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1. Introduction and Preliminaries

The first theory that included a viscous liquid, solid and gas mixture was proposed
by Eringen [1]. The field equations were obtained by investigating this heat-resistant
combination [2]. The porous media theory, which investigates this type of issue, has also
been used to classify expansive (swelling) soils. Due to numerous investigations aimed at
mitigating the adverse effects of expansive soils, especially within the fields of architecture
and civil engineering, this subject appears promising for further research exploration. For
additional information, visit [3-9]. From the linear theory of swelling porous elastic soils,
the fundamental field equations are

Py +G1 +Hy,
Py 4+ Gy + Ho, 1)

Pyl =

o0

in which py, p;, > 0 are the densities of the elastic solid material and fluid, while their
respective displacements are denoted by u, ¢. Furthermore, (P, G1, H1) represent the partial
tension, internal forces of body and eternal forces acting on the displacement. (P, G2, H2)
are similar, but applied to the elastic solid. Also, the constitutive equations for partial

tensions are provided by
Py _ ([ a2 U
(P2>_<ﬂ2rﬂ3>'< O > (2)

—_———
A
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where a1,a3 > 0, and a; # 0 is a real number. A is matrix positive definite with a;a3 > a%.
Quintanilla [9] studied (1) by considering

Gl =Gy =C(ur— ), Hqi=azuxxt, Hp=0,

where ¢ > 0; the exponential stability can be achieved. Also, in [10], the researchers
considered (1) by taking different conditions:

G1=G=0, Hi=—puy(x)uy, Ho=0,

where the internal viscous damping function (x) has a positive mean. They were able
to determine the exponential stability using the spectral approach. To discover more,
read [9-16]. Time delays are of significant importance in the majority of natural phenomena
and industrial systems, as they have the potential to induce instability and should be treated
with utmost consideration. Additionally, there are numerous works that have examined
this category of issues, including [17-23].

Numerous researchers worked on similar problems in the literature from different
perspectives [24-28]. In recent times, there has been a substantial surge of interest among
scientists in Lord Shulman’s thermo-elasticity, leading to an extensive collection of con-
tributions aimed at elucidating this theory. This theoretical framework encompasses the
examination of a system comprising four hyperbolic equations coupled with heat transfer
dynamics. Moreover, Lord Shulman thermo-elastic theory was introduced to usher in a
more robust heat conduction law, as it concerns thermo-elastic materials exhibiting elastic
vibrations. Notably, the heat equation within this context is itself hyperbolic and parallels
the equation initially formulated by Fourier’s law. To delve deeper into the specifics and
gain a comprehensive understanding of this theory, it is recommended that the reader
consult the following papers: [29,30]. The core evolutionary equations governing one-
dimensional models of porous thermo-elasticity, incorporating both microtemperature and
temperature effects [31-34], can be expressed as follows:

puttyp = Ty,
Pl = Hx+G,
eTor: = 4x,
PE: = Pi+q-Q. ®)

In the context provided, the symbols T, Ty, H, E, 1, q, G, Q and P* denote the stress,
reference temperature, equilibrated stress, first energy moment, entropy, heat flux vector,
equilibrated body force, mean heat flux and first heat flux moment, respectively. For
simplicity in computations, we set Ty to be equal to 1.

This paper addresses the inherent counterpart of microtemperatures within the Lord
Shulman theory. In this scenario, it becomes possible to adapt the constitutive equations in
the subsequent manner:

T=P+G +Hi P"=—-kR,,
H="P+P; pn = Youx + 118 + B1 (k0 + 0),
G=Gy+Hy Q= (k1 —k3)R+ (k—k1)0x,
g=kby +kiR  pE=—PB2(xR¢ + R) — 720y, 4)

in which the microtemperature vector is indicated by #t, ¥ > 0 is the relaxation parameter
and py,, pg, a1,a2,a3, B1, B2 > 0. The coefficients 7y, k, 1 denote the coupling between the
temperature and displacement, the thermal conductivity, the coupling between the volume
fraction and the temperature, respectively.
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Taking a; # 0 and the coefficients k1, ko, k3, 2 > 0 satisfies the inequalities

az

a=a3—-2>0, 5)
ai

k3 < kks. (6)

In the current work, we focus on the thermal effects, which is why we make the
assumption B1, B2 > 0 for heat capicity. To add interest to the problem, we also add a
distributed delay term to the second equation, creating a new case that differs from earlier
research. Under the right assumptions, the system is shown to be well posed, and we use
the energy method to demonstrate the result of the exponential stability.

In this work, the following are taken into account:

G =Gy =0, P3=—7xR:+RN),
Hi = —70(x0; +0),
vy

Hy = 71(k6; +0) — @10 — / @ (s)0(x, t — s)ds. 7)

V1
By substituting (4)—(7) into (3), we have
Pultt — A1tyx — A20xx + Y0(xk0r +0)x =0,
o0 — a3y — falxx =M1 (k0 +6) + Y2 (kR + R«
2
+@o1% —|—/ @(s)0¢(x,t —s)ds =0,
1

B1(k6; + 0) + Yoty + Y10t — kbxx — k1 Ry =0,
Ba (kR + R)¢ — koRxx + 720 + k3R + k16, =0,

where
(x,s,t) e H=(0,1) x (v1,v2) x (0,00),
and
u(x,0) = up(x), u(x,0) = uy(x),0(x,0) = 6p(x),
9(x,0) = (x), 0 (x,0) = 91(x),0:(x,0) = 64(x),
R(x,0) = Ro(x), Re(x,0) = Ry (x), x€(0,1), ®)
u(0,f) =u(1,t) =9(0,t) =8(1,t) =0, 0<¢,
O(x, —t) = fo(x,t), (x,£) € (0,1) x (0,12),
6(0,t) =0(1,t) = R(0,t) =R(1,t) =0, 0<t

Next, we introduce a new variable, as mentioned in [23]:

y(-x/plsr t) = ﬁt(xlt - sp)’

thus, the following is obtained:

sVi(x,p,s,t) + yp(x,p, s, t) =0,
V(x,0,s,t) = %(x,t).

Our problem can be expressed in the following form:
Putttt — aythxx — apBxx + 70 (K0; + 0)x =0,
000 — a30xx — apttxy — 1 (K0 + 60) + Y2 (kR + RN)x
%]
4@ 9 + / @5(s)Y(x,1,s,t)ds =0,
Jvg

B1 (k0 + 0)¢ + Yousx + Y10t — kbxx — k1 Ry =0,
ﬁZ(K%t + §R)t - k2§Rxx + '}’2191‘3( + k3§R + klex == 0/
Syt(x/plsr t) + yp(xrprsl t) = 0/

©)
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in which
(x,p,s,t) € (0,1) x H,
with
u(x,0) = ug(x), ur(x,0) = u(x),0(x,0) = fo(x),
8(x,0) = 190( ), 0 ( 0) = (x),et(x,O) = 01(x), (10)
R(x,0) = Ro(x), Re(x,0) = Ry (x), x€(0,1),
Y(x,0,5,0) = fo(x,sp), (x,p,5) € (0,1) x (0,1) x (0,12),
and

u(0,8) = u(1,t) = 8(0,£) = 8(1,t) =0,
0(0,1) = 0(1,1) = R(0,¢) = R(1,1) =0, 0 <. (11)

In this context, the integrals denote the presence of distributed delay components,
where 11 and v,—both greater than zero—represent time delays. The functions @; and @;
are L® functions and must adhere to the following conditions.

Hypothesis 1. @; : [v1,12] — R is a bounded function satisfying
V2
/ @2 (s)|ds < ;. (12)
1

In this investigation, we delve into the realm of the Lord Shulman model for swelling
porous thermo-elastic soils, incorporating the influence of microtemperature, temperatures
and distributed delay components. Our focus lies in demonstrating the system’s well-
posedness and examining the outcomes related to its exponential stability. This work is
structured as follows: in Section 2, the well-posedness is illustrated, and the exponential
stability is demonstrated in Section 3. We state that ¢ > 0 in each of the sentences that follow.

2. Well-Posedness

Here, we will establish the well-posedness of the system (9)—(11). The following vector
function is first introduced:

X = (u,u;,9,8:,6,0,%,R, V)7,
where variables v = u;, ¢ = ¢, x = 0;, L = ¥, then, the system (9) is written as follows:

= TX

{ X(O) = XO = (u()/ U, 190/ 191/90/ 91/ §}EO/ §Rl/f())T/ (13)

where 7 : S(7T) C U :— U is a linear operator given by

U

o @ty + axBex — yo(Kkx + 6)x]

9

ps (13022 + @21ty + 71(K)c +0) — 12 (KT + )y
—@19 — [,? @2(5)Y(x,1,5,t)ds]

TX - X 4! ’ (14)

_Klﬁ[')’ovx + 719 — kOxx + B1x — kléRx]

hM

*Klﬂ[*kZ\%xx + Yo@x + ksl + k16x + ﬁZZ]
1

-1
svp
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in which energy space is denoted by 2, such that

U = HH0,1) x L2(0,1) x HE(0,1) x L2(0,1) x HA(0,1) x L2(0,1)
xHE(0,1) x L?(0,1) x L2((0,1) x (0,1) x (v1,v2)),

for any

<) <
)

= (u,09,¢,0,%x,
= (l/’l\/ 6/ 19/ A/ 6/ A/

with the following inner product:

~

<X, X>y = pu /01 vodx + a; /01 UxUyxdX + P /01 QPdx + as /01 ﬁxgxdx
St /0 (B + Be0)dx + kyx /0 L0+ RO, )dx
By /01 (kx + ) (kX + 8)dx + B /Ol(xz 4R (S + R)dx
ki /O L 0.8 + ok /O "R Pod + ks /0 " R

1 1 1%) ~
+ / / / s|@2(s)|YYVdsdpdx. (15)
0 0 151
The domain of 7T is given by

S(T) :{ X e V/u,8,0,R c H*0,1) NH(0,1),v,¢,x % € H)(0,1), }

Y,V € L2((0,1) x (0,1) x (v,10)),V(x,0,s,t) = ¢

Clearly, S(7) is dense in 0.

Theorem 1. Let Xy € U and consider that (5), (6) and (12) hold. Then, a unique solution
X € C(Ry, V) for the problem (13) exists. Additionally, if Xo € S(T), then

X € C(Ry,S(T))NCHR, V).

Proof. First, we show that 7 is a dissipative operator. For any Xy € S(7) and by
utilizing (15), we achieve

1 1 v
<TX,X>y = —(1)1/ (pzdx—/ /2w2(s)q)y(x,1,s,t)dsdx
0 0 141
1 1 1
—k / 62dx — ks / R2dx — 2k / ROdx
0 0 0
1 1 1
ks / R2dx — / / / (@3 ()| VpVdsdpdx. (16)
0 0 Jo Ju
For the last term of the RHS of (16), we have

1 1 1% ddd 1 1 1% 1 d ded
/Ofo/yl |@3(s)| Vo YVdsdpdx 2/0/1/1 /0 @2(5)] 35 ¥ dpdsx

1 1 1%)
= —7/ / |@2(s)|V?(x,1, s, t)dsdx
2 0 141

1 1 5
+§/0 /1,1 |@2(s)|V*(x,0,s,t)dsdx.  (17)
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Applying the inequality of Young, we have

_/0 /Vlzwz(s)(Py(X,l,S,t)dsdx < E(/vlz|cvz(s)|d5)/0 P
1 1 1%
+§/o /vl @y (s)|V?(x, 1,5, t)dsdx.  (18)

Substituting (17) and (18) into (16) and utilizing J(x,0,s,t) = ¢(x,t) and (12), the
following is obtained:

1 1 1
<TX, X >y < —k/ egdx—kg,/ é)%zdx—2k1/ RO, dx
0 0 0
1 1
. / P2dx — ky / R2dx, (19)
0 0
where 17p = (@1 — fvvlz |@2(s)|ds) > 0. Additionally, by (6), we have

—k62 — k3 R? — 2k; RO, < 0. (20)

Therefore, the operator 7 is dissipative. Now, we show that the operator 7T is
a maximal. It is enough to prove that (AI — 7)) is a surjective operator. In fact, we
demonstrate that a unique X = (4,0,8,9,0,x,R,%,V)T € S(T) exists for any

F= (fl/f2/f3/f4rf5/f6rf7rf8/f9)T € %Y, such that

(AI-T)X =F. (21)
That is,

A—v=f; € H}(0,1)
PuAD — aqtlyy — A20xx + Yo(kx +0)x = puf2 € L2(0,1)
A — @ =f3€HLO0,1)
AP — a30xx — aguixy — Y1(kX + 0) + Y2 (kX + R)x + @19
+fv1;2 @(5)Y(x,1,5,t)ds = pgfy € L?
A0 —x = f5s € HL(0,1)
BikAX + Youx + 719 — kbxx — k1 Ry + B1x = Pixfe € L2(0,1)
AR—Z =f; € H)(0,1)
BokAY — koRyx + Y2@x + ksR + k16 + B2X = ﬁszg € LZ(O, 1)
sAVi(x,p,5,t) + Vo(x,p,5,t) =sfo € L((0,1) x (0,1) x (11,12)).

(22)

It can be noticed that there exists a unique solution of (22)9 with Y (x,0,s,t) = ¢(x,t),
which is given by

(Y
Y(x,p,8,t) = e_)“’s(p + sesP? /0 e)‘SQfg(x, o,s,t)do, (23)

then,
1
V(x,1,s,t) = e*/\s(p + se™ / e/\SQfg(x, 0,8, t)do, (24)
0

thus, we obtain

v:/\u—fl, QDI/\ﬂffg, X:)\Q*f5, Z:)\%*f% (25)
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Inserting (24) and (25) into (22)5, (22)4, (22) and (22)g, we obtain
PuA?U — ajtiyy — a0y + Yo (kA +1)0 = Iy
@30 — azByx — dplxxy — 71 (KA + 1)9 + '72(7(/\ + 1)§Rx =hy (26)
040 + ’)’())\ux + ’)/1)\19 — kOyx — k1§Rx =h3
(D5§R —koRyy + ’)/2)\l9x 4+ k16 = hy,
where
hi = pu(Afi + f2) + 'VOKfo{/
hy = p&f4 + (pg)\ + @1 + fvf |(!02(S) ‘675)‘ds)f3 — ’)/1Kf5 + ’)/sz7x,
— [y s|@a(s)]et [y e fo(x, 0,5, t)dads,
hs = kP1fe + vofix + 11f3 + P1(1+KA)f5, 27)
hy = xBafs + Y2 fsx + B2(1 +xA)f7,
03 = p@/\z + @A+ A fvvlz |2 (s) |e’)‘5ds,
Wy = ﬁl/\(K}\ + 1),
w5 = ,32/\(1()\ + 1) + k3.
Multiplying (26) by 7, 8,0, R, and integrating the sum over (0,1), we have
B((u,9,6,R),(i1,8,8,R)) = [(i,8,6,R), (28)
where
B: (H(0,1) x H{(0,1) x HE(0,1) x H{(0,1))*> = R,
is the bilinear form given by
~ 1 1
B((1,8,0,R), (,8,0,R)) = puA? / witdx + ay / xiiydx
0 0
1 1
ta / Oyiledx + Yo(kA +1) / 0, iidx
0 0
1 1
ts / 08dx + a3 / 0.0, dx
0 0
1 1
+a2/ Uy Oxdx — 1 (KA + 1)/ 60dx
0 0
1 1 ~
+M / Rebdx + 12 (kA + 1) / R, Bdx
+M / 08dx + yo(kA + 1) / 10x0dx
k(kA +1) ~
-I—’h(K)H—l)/ 00dx + (K;/ 0,0, dx,
—O—M/ §R3‘de+’yz (kA +1) / 8, Rdx
+M / gx%d + M / %x%xdx (29)
and
T (H(0,1) x HY(0,1) x HE(0,1), xH{(0,1)) — R,
is the linear functional defined as
~ 1 1 1
T(7,8,0,R) = / o didx + / Iy ddx + % / h30dx
0 0 0
1
+(KA7;1) / hyRdx. (30)
0
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Now, for V = H}(0,1) x H{(0,1) x H}(0,1) x H}(0,1), with the norm
e, 8,6, R = [lull3 + Nuxll + 1813 + 182115 + 116113 + 16113 + [RII3 + R+,
we obtain
1 1 1
B((u,9,6,R), (,6,0,%)) — pu/\Z/ uzdx+a1/ u,%dx+c03/ Pdx
0 0 0
1 1
Yay / 2y + QalkA+1) / 62dx
0 A 0
-1 1 1
2, / uxﬁxdwk(“%) / 62dx (31)
Jo 0

A+1) 1 ky(kA +1) 1
+M/ %zdijz(Ki-F)/ R
A 0 A 0
Also, we can write

2 2 1 as 2 ar P
ajuy + 2auy Oy + a3ty = 5 al(ux—i-%ﬁx) +“3(19x+aux)

(12 [12

JrL‘?c(al - *2) +19§(Ll3 - 2)]
as ay

Because of (5), we deduce that

1 a3 a2
au2 4 2001,y + az8> > = [ui(al — 2) + 02(az — 2)} , (32)
2 as a
then, for some M, > 0,
B((u,9,0,R), (u,8,0,R)) > Myl|(u,9,0,R)|3. (33)

B is, hence, coercive. As a result, we determine that (28) has a unique solution using

the Lax-Milgram theorem:
u, 9,0, R € H(0,1). (34)

Putting u, 9,6, and R in (22)1 357, we have
v, 0, X% € 7-[(1)(0, 1).
In the same way, the compensation of ¢ in (23) with (22)9 implies that
Y, Yp € L2((0,1) x (0,1) x (v1,12)).
Additionally, if we assume i = f=%R=0in (29), we obtain
1 1 1
a /0 9:Bdx + s /0 98dx + a /O Uy Brdx
(kA1) /01 6dx + Y2 (kA +1) /01 R Bdx = /01 hddx, V8 € H}(0,1),
which implies

1 R 1 —~ ~
a /0 9y Bedx = /0 (hz — @30 + attxx + (KA + 1) (716 — meg) ddx, V0 e H},

that is,
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30 + aotixy = @30 — (kA + 1) (7110 — 12Ry) — hp € L2(0,1). (35)
Similarly, if we take $=0=R=0in (29), we obtain
A0y + Aytixy = puA*u + Yo (KA + 1)0x — Iy € L*(0,1). (36)
Combining (35) and (36), and by using (5), we achieve that
u, 0 € H2(0,1) NH{(0,1). (37)

In the same way, if we let if = #=R=0in (29), we obtain

1 1 k 1) 1 - 1
%/ 99dx+%/ exexdx+vo(;</\+1)/ 1Bl
0 0 0

1 1 N 1 ~ ~
+71(KA+1)/0 199dx+kl(K))\\7+1>/0 R, 0dx = w/o h30dx, V8 € H},

which implies
KBy = @460 + YoAuy + A+ ki Ry — b3 € L2(0,1).

Consequently,
€ H2(0,1) NH{(0,1).

6
9 =0=1=0in(29), we find

In a similar way;, if we take
koRyy = @sR + Y20y + k16 — hy € LZ(O, 1).

Hence,

R € H2(0,1) NHL(0,1).

Ultimately, leveraging the principles of regularity theory for linear elliptic equations
guarantees the presence of a singular X € S(7), which satisfies Equation (21) uniquely.
In light of this, we deduce that 7 is a maximal dissipative operator. The well-posedness
finding is obtained as a result of the Lumer—Philips theorem [35]. [

3. Exponential Decay

In this part, we demonstrate the system (9)—(11) stability result.
The following lemmas apply to this.

Lemma 1. The energy functional E, defined as
1 /1
E) = 5 /0 [puu% + ayu? + 0907 + az02 + 2a2uy 0y + By (k6 + 6)2} dx
1

+% /0 |:ﬁ2(1(%t + R)? + kokR2 + kaxR? + kxb2 + 2k1K§R(9x] dx
1 -1 1 %)

+= / / / sl@a(s)|V2(x, p,5,t)dsdpdx, (38)
2Jo Jo Jn

satisfies

1 1 1 1
E() < —ky /O 62dx — ky /O R2dx — ks /0 R2dx — 110 /O Rdx <0,  (39)

_ v _ 1k _1 K
where o = @1 — [ 2 [@2(s)|ds > 0,ky = 3(k — g£) > 0,ks = 5(ks — ) > 0.
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Proof. First, we multiply Equation (9)1 234 by ut, 9, (k6; + 6) and (xR; + R). In addition
to this, applying (11), we have the following;:

1d 1
27 /0 [puM%+ﬂ1M?c+Pz919%+agl9§+2a2ux19x+ By (x6; +9)2} "
14
2dt Jo
1 1 "
+w1/ ﬂ%dx+/ ﬁt/ @2(s)V(x,1,s,t)dsdx
JO 0 Juq

1
[52(@% R+ kokR2 + kykR2 + ki + 2k11c3?9x} dx

1 1 1 1
+k / 62dx + ks / R2dx + k / R2dx + 2k / Rydx = 0. (40)
0 0 0 0

Next, multiplying (9)5 by V|@z(s)| and integrating, we have

2
dtZ/// s|@2(s)|V?(x, 0,8, t)dsdpdx

- - / / / @2(5)[ VY (x,p,5,t)dsdpdx

— / / / |—y2<x p,s, Hydsdpdx

= 3 / / @2(5) [ (V2(x,0,5,8) — Y2(x,1,55,)dsdx

- % \coz()|ds/ ﬂzdx—f// |@(s)|V2(x, 1,5, t)dsdx. (41)

Putting (41) into (40) and utilizing Young’s inequality, the following is obtained:
1 1 1
E() < —k/ 62dx — ks / R2dx — ky / R2dx
0 0 0

1 1%) 1 5
_2k1/0 Rydx — (wl—/m |c02(s)|ds)/o Pz,

and we have the following inequality:

K2 K2
k02 + ksR? + 2k RO, > [Gz(k— )+ R2 (k3 — k)]. (42)
By (6), we obtain
k62 + kaR? 4 2k RO, > ky62 + ksR2, (43)
where ) )
K2 1 K2
ky Z(k_Fg)>0 ks = 2(k3_?)>0'
then, by (12), Jijp = @1 — [;* |@2(s)|ds > 0, so that
1 1 1 1
E'(t) < —ky / 62dx — ks / R2dx — ky / R2dx — 1o / Pdx. (44)
0 0 0 0

Thus, we achieve (39) (E is a non-increasing function). O
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Remark 1. Using (5), (6) and (32), we deduce that E(t) fulfills
1 1
E( > 3 / [puu% + aguy + pgB7 + a0 + P (k6 + 9)2] dx
+5 / {[52 (kR 4+ R)? + koxR2 4 kyx6? + k5K8‘E2}
1 2
+ / / / sl@a(s)| YV (x,p, s, t)dsdpdx,

where

1 a3 1 a3
ag = 2(a1_cz3> >0, a5 = 2<a3—ai)>0. (45)

Thus, the non-negativity of the function E(t) is obtained.

Lemma 2. The functional
1 a, 1 @, (1
Di(t) i=po | Or0dx— 2p, [ budx+ S [ oax, 46
1(t) po | Diddx = Ztpu | Buidx o7 | 6dx (46)
satisfies, for any €1 > 0,
Di(f) < _E/1ﬁ2dx+e /1uzdx+c(1+1 )/1192dx
1 — 2 0 X 1 0 t €1 0 t
1 1
+e / (k6; + 0)2dx + ¢ / (kR + R)2dx
0 0
1 1%
+c/ / @2 (3)|V?(x, 1,8, t)dsdx. (47)
0 1
Proof. Via direct calculation, utilizing integration by parts, we obtain that
. 1, s, a o, i, 1
Di(t) = —a3/ 19xdx—|—p19/ 19tdx+—/ ﬂxdx—apu/o Srupdx
270
—i—'yl/ (k6 + 0)0dx + —— /O(KGt—i-G)xl?dx
a1
%
—'yz/ (K%—l—%)xé‘dx—/ 19/ 2a)z(s)y(x,1,s,1f)alsalx
0 0 151
2\ 1 1 1
= —(ag,—az>/ ﬂ%dx—i—pg/ ﬁtzdx—Z—zpu/ Supdx
1 Jo
270
1 / (k01 + 6)ddx — 2 /0 (k6 + 6)dxdx
1
+’72/ (xR + RN) ﬂxdx—/ / @7(s)YV(x,1,s,t)dsdx. (48)

Using Poincaré’s and Young’s inequalities, for d1, dy, d3, €1 > 0, we obtain that

22 1 1
Di(f) < —((113—;)——(@1C51+C52+253)>/O 1932(dx+81/0 u%dx

1, /1, c ¢, 1 0y
+c(1+g)/0 19tdx+(g+g)/0 (x6; + 0)2dx (49)

c 1 ) c t 1%} 2
+—/ (kR +R) dx+—/ / |@2(s)| YV (x,1,s,t)dsdx.
63 Jo 61 Jo Ju
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Bearing in mind (5) and letting 67 = 4 o = £ 03 = Z we obtain
& BT o’ T e® T 12
estimate (47). [
Lemma 3. The functional
1 1
:a2</ ﬂtudx—/ ﬁutdx>,
0 0
satisfies,
Dyt < 0 /1u2dx+c/1192dx+c/1192dx+c/1(1<9 +60)%dx
2T 209 d0 F (N o ! o
1 1 1%}
+c/ (K§Rt+3‘3)2dx—0—c/ / |@2(s)|V?(x,1, s, t)dsdx. (50)
0 0 Jin

Proof. By differentiating D5, then utilizing (9), integration by parts and (11), we obtain

1
Dj(t) = —/ 1dx + 2/ $dx —(”2”3 “1:12)/0 Oxtirdx

_”270/ (K6: + 0) Bxdx + m/ (x6; + O)udx
0 Ps Jo

Pu
1 1
+@/ (kR + R)uydx — @/ uddx
Py Jo Py Jo
az 1 1%)
——/ u/ @,(s)V(x,1,s,t)dsdx. (51)
Py JO v

We now evaluate the final six terms in the right hand side of (51), utilizing Poincaré’s
and Young's inequalities. For d4, 65 > 0, we have

1
—(”2”3 “1”2>/ ﬂxuxdx<54/ 2dx+ £ / $dx,
09 04

1
“2“’1 / wddx < cos / widx + — / Pdx,
5 J0

1 1 !
%/ (k0 + O)udx < 6(55/ uidx+i/ (K6; + 6)%dx,
pﬁ 0 0 (55 0

1
@/ (kR + R)uydx < 54/ 2dx—i—
0

1
/ (e + §R)2dx,
Py

04

and

(12 1 V2 1
_*/ ”/ @(s)V(x,1,s,t)dsdx < 055/ uidx
pl9 0 151 0
c [l m )
+*// |@2(s)| Y (x, 1,5, t)dsdx.
55 0 1

By letting 64 = 8%,(55 = % o and putting these into (51), we obtain (50). [



Mathematics 2023, 11, 4785

13 0f 18

Lemma 4. The functional
1

Ds(t) := —pu/ usudx,
0

satisfies

/ v, t, a (1o
Ds(t) < _p”/o utdx+3a1/0 uxdx+z/o trdx

7% [ 2
s /O (x6; + 0)2dx. (52)

Proof. Direct computations give
1 1 1 1
D4(t) = —pu/ uzdx + a1/ u2dx + az/ Uy Oydx — fyo/ Uy (k0; + 0)dx.
0 0 0 0
Estimate (52) easily follows by utilizing Young’s inequality. O
Lemma 5. The functional
1 Bix (1 1 Bk (1
Dy(t) i= —pu? [ erodx — 225 [ o2x — po® [ weax - 25 [ oax,
4(t) p1 , O > o B2 ) > Jo
satisfies, for any €3 > 0,
1 1 -1 1
Dit) < —PU [ (k040020 — B2 [ (ke + R)2x 1 0 / Wdx + ¢ / Rdx
0 J0 0

- 2 2 Jo

1 1 1
+c(1+l)/ 9,%dx+c/ §R§dx+c/ R2dx. (53)
&°Jo 0 0

Proof. Direct computations give
1 1
Di(t) = —[311(/ (x9t+9)t9dx—51;<2/ 62dx
0 0
1 1
—,321(/ (kR + R)Rdx — ,821(2/ R7dx
0 0
1 1 1 1
= 'yox/ Gutxdx—k'ylx/ 19t9dx+k1</ Gidx—ﬁlxz/ 0%dx
0 0 0 0
1 1 1
F2ky / ROdx + ko / R2dx + ksx / R2dx
0 0 0
1 1
—’)’zK/ ﬂt%xdx—ﬁzxz/ &E%dx.
0 0
Further simplification of (53) leads us to
1 1 1 1
— [ (xt 2dx<——/ K0 + 6 2dx+/ 6%dx,
/0 (10%) - 2Jo (k6: +6) Jo

—/1(K§r\‘: )2dx < _1/1(;&]% +§R)2dx+/1 R2dx (54)
0 ! ~— 2Jo ! 0 ’
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Now, we introduce a functional stated in Lemma 6.

Lemma 6. The functional

1 1 1%}
:/ // se P |@(s)|V?(x, p, s, t)dsdpdx,
0 0 141
satisfies
1 1 1
Di(t) < —171/ // s|a)2(s)\yz(x,p,s,t)dsdpdx—i—(Dl/ 82dx

0 Jo Jn 0

1 1%}
—171/ / @2 (5)|V?(x, 1,5, t)dsdx, (55)
0 141

where 1 > 0.

Proof. By differentiating Ds with respect to ¢ and utilizing the last equation in (9),
we obtain

—2/ // e @y (s)|VVp(x, 0,5, t)dsdpdx
= _/0 /0 /1/1 se*P|@a(s)|V?(x, p, 5, t)dsdpdx

1 rup
—/0/ |02 (s)|[e"*V?(x,1,5,t) — V?(x,0,5,1)]dsdx.

Ds(t)

Utilizing that Y (x,0,s,t) = %(x,t) and e * < e <1,V 0 < p < 1, we achieve that
1 1 1%} _ >
—/ / / se *|@o(s)| V" (x,p,s,t)dsdpdx
V2
—/ / ~51@,(s)[V2(x, 1,5, t)dsdx+(/

141

1
|@2(s)|ds) /O Pdx.

O

As —e* is an increasing function, we have —e™° < —e™'2, for all s € [v1,12]. By
setting #; = e~"2 and remembering (12), we discover (55). We can now proceed to proving
the primary finding.

Theorem 2. Let (5), (6) and (12) hold. Then, there exist {1,y > O such that the energy functional
provide by (38) holds:
E(t) < g1e %!, vt >0. (56)

Proof. To prove the required result, we introduce the Lyapunov functional as follows:
P(t) ;== NE(t) + N1D1(t) + NoDo(t) + D3(t) + NyDy(t) + N5Ds(t), (57)

where N, Nj, Np, Ny, N5 > 0; we assign them later.
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By differentiating (57) and using (39), (47), (50), (52), (53) and (55), we have

r 1 1
P(t) < — ”zﬂ —cNp — CZ’] / 82dx — [y — e1N1 — £2Ny] / u?dx
L 0 0
[ 2N 1 1
R 3111] / uldx — [k4N —c(1+ 1)N4} / 02dx
I 205 0 €2 0

- ) )
— 770N—CN1(1+€)—ch—cN4—(DlN5}/ ?dx
L 1 0

r 1
— ﬁNAL —cNy —cN, — %] / (k6; + 0)2dx
L 4aq1 | Jo

i 1
— %NAL — CN1 — CN2:| /0 (K?Rt + §R)2dx
) 1 1
—[kzN — CN4]/0 §R§dx — [k5N — CN4} /O %de
1 pv
—[Ns#n1 — cN7 — ¢Np] / / ’ |@2(5)|V?(x,1, 5, t)dsdx
0 141

1 r1 fv
—N5171/0 /0 /2s\wz(s)|y2(x,p,s,t)dsdpdx.
J1U1

by setting

we obtain

1
—[17()N — CN1(1 + N1) — Noc — Nyc — (01N5} / 19t2dx
0

BN NN, O /1 2
l2N4 cN; — cN, 2, 0(K9t+9) dx

1
- |:522N4 - CN1 — CNz] /0 (K?Rt + §R)2dx

1 1
—[koN — cN4]/ R2dx — [ksN — cN4]/ R2dx
0 0
1 1%
—[Ns#1 — cN7 — ¢Np] /0 / |@2(s) D/z(x, 1,s,t)dsdx
o 141

1 r1 rv
—N5171/ / /2s|w2(s)|y2(x,p,s,t)dsdpdx.
0 JO Juny

Now, we choose our constants.
We take N, large enough, such that

_ ;N2
2p¢

—3a1 > 0;

then, we pick Nj large enough, in such a way that

N
W2I%*CN2*%>O.
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Then, we pick Ny and N5 large enough, in such a way that

_ B 7%
0 =5 Ny — cN7 — cN, 1a, >0,
g = %N;; —cN71 —cNp >0,
Ky = N5171 —cN7; —cNp > 0.

Thus, we obtain that

1 1 1 1
P(t) < —zxz/ O2dx — Pu u?dx — al/ u2dx — [noN — | / 82dx
0 2 Jo 0 0
1 1 1
—[kaN — c] / 0%dx — a3 / (k6; + 60)%dx — uc4/ (kR + R)?dx
0 0 0
1 1% 1
—oc5/ / @2 (5)|V?(x,1, 5, t)dsdx — [kzN—c]/ R2dx (58)
0 41 0
1 1 1w
—[ksN — ¢] / R2dx — ag / / / sl@a(s)|V?(x,p,5,t)dsdpdx,
0 Jo Jo Jy

where ag = 71 N5 > 0.
Similarly, if we assume

£(t) = N1D1(t) + NaDa(t) + D3(t) + NaDy(t) + N5Ds(t),

then
1 i, 1 o (1,
2] < Nipo [ 1000+ Ny 2p, [ Jousdx+ N DL [ o
0 arJo 2 Jo
1 1 1
+Naaz [ 10w — utyldx +pu [ [wuldx -+ Npu® [ [0i01dx
1 1 1
+N4@ / 0%dx + N4ﬁ2K2/ | R|dx + N4@ / R2dx
2 Jo 0 2 Jo
1 1 1%)
+N5/ / / se 5P|y (s)|V?(x, p, s, t)dsdpdx.
0 0 141
According to the Cauchy-Schwartz, Poincaré’s and Young'’s inequalities, we find
1
e < c/o (u% 02+ 02 + 12 + (k6 + 0)* + 9§)dx
1
+e /0 (R2+ B2+ (R + R)?)
1 1 1%)
+c / / / s|@z(s)| V2 (x, 0,5, t)dsdp.
JO 0 141
On the other hand, by (32), we have

1
aw% + 2a,0uy + a319,2( > 5

a3 a3
(GRSt

as ay
Similarly, by (kk; > k3), we have

2 2 1 k% 2 k% 2
KOZ +2kaR0x +ksR2 > o) (k= 105+ (ks — 1R
3
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Hence, we obtain
[E(B)] = [P(t) = NE(#)| < cE(t),
thatis,
(N—=c)E(t) < P(t) < (N +c)E(t). (59)
At this point, we choose N large enough, such that
N—-c>0, Npp—c>0, Nky—c>0>0, Nkp—c>0, Nks—c>0>0.
Simplification of (38), (58) and (59) leads us to
GE(t) < P(E) < (1), ¥t > 0, (60)
and
P'(t) < —d1E(t),Vt >0, (61)
for some dq,c1,co > 0.
Consequently, for some {, > 0, we find
P'(t) < —CP(t),Vt > 0. (62)
From further simplification of (62), we have the following:
P(t) < P(0)e %, vt > 0. (63)

References

Hence, (56) is achieved by (60) and (63). O

4. Conclusions

This work studies a swelling porous elastic system coupled with thermo-elasticity
of the Lord Shulman type, microtemperature and distributed delay, an approach which
is more general than classical thermo-elasticity. Furthermore, the problem circumvents
the absurd situation of the infinite propagation of the effect of a thermal or mechanical
disturbance in the medium. We established the well-posedness of our problem using the
semigroup method. Additionally, we used the energy method to prove the stability result
for the system. It is intriguing to know that the result was obtained independently of the
wave velocities of the system or any form of interactions between coefficients of the system
other than hypotheses (5), (6) and (12), which guarantees the positivity of the energy of the
system. The present result contributes significantly to the existing literature on swelling
porous elastic problems. In future work, we will investigate the system with some damping
and source terms.
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