when the input data to an algorithm are too large to be processed and are suspected to be
redundant. It is fundamental to study the spectral analysis of a large-dimensional random
matrix that concerns the central limit theory of the LES. This is because many important
statistics in multivariate statistical analyses can be expressed as functions of the empirical
spectral distribution of a random matrix. The sample covariance matrix and LES (a kind
of dimensionality reduction LES) are parts of feature extraction because we are concerned
with mapping eigenvalues.

The LES in this study represents a function, which involves reducing the resources
required to statistically describe a large set of EEG data. When studying LES, the test func-
tion is usually required to satisfy certain strong regularity conditions with the eigenvalue
of a random matrix.

4.2.2. State Classification

The computed features are then fed into the classifier for classification between the
different states of the human brain. The following classifiers are used in this study: support
vector machines (SVM) are considered the best state-of-the-art classifiers with lower com-
plexity than other classifiers. SVM is based on finding a hyperplane that can classify data
into separate classes with the possibility of a maximum margin. K-nearest neighbor (KNN)
is a classification algorithm based on supervised learning that is suitable for classifying
class domains with large sample sizes. Naive Bayes is based on Bayes’ theory and assumes
that each attribute of a given class is independent of the values of the other attributes.
However, a decision tree is a top-down recursive construction method. The decision tree is
a typical classification method that approximates the value of a discrete function. Random
Forest is a random method to build a forest with many decision trees, and there is no
covariance between each decision tree.

4.3. LES-Based Deep Learning Network Scheme

In this section, we describe the proposal LES-based deep learning network scheme
in detail. The performance of the proposal LES coupling deep learning neural network
classification algorithm was based on LES fluctuations in sample covariance random
matrices. According to its definition, the LES relies on the test function. This method has
good physical and statistical significance, and the LES-based DNN aims to learn a better
form of the test function.

We need to construct a suitable statistical test function related to the Random Matrix
of the sample information to reflect the information of the overall data and better describe
the latent information; more clearly, this latent information is relative to those network
parameters of the successive deep learning neural network. In the proposal LES-based
deep learning neural network scheme, the test function functional optimization problem
and the deep learning network are coupled to be synchronously optimized during the
training process.

The joint optimization problem of the LES-based DNN in training is shown as follows:

min
ϕ,θ

J(LESX(ϕ), θ) (10)

Here, ϕ ∈ L[0,+∞). The integrable function space;
θ refers to all weight coefficients of the adopted deep neural network in the proposal

LES-based DNN method.
J (LESX(ϕ), θ) is the objective of the joint optimization problem, i.e., the loss function

of the LES-based DNN, as shown in Figure 5.
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In the training process of using deep neural networks and optimization theory, we refor-
mulated the mathematical model to an optimization problem with variables as functions.

According to (10), an optimal test function associated with EEG data is a functional
optimal problem in integrable function space L[0,+∞). We know that finding an optimal
function in an infinite-dimensional space is an extremely difficult task.

Furthermore, in this paper, we propose a finite-dimensional parameter optimization
problem in tensor space to narrow the search space.

Let us suppose that the tensor space is based on a set of basic kernel functions {ϕi}n
i=1.

Hence, this means that the candidate test functions are confined to combinations of
basic functions, as follows:

ϕ(α) def
n

∑
i=1

αi ϕi, here α = [α1, . . . , αn], αi ∈ R (11)

The joint optimization problem LES-based DNN in training is revised as follows:

min
α,θ

J(LESX(ϕ(α)), θ) (12)

Here, α refers to the tensor coefficients of the basis kernel {ϕi}n
i=1.

How to choose suitable basis functions {ϕi}n
i=1 is thought as a technique; for example,

the candidate basis functions is so that the test function in (10) cover the traditional ones in
Table 1.

J(LESX(ϕ(α)), θ) is the objective of the joint optimization problem, i.e., the loss func-
tion of the LES-NN, which is composed of cross-entropy and the regular term shown the
in following (13). In which the cross-entropy denoted as J0 could measure the difference
between the learned model distribution and the real data distribution; the regular term,
β Ω(θ), here Ω, is the L2 norm regularization term, which limits the learning ability of
the adopted deep neural network and prevents parameter overfitting; β is the proportion
hyperparameter. The sum of the squares of all coefficients includes the tensor coefficients
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and LES-NN weight coefficients divided by m, which is the number of samples in the
training set.

J = J0(LESX(ϕ(α)), θ) + β Ω(LESX(ϕ(α)), θ)
J0((LES X(ϕ(α)), θ) = − 1

N ∑N
i=1
[
yi (LES X(ϕ(α)), θ)logpi + (1− yi((LES X(ϕ(α)), θ))log(1− pi)

]
Ω((LES X(ϕ(α)), θ) = 1

2m ∑(α, θ)2
(13)

4.3.1. Optimal Test Function and LES

Determining the optimal statistical test function is a functional optimum problem
in the space of continuous functions. In most practical applications, it is difficult for the
target variable to have a linear relationship with the input variable; therefore, we attempted
to use a more general polynomial function for fitting. When the power function of the
variables is used for a linear combination, the fitting effect is better for many non-linear
practical applications. We introduced other forms of non-linear functions to increase the
fitting effect.

Once the base kernel function is designed, it is first necessary to determine the tensor
coefficient α. Here, we introduced an LES-based neural network model that couples the
proposed statistical test function functional optimum problem with the network param-
eter training. Referring to the definition of LES (8), the 1 × 1 convolutional kernel can
change the size of the channel dimension, similar to compressed sensing. Therefore, we
were inspired to use the 1 × 1 convolutional kernel to implement networks that satisfied
the LES definition. Thus, tensor coefficient optimization can be incorporated into deep
neural networks.

4.3.2. The Proposed LES-Based Neural Network

Brain signals are complex, and directly analyzing the raw data of the entire brain using
neural networks requires a large amount of computation. By compressing and perceiving
raw data through LES, analyzing only the eigenvalues of the EEG data can effectively
reduce the computational complexity. We developed a novel neural network that strictly
satisfied the definition of LES. We used a 1 × 1 convolutional kernel to realize LES features,
which were then integrated for classification decisions to discriminate schizophrenia and
HC with or without CHR. The specific characteristics of each part of the LES neural network
are shown in Figure 5. The detailed procedure is as follows.

First, we standardized the normal distribution of the eigenvalues of the sample covari-
ance matrix of each EEG data block as input; the standardization coefficient was 1/

√
n. The

dimensions of the input data to the deep learning model were an N × L eigenvalue matrix,
where N is the number of EEG channels and eigenvalues of the sample covariance matrices,
and L is the number of time blocks. The core structure of the deep-learning model is the
LES layer, which introduces the concept of obtaining high-dimensional feature information
using random matrices.

Secondly, we designed the network structure of the layer to learn the LES feature.
The feature fusion and test function were realized by contacting the eigenvalues with a
1 × 1 convolution kernel, which could be seen as special, fully connected layers. This
layer rearranges and combines the connected features to form an LES. It can significantly
increase the non-linear characteristics (using the following non-linear activation function)
while keeping the scale of the kernels/feature maps unchanged. It can achieve cross-
channel interactions and information integration with linear correction characteristics
and a linear combination of multiple kernels and feature maps. The operation men-
tioned above is an on a channel that linearly combines the dimensions of the channels,
which naturally conforms to the definition of the LES test function. This study designed
a 1 × 1 convolutional kernel layer, where the former is n × 1 × 1, linearly combine data on
different channels, and then perform non-linear operations that can achieve dimensionality
down functions. The parameters of different channels are the tensor coefficients of the basis
kernel α = [α1, . . . , αn]. Different sets of linear projections that can be separately learned
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can be used to discuss the impact of the linear combinations of several LES kernels on the
results. We also discuss the impact of different LES kernels on the results based on the
weight of each LES kernel.

Finally, the features obtained from the learned test functions are sent to a multilayer
perceptron to realize the classification algorithm.

5. Cases and Discussion

We constructed a training set and test set from raw EEG data to perform a more
reliable classification process, and the cross-validation method is presented in this study.
The training set consisted of 80% samples that were randomly selected from raw data,
while the remaining part of the test set first used the training set to train the classifier and
then used the test set to validate the trained model; this process was repeated several times
to obtain statistical information of the observations. Therefore, it is the performance index
of the classifier. As previously mentioned, several classification methods were adopted in
this study, as shown in Figure 4. The purpose of these cases was to classify CHR based
on the algorithm’s ability to distinguish HC and FES well. For learning algorithms, this
is the problem of binary and ternary classification, so we use the notation “HC/FES” and
“HC/FES/CHR” to represent these two classification problems.

5.1. Machine Learning with/without LES in Selected Test Function
5.1.1. Comparison of Various Extracted Features

Feature extraction is extremely important because it seeks to reduce the dimensionality
of the data synthesized as a feature vector, preserving and highlighting useful information
from raw data. The quality of feature selection directly affects the success rate of classifi-
cation. The computational effort required and the balance between success and efficiency
should be considered.

Statistical features summarize the windows in a global view of the data [38] and can
be analyzed as follows Table 2.

Table 2. Summarized Description of Statistical Features.

Function Name Mathematical Expression

Harmonic mean N
∑N

j=1
1
dj

Standard deviation
√

∑N
j=1(dj−mean)

2

N−1

Mean deviation ∑N
j=1|dij−meani|

N

Kurtosis
1
N ∑N

j=1(dj−mean)
4[

1
N ∑N

j=1(dj−mean)
2
]2

Root mean square
√

1
N

N
∑

j=1

∣∣∣dj

∣∣∣
Peak value max(dj)

Difference between max and min max(dj) − min(dj)

The characteristics of each electrode during the sampling period were obtained using
these statistical features. There were sixty-two electrodes in total; each electrode could
obtain seven statistical features, and we obtained 62× 7 features. These features are trained
using a variety of machine-learning methods.

Table 3 shows the classification performance of classifiers under several statistical
features in distinguishing between two or three types of schizophrenia states. It can be ob-
served that the binary classification problem between HC and FES has a good classification
effect; the accuracy of each classifier is greater than 70%, particularly when that of the SVM
method is close to 80%. One important aspect here is that the SVM classifier has three types
of kernels, namely linear, polynomial, and RBF, and we chose the RBF kernel to obtain
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the results in this study. We have already conducted a sample comparative experiment
among these kernels, proving the RBF’s robustness over the polynomial and linear for
these datasets; therefore, the SVM with the RBF kernel was chosen as the basic kernel in
the remaining paper.

Table 3. Classification accuracies of statistical features using various classifiers with classical
statistical features.

Classifier HC/FES HC/FES/CHR

SVM 79.16 ± 6.21% 62.83 ± 8.54%
KNN 73.25 ± 7.33% 57.33 ± 9.71%

Naive Bayes 75.78 ± 6.47% 57.97 ± 8.09%
Decision Tree 76.16 ± 6.01% 59.11 ± 7.83%

Random Forest 78.25 ± 5.76% 61.74 ± 7.12%

However, when the third state (CHR) is placed in the classifier, the accuracy worsens,
and the success rate is only approximately 60%. This means the feature extraction method
cannot accurately distinguish with the third state. A result of <70% has no reference value
for clinical applications.

5.1.2. Effect of Machine Learning with LES in Selected Test Function

This section roughly represents EEG data in terms of high-dimensional data vectors;
geometrically, there are points in a high-dimensional vector space. Here, random variables
are simultaneously, spatially, and temporally taken into account. The central idea is to
treat the vectors as a whole rather than multiple samples of random vectors. According
to Algorithm 1, we tried to turn raw EEG data into many tiny data blocks, and each block
calculates the LES feature based on some test function. We used the concept in Section 3.3
to show several popular test functions in Table 1.

Different classifiers and features (LES) were selected for the experiments, and the clas-
sification results were compared and analyzed. For the results shown in Table 3, it is worth
noting that the result of LES feature extraction is better than traditional statistical feature
extraction by approximately 10%. The highest classification accuracy is approximately 90%
in binary classifications and approximately 70% in ternary classifications, which is very
encouraging. It can be seen that the performance of the classifiers used was satisfactory
in distinguishing between HC and FES, and using von Neumann Entropy as an LES test
function combined with the SVM classifier could obtain the average classification accuracy
of 73.31% during ternary classifications among HC, FES, and CHR. Compared with the
results in Table 3, the binary classification results between HC and FES could relatively
easily obtain good results, and a classification success rate higher than 70% could be used
to assist clinical diagnosis; different from statistical features based on LES.

If the training set is small, high-bias/low-variance classifiers (e.g., Naive Bayes) have
an advantage over low-bias/high-variance classifiers (e.g., kNN) because the latter will
overfit. However, low-bias/high-variance classifiers start to win out as the training set
grows (they have a lower asymptotic error) because high-bias classifiers are not power-
ful enough to provide accurate models. However, better data often outperform better
algorithms, and designing good features is challenging. If you have a large dataset, the
choice of classification algorithm might not matter in terms of classification performance.
The datasets used in this study are large but not large enough to ignore the differences
between various classification methods; in other words, the differences between the various
classification methods are not significant, but the differences cannot be ignored.

According to Table 4, under the same feature selection, the results of the SVM were
better than those of the other classifications. It is obvious that the advantages of SVM are
high accuracy, good theoretical guarantees regarding overfitting, and an appropriate kernel;
it can work well even if the data are not linearly separable in the base feature space, which
is especially popular in classification problems where high-dimensional spaces are the
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norm. Various test functions are of central importance in RMT. Several popular statistical
indicators were used as test functions in this study, each with its engineering interpretation;
the significance of selecting the test function is that it can give a mathematical meaning to
LES. The von Neumann Entropy performance yielded the best results using the machine
learning method compared to the other functions.

Table 4. Classification accuracies of LES features using various classifiers.

Classifier Test Function HC/FES HC/FES/CHR

SVM

LRT 88.34 ± 2.33% 68.56 ± 2.98%
W-Distance 88.86 ± 2.78% 69.85 ± 3.34%

Nagao 86.27 ± 3.27% 67.73 ± 4.31%
vN-Entropy 91.16 ± 1.61% 73.31 ± 2.23%

KNN

LRT 76.89 ± 3.21% 61.24 ± 4.87%
W-Distance 77.97 ± 3.44% 61.36 ± 4.54%

Nagao 76.12 ± 4.05% 59.54 ± 5.77%
vN-Entropy 78.33 ± 3.56% 61.74 ± 4.06%

Naive Bayes

LRT 75.82 ± 3.73% 56.88 ± 5.43%
W-Distance 76.32 ± 3.64% 57.91 ± 5.12%

Nagao 75.11 ± 4.39% 56.93 ± 6.31%
vN-Entropy 76.59 ± 3.11% 58.45 ± 4.67%

Decision Tree

LRT 81.97 ± 2.98% 65.23 ± 4.32%
W-Distance 82.41 ± 3.25% 65.93 ± 3.94%

Nagao 81.16 ± 3.47% 64.81 ± 4.77%
vN-Entropy 81.22 ± 2.93% 65.76 ± 3.91%

Random Forest

LRT 85.35 ± 3.32% 67.45 ± 3.96%
W-Distance 89.63 ± 2.12% 67.77 ± 3.59%

Nagao 86.31 ± 2.86% 66.83 ± 3.65%
vN-Entropy 85.94 ± 2.66% 68.39 ± 3.11%

5.1.3. Effect of Different Block Window Sizes in the LES Feature

Previously, we used a fixed sampling period as the sampling base to perform identifi-
cation and obtained good classification results. In this section, we sought to find another
sample time length of the EEG signal that could still preserve the identification information,
and we compared their performance differences. We divided each EEG signal sampling
point into portions (W from 100 to 5000) and performed the same procedure. The von Neu-
mann Entropy was used as the test function based on the results of the above comparative
experiments, and SVM was selected for classification.

The classification results are listed in Table 5. From the table, we can observe that as
the length of the sample size increases, different W values affect the estimation accuracy
of the sample covariance matrix, and the maximum classification accuracy is located at
W = 200. In classical statistics, the sample size is usually three–eight times the dimension,
which means the suitable range of W should be from 100 to 1000. The results show that the
sample size over which the participants could be individualized was approximately 200.

Table 5. Classification accuracies of different blocks with LES feature.

W HC/FES HC/FES/CHR

100 87.71 ± 3.66% 68.14 ± 4.74%
200 91.16 ± 1.61% 73.31 ± 2.23%
500 88.96 ± 2.91% 70.09 ± 3.13%
1000 87.11 ± 2.63% 68.65 ± 3.88%
2000 85.32 ± 3.37% 66.48 ± 3.75%
5000 78.97 ± 3.94% 60.19 ± 4.67%
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5.2. Effect of Proposed LES-Based Deep Neural Network

Different test functions significantly impact the classification results. In this section,
based on the linear combination of different kernels, such as {ϕi}5

i=1 and {ϕi}10
i=1, the EEG

data were trained and tested, and ten-fold cross-validation was conducted. In addition, in
light of the results of different window size effects, W = 500 was chosen.

According to the above design principles, several base kernel functions were extracted
and derived from Table 1, as well as other polynomials including higher-order terms of
variables and exponential terms, the base kernel function in this paper is:

ϕ1 =
√

x, ϕ2 = x, ϕ3 = x2, ϕ4 = logx, ϕ5 = xlogx
ϕ6 = x3, ϕ7 = x4, ϕ8 = log(1 + x), ϕ9 = 1

1−x , ϕ10 = ex (14)

The weights of each kernel of the different classifiers are summarized in Table 6;
owing to the constraint of weight decay, the weight values presented in the table are not
abnormally large. In the classifier of the five kernels,

√
x and xlogx played larger roles. This

result also agrees with the results of the manual selection mentioned earlier. However, in
the classifier of the 10 kernels, the results of each weight became more averaged and did not
significantly reflect a particular kernel, which requires further excavation. Their physical
and statistical significance may partly explain these relationships between different weights.
Exploring the significance of these weights can enhance the interpretability of classification
models, and further analysis and research on CHR data can be conducted in conjunction
with clinical conversion experiments.

Table 6. Weights of different kernels for binary and ternary classification.

5 kernels α*
1 α*

2 α*
3 α*

4 α*
5 α*

6 α*
7 α*

8 α*
9 α*

10

HC/FES 0.1876 −0.0950 0.1217 −0.3388 1.1880 0 0 0 0 0
HC/FES/CHR 0.1421 −0.9385 −0.0074 −0.4088 0.2876 0 0 0 0 0

10 kernels α*
1 α*

2 α*
3 α*

4 α*
5 α*

6 α*
7 α*

8 α*
9 α*

10

HC/FES 0.0069 0.4783 −0.0895 −0.1908 0.0054 0.0547 −0.1624 −0.0436 0.0519 −0.3267
HC/FES/CHR −0.8628 0.6201 0.0080 0.0965 0.2189 −0.3163 0.1047 −0.4312 −0.1388 0.1371

The results obtained from the LES-based deep learning model for EEG data classifi-
cation are presented in Table 7 and Figure 6. We compared the performance of the deep
learning model with that of the machine learning model, and the results showed that the
LES-based deep learning model had fairly high accuracy in classification using features
derived from a linear combination of test functions. The most striking observation from the
data comparison was that with five kernels or ten kernels as the classifier, the accuracy of
the binary classification results exceeded 90%, and the result with ten kernels was near 90%.
No significant differences were observed between the two conditions (linear combinations
of different kernels). The binary classification accuracy of the five kernels was lower than
that of the ten kernels, and the ternary classification results for the ten kernels were better.
This may be related to the amount of data used in this study, but there is also the problem of
generalization. Further studies should use more data to validate and improve these results.

Table 7. Classification accuracies of the linear combination of different kernels with LES test function.

Classifier HC/FES HC/FES/CHR

5 kernels 93.75 ± 3.33% 86.45 ± 5.54%
10 kernels 96.87 ± 4.11 89.06 ±3.71%
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Figure 6. ROC curve of classification accuracy. (a) ROC curve of classification accuracy of HC and
FES with five kernels. (b) ROC curve of classification accuracy of HC and FES with ten kernels.
(c) ROC curve of classification accuracy of HC, FES, and CHR with five kernels. (d) ROC curve of
classification accuracy of HC, FES, and CHR with ten kernels.

5.3. Discussion

Since the exceptional performance of CNN-based ImageNet dataset applications has
significantly grown. In order to compare the LES-based algorithm with other traditional
deep learning algorithm, such as end-to-end CNNs, we evaluate the effectiveness of the
CNN at the end of this paper.

In accordance with the preprocessing procedures outlined in Section 4.1, this study
implemented noise reduction techniques, including filtering, the removal of artefacts, and
data segmentation. Additionally, EEG data were normalized to fit the input requirements
of the convolutional neural network. Based on forward and back propagation algorithms
used in convolutional neural networks, we used AlexNet as a template to construct a
basic CNN, including a convolutional layer, a pooling layer, activation function, a fully
connected layer, a softmax layer, and a dropout unit. We provided a concise overview of
the deep convolutional neural network methodology used in this section, as demonstrated
in Table 8.
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Table 8. Configuration of convolutional neural network.

Layer Type Size Stride Activation Dropout

1 Input 62 × 500 - - 0
2 Convolution 3 × 3 2 ReLu 0
3 Maxpooling 2 × 2 2 - 0.25
4 Convolution 3 × 3 2 ReLu 0
5 Maxpooling 2 × 2 2 - 0.25
6 Fully connected 64 - ReLu 0.5
7 Output 2 or 3 - Softmax 0

Table 9 shows the classification performance of the CNN. Whilst the CNN was unable
to outperform the combination of SVM and LES on the binary classification problem, it
significantly outperformed them on the ternary classification problem. Filtering a signal
is the basic principle of convolution, and it excludes subjective evaluations unless clearly
marked as such, filtering out information that may be of interest or usefulness to us.
However, it lacks sensitivity to the overall position of characteristics and disregards the
interdependence of features in the data. Although it does not show enough advantages in
the binary classification problem, it gives us confidence in the ternary classification problem
to design a more appropriate network that can have some interpretability while getting
better results, such as the LES neural network.

Table 9. Classification accuracies of CNN.

Classifier w/o CHR w/CHR

CNN 85.61 ± 3.26% 79.23 ± 4.72%

We also calculated the computational time required for the proposed LES-based deep
learning network to classify the EEG data features of the individual participants. The
classification algorithm was implemented using an Intel(R) Core(TM) i7-13700H GPU
(Lenovo’s computer manufactured in Beijing, China) on an NVIDIA GeForce RTX 3080 Ti
with 10 GB of VRAM on 64-bit Windows 10 Professional. Calculating the eigenvalue of
the data covariance matrix is performed during preprocessing, which reduces the number
of parameters input into the model nearly hundreds of times and improves robustness to
data noise. We can easily simultaneously load all the data into the memory, which also
improves the computational efficiency of the training. Based on these results, the training
time of the LES-NN was no more than 5 min when the loss of the model converged to a
low level, and the testing time of each participant was only 20 ms.

6. Conclusions

In the classification diagnosis of schizophrenia, it is crucial to accurately and timely
screen for and intervene in CHR. However, the diagnosis of CHR is challenging. In this
study, we identified a large amount of EEG data in patients with schizophrenia (including
FES and CHR) compared to HC. Randomness and uncertainty are the key characteristics
of these data. RMT and LES provides an influential mathematical framework for explor-
ing statistical properties of complex systems, such as EEG signals. In a random matrix
X = (x1, . . . , xT) ∈ RN×T , we used N nodes to represent the sample size and T data sam-
ples to represent the temporal samples. When N and T are large, a special mathematical
phenomenon called concentration occurs, which provides powerful theoretical support
based on RMT for processing EEG data.

We introduced LES from RMT as a feature, which reflects the fluctuation of the central
limit theorem of the origin data and has good physical and statistical significance. This
LES-based statistic applies to machine learning and deep learning analysis methods. This
study analyzed several classic functions as test functions and combined them with various
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machine learning algorithms, such as SVM, KNN, Random Forest, etc., to obtain results
that meet the requirements of clinical auxiliary diagnosis.

Furthermore, a deep learning network model that satisfied the mathematical definition
and properties of LES was designed, and the optimal form of the LES test function was
explored, resulting in better results than machine learning methods. The LES-based network
focuses on the spectrum of the data matrix, and after preprocessing, there are fewer
network parameters, which can improve the training efficiency. Adding CHR to the
ternary schizophrenia classification results achieved a classification accuracy of nearly
90%. As different test functions have different physical and statistical meanings, test
functions can be employed to meet the needs of clinical experiments to make the algorithm
more interpretable, this result could potentially change the current ways of diagnosing
and treating schizophrenia. The increased precision means physicians could make more
accurate diagnoses of patients and consequently devise more personalized and effective
treatment plans. The role of LES-based indicators in informing clinical interventions will
be explored in our further research, for instance, making use of EEG microstate analysis to
guide intervention plans.

This prospective work on time-domain signal analysis of EEG data included data
analysis based on the spatiotemporal representation information of EEG signals. Therefore,
we will introduce a more suitable model to solve this problem in future research.
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