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Abstract: Effective control of rehabilitation robots is of paramount importance and requires in-
creased attention to achieve a fully reliable, automated system for practical applications. As the
domain of robotic rehabilitation progresses rapidly, the imperative for precise and dependable
control mechanisms grows. In this study, we present an innovative control scheme integrating
state-of-the-art machine learning algorithms with traditional control techniques. Our approach offers
enhanced adaptability to patient-specific needs while ensuring safety and effectiveness. We introduce
a model-free feedback linearization control method underpinned by deep neural networks and online
observation. While our controller is model-free, and system dynamics are learned during training
phases, we employ an online observer to robustly estimate uncertainties that the systems may face in
real-time, beyond their training. The proposed technique was tested through different simulations
with varying initial conditions and step references, demonstrating the controller’s robustness and
adaptability. These simulations, combined with Lyapunov’s stability verification, validate the efficacy
of our proposed scheme in effectively controlling the system under diverse conditions.

Keywords: rehabilitation robots; machine learning integration; model-free control; patient-specific
adaptability; robotic rehabilitation; online uncertainty estimation
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1. Introduction

Rehabilitation robots have established a distinct position in the vast landscape of
medical technology. As technological advancements continue to revolutionize health-
care, these robots emerge as a beacon of hope for patients striving to regain functions
lost due to traumatic injuries or debilitating conditions [1,2]. Beyond the obvious ben-
efits of delivering consistent, precise therapeutic motions, these robots redefine rehabil-
itative care by transcending traditional boundaries. Their versatility lies not just in the
diverse therapeutic regimens they can deliver but also in their adaptability to function
across different settings—from sophisticated medical facilities to the comfort of patients’
homes [3,4]. This ability to decentralize rehabilitative care ensures that more individuals
can access quality therapy, regardless of geographical or logistical barriers. But the potential
of these robots is not just in their mechanics or software; it is profoundly intertwined with
their control mechanisms [5,6]. The need for exact, reliable control becomes even more
paramount when we consider the intimate interactions these robots have with patients.
Every movement, no matter how minuscule, must be executed with impeccable precision,
underscoring the essence of reliability in their control systems.

In the realm of nonlinear systems control, traditional methodologies span from con-
ventional proportional–integral–derivative (PID) schemes to advanced controllers such
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as fuzzy logic [7–13] and optimal control [14–19] strategies. Despite their proven utility,
these controllers fundamentally rely on precise system models and often falter in the face
of intricate, unpredictable disturbances and systemic uncertainties. Acknowledging these
limitations, recent scholarly efforts have pivoted towards the conceptualization of state
observers. Among these, finite-time observers have emerged prominently, distinguishing
themselves by guaranteeing state convergence within a specified finite time as opposed
to the asymptotic approach characterized by exponential convergence. This paradigm
shift towards finite-time convergence is of considerable interest within control engineering,
providing a robust framework that copes more adeptly with the exigencies of real-time
system dynamics and the attendant uncertainties [20]. This approach not only offers a
more deterministic outlook on state estimation timelines but also enhances the resilience
of control systems against unforeseen disturbances, marking a significant advance over
traditional control mechanisms. The promise of finite-time controllers extends to their po-
tential integration with modern modeling techniques, paving the way for more intelligent,
adaptive control structures that can outperform classical methods, ensuring more reliable
and effective system regulation.

Robotics control, particularly in dynamic and unpredictable environments like re-
habilitation, continually faces a plethora of challenges [3,21]. While traditional control
mechanisms, honed by decades of research and practical use, struggle with the intricacies
of modern robotic systems [22], feedback control has been a pivotal element in systems
engineering, undergoing substantial evolution. Originally designed to ensure system sta-
bility and performance amid disturbances, feedback control has progressively incorporated
advanced computational methods. This transition, from fundamental controllers to more
adaptive and robust control strategies, addresses the complexities of contemporary systems.
In recent developments, feedback control now includes sophisticated methodologies such
as Output Feedback Self-Tuning Controllers [23]. These cutting-edge controllers adapt their
parameters dynamically, learning from the system’s output to incessantly refine control
laws. Such self-tuning abilities represent the significant advancement in feedback control
technologies, allowing systems to perform efficiently in uncertain scenarios and mirroring
the current trend towards more automated and intelligent systems. Nonetheless, these
methods still have potential for further enhancement, particularly with the advent of ma-
chine learning approaches that have revolutionized nearly all fields, including dynamics
modeling and control [24,25].

Control engineering is increasingly recognizing deep learning as a significant area
of potential. Originating from advanced algorithms adept at extracting insights from
extensive and complex datasets, deep learning introduces an unprecedented level of adapt-
ability [26,27]. Envision a control system that not only evolves, learns, and adapts over
prolonged design cycles but also operates in real time, promptly responding to immedi-
ate environmental stimuli [28,29]. Deep learning, with its neural networks and layered
architectures, can potentially dissect and predict system behaviors with a granularity that
could revolutionize adaptive control strategies [30,31]. This potential convergence of deep
learning with control mechanisms could very well herald the next big leap in controlling
complex, uncertain systems [32]. However, deep learning, like many technological in-
novations, is not without its shortcomings [33,34]. One notable constraint is its limited
prowess in extrapolation, particularly in unfamiliar domains [35]. In the field of rehabilita-
tion robotics, where safety is of utmost importance, unpredictability in system behavior
is unacceptable. Solely depending on deep learning without robust control mechanisms
may result in ineffective or, in extreme situations, hazardous outcomes. This necessitates
the adoption of integrated or hybrid control systems, especially in applications where the
stakes are high and the implications of failure are significant. Such strategies are essential
to ensure the reliability and safety of robotic systems interacting closely with humans.

In the domain of rehabilitation robotics, the intricate interplay of human biology,
robotics, and control systems creates a uniquely complex landscape. These challenges
underscore the need for control systems that are not only adaptable to the dynamic nature
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of human physiology but also exhibit precision in execution to ensure safety and effi-
cacy [1,36]. Additionally, as technology marches forward, we envision a future where these
robots, already complex, take on even more multifaceted tasks. Such advancements amplify
the need for flawless operation, ensuring patient safety and therapeutic efficacy [37,38].
Furthermore, as rehabilitation robots move towards becoming an integral part of main-
stream healthcare, their broad acceptance is contingent upon delivering consistent and
reliable performance. These factors highlight the urgent need for dedicated research. A
sole reliance on deep learning or traditional controls is insufficient. A blended approach,
combining the strengths of both, is essential.

Addressing the industry’s challenges and requirements, our research proposes an
innovative control methodology. We envision a system in which advanced machine learning
algorithms are harmoniously integrated with time-tested control methodologies. The
cornerstone of our approach is a model-free feedback linearization technique, which is
significantly enhanced by the application of deep neural networks. This integration not
only fortifies the control system’s adaptability but also ensures a high level of precision and
reliability in its operation. Acknowledging the constraints of deep learning, our proposed
technology ventures further. In real-time extrapolative contexts, we integrate a robust
online observer. This component continuously estimates and adapts to uncertainties, even
those beyond the training purview, ensuring our controller remains steadfast and adaptable.
Such a design provides a delicate balance—leveraging the predictive might of machine
learning while ensuring real-time reliability and adaptability, crucial for the dynamic world
of rehabilitation robots.

2. Dynamic of the System

Consider a two-degree-of-freedom (2-DOF) knee rehabilitation robotic system as
illustrated in Figure 1. This design captures the essential elements for simulating the
biomechanical dynamics inherent to knee rehabilitation exercises. The system comprises
two primary links, each characterized by its unique degree of freedom, denoted as ψ1 for
the upper link and ψ2 for the lower link. We denote ψ as the vector [ψ1, ψ2], representing
the system’s generalized coordinates. The respective masses and lengths associated with
these links are labeled as m1, l1, and m2, l2. Springs positioned at the joints suggest an
element of elasticity, perhaps designed to emulate the natural compliance found within a
human knee. The coordinate points x1, y1 and x2, y2 are indicative of specific locations or
reference points on the link.

Figure 1. Schematic representation of a 2-DOF knee rehabilitation robot, showcasing the primary
links, degrees of freedom, and associated parameters. Springs at joints indicate compliance, while
labeled points suggest reference coordinates for kinematic analysis.
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It is important to note that the 2-DOF knee rehabilitation robotic system is meticulously
designed for lower limb rehabilitation, specifically targeting the knee joint. The upper
link of the robot, referred to as ψ1, is tailored to mimic the human femur, while the lower
link, ψ2, aligns with the tibia. These robotic links are purposefully actuated to replicate the
natural movements of the human leg during rehabilitation exercises.

A distinctive feature of our system is the incorporation of springs at the joints. These
springs introduce controlled compliance, closely resembling the physiological properties of
human muscles and ligaments. This design choice ensures a safe and realistic interaction
between the robot and the user, facilitating a responsive rehabilitation experience capable
of adapting to the varying levels of stiffness and strength exhibited by recovering patients.
Table 1 enumerates and provides descriptions of the parameters and variables of the system.

Table 1. Parameters and variables of the systems.

Parameter Description Value Unit

ψ1 Degree of freedom for upper link - rad

ψ2 Degree of freedom for lower link - rad

m1 Mass of the upper link 2 kg

I1 Moment of the upper link 0.0612 Meters (m)

l1 Length of the upper link 0.35 kg·m2

m2 Mass of the lower link 0.85 kg

l2 Length of the lower link 0.31 Meters (m)

I2 Moment of inertia of lower link 0.0204 kg·m2

x1 x-coordinate of upper link - Meters (m)

y1 y-coordinate of upper link - Meters (m)

x2 x-coordinate of lower link - Meters (m)

y2 y-coordinate of lower link - Meters (m)

The practical applications of this design extend beyond basic rehabilitation exercises
to encompass post-operative therapy, injury recovery, and strength conditioning. Our
system is designed to provide a versatile solution that not only aids in restoring functional
mobility but also quantifies patient progress through the collection of accurate kinematic
data. As part of our ongoing work, we plan to conduct clinical trials to validate the system’s
effectiveness in real-world rehabilitation settings. This step will further bridge the gap
between theoretical research and tangible medical benefits, addressing the concerns raised
about the interaction of our system with the human body.

2.1. Model of the System

The kinetic energy of the 2-DOF knee rehabilitation robot can be formulated mathe-
matically as follows:

T =
1
2

m1l2
c1

.
ψ

2
1 +

1
2

I1
.
ψ

2
1 +

1
2

m2l2
1

.
ψ

2
1 + m2l1lc2

.
ψ1

.
ψccos(ψ 2

)
+

1
2

m2l2
c2

.
ψc

2
+

1
2

I2
.
ψ

2
c (1)

where ψ1 and ψ2 stand for the generalized coordinates for the system depicted in Figure 1.
Also, in our formulations, ψc = ψ1 + ψ2. The distance from joint i− 1 to the center of mass
of link i is represented by lci, where i can assume values of 1 or 2. The masses of links 1 and
2 are denoted as m1 and m2, respectively. Furthermore, Ii signifies the moment of inertia of
link i about an axis orthogonal to the plane of illustration and situated at its center of mass.
The system’s potential energy can be articulated mathematically as follows:

Vp = m1glc2 sin(ψ1) + m2g[l1 sin(ψ1) + lc2 sin(ψc)]. (2)
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Utilizing Lagrange’s equation, the dynamic equations governing the system can be
derived as:

I
..
ψ + C

.
ψ + K + JT f = q(t) (3)

where the inertia matrix, I(ψ), stands as a symmetric and positive definite matrix of
size n × n. Furthermore, C

(
ψ,

.
ψ
)

encompasses the collective influence of Coriolis and
centripetal forces. The gravitational forces acting on the system are depicted by K(ψ).
The Jacobian matrix is denoted by JT(ψ) and is presumed to be nonsingular. The force
vector, governed by constraints, is symbolized by f (t) and the input torque, represented
by q(t). Utilizing Lagrange’s equation, the components constituting this motion equation
(delineated in Equation (3)) are detailed as:

I =
[

m1l2
c1 + m2

(
l2
1 + l2

c2 + 2l1lc2cos ψ2
)
+ I1 + I2 m2

(
l2
c2 + 2l1lc2cos ψ2

)
+ I2

m2
(
l2
c2 + 2l1lc2cos ψ2

)
+ I2 m2l2

c2 + I2

]
C =

[
−m2l1lc2

.
ψ2 + sin(ψ2) −m2l1lc2

.
ψcsin ψ2

m2l1l2
.
ψ1sin ψ2 0

]
K =

[
(m1lc2 + m2l1)gcos ψ1 + m2lc2gcos(ψc)

m2
(
l2
c2 + l1lc2cos ψ2

)
+ I2

] (4)

The force vector and Jacobian matrix are described as follows:

f =

[
l1cos ψ1 + l2cos(ψc)
l1sin ψ1 + l2sin(ψc)

]
J =

[
−l1sin ψ1 + l2sin(ψc) −l2sin(ψc)
−l1cos ψ1 + l2cos(ψc) l2cos(ψc)

] (5)

To recast the motion equation for the 2DOF multi-input multi-output rehabilitation

robot into a state-space format, we set z1 = [ψ1, ψ2]
T and z2 =

[ .
ψ1,

.
ψ2

]T
. Accordingly, the

dynamic behavior of the robot is articulated as:

.
z1 = z2,

.
z2 = p + I−1q(t)

(6)

From which, drawing upon Equations (3)–(5), the following can be derived:

p = I−1
(
−Cz2 − K− JT f

)
(7)

The presented equation delineates the state space of the system, wherein each compo-
nent may be subject to uncertainty. This is particularly true given that the robot interacts
with patients, and the forces and uncertainties can vary considerably between individuals.
Relying solely on this dynamic motion for controller design in rehabilitation robots may
not be practical for real-world applications. At the very least, the results might be subop-
timal due to the inherent uncertainties. In the subsequent section, we introduce a deep
neural network to model the system, rendering our controller design independent of the
system’s model. The deep neural network’s capacity for function approximation allows the
controller to adeptly learn the system’s nonlinear dynamics.

2.2. Proposed Neural State-Space Model

Neural state-space models fall under a class of models that utilize neural networks
to capture the functions characterizing a system’s nonlinear state-space description
[24,39–45]. In classical control theory, these models serve to elucidate the behavior of
dynamic systems, highlighting the interplay between the system’s inputs, outputs, and
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intrinsic states. Consider a typical state-space format characterized by the subsequent
mathematical expression. The system’s mathematical configuration is delineated as:

.
ẑ1(t) = ẑ2.

ẑ1(t) = pdnn + hdnnq(t)
(8)

where pdnn and hdnn are static non-linear mappings, which are dynamically modeled using
a deep neural network as opposed to the model derived in the prior section. In this context,
our deep neural networks provide a robust mechanism to depict and comprehend nonlinear
associations, rendering them particularly apt for shaping state-space models of analogous
systems. We introduce a neural state-space model where the state equation is underscored
by neural networks. This network encapsulates the function delineating the system’s state
behaviors. While we employ deep forward neural networks in this instance, one could
also adopt recurrent neural structures, such as LSTM or GRU, or alternative architectural
designs, contingent on the unique attributes of the system under consideration.

In the neural state-space model, the deep neural network is calibrated using system
data. This calibration process refines the network parameters to reduce the variance
between the model’s forecasts and the system’s actual behavior. Several methods, including
gradient descent and backpropagation, are applicable to this optimization. After the
training phase, the neural state-space model serves to emulate the system’s behavior,
deduce its inherent states from provided inputs and outputs, and anticipate forthcoming
system reactions.

3. Proposed Control Technique

In the control of nonlinear systems, there is a shift from classic controllers like PID to-
wards advanced observers for better handling of disturbances and uncertainties. Finite-time
observers, in particular, are gaining prominence for their ability to guarantee convergence
within a fixed period, offering a more reliable approach for real-time applications. This
innovative direction suggests the possibility of integrating finite-time control strategies
with modern modeling techniques, potentially leading to smarter and more resilient control
solutions in engineering.

Here we take advantage of both the finite-time observer and deep forward neural
networks. The controller we propose capitalizes on a pre-trained deep neural network as the
system’s state space. However, no deep neural network is flawless, and inevitably there will
be uncertainties and unanticipated scenarios that surpass the bounds of the training process.
To address this, a finite-time estimator is integrated to discern unknown disturbances and
uncertainties. Given the limitations of the deep neural network in extrapolation, it might
fall short in estimating these within the designed finite-time control framework. Regardless
of these intricate uncertainties and disturbances, the intended finite-time control should
guide the states of the rehabilitation robot towards the desired position. Consequently, we
consider the dynamic of the systems in a realistic form as follows:

.
z1(t) = z2.

z1(t) = pdnn + hdnnq(t) + D
(9)

in which D(t, z1, z2) denotes all uncertain terms that the deep neural network is not able to
accurately model. Now, we propose the robust and finite-time approach as follows:

q(t) =
1

hdnn
(pdnn − g(y) + k1e1 + k2e2 + ud1) (10)

where y and g(y) respectively denote the desired path and its time derivative. e1 and e2
denote the error vector and its derivate, respectively, and they are given by e1 = z1 − y and
e2 = z2 − g(y). Our proposed technique combines a neural state-space model determined
by a deep neural network, represented by pdnn and hdnn. This is complemented by a
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feedback linearization strategy, characterized by the terms k1e1 + k2e2, and a finite-time
accurate observer denoted by term ua1 . We propose the disturbance compensator ua1

as follows:
.
ud0 = j0 + pdnn + hdnnq(t)− g(y) (11)

j0 = −α1L
1
3 |ud0 − e|

2
3 sign(ud0 − e) + ud1 (12)

.
ud1 = j1 (13)

j1 = −α2L
1
2 |ud1 − j0|

1
2 sign(ud1 − j0) + ud2 (14)

.
ud2 = −α3L|ud2 − j1|sign(ud2 − j1) (15)

in which α1, α2α3 are positive design parameters and j0, j2, and j3 are auxiliary variables
used for designing the proposed observer.

Theorem 1. Using the suggested robust intelligent control approach, system (9) consistently
adheres to the desired state, even when confronted with unforeseen uncertainties and perturbations
in the training of the neural state space of the system.

Remark 1. The robust online observer is a critical component in the presented control scheme for
rehabilitation robots, as it addresses a significant challenge in the realm of automated systems: the
ability to manage uncertainties and variations in real-time. This observer functions as a dynamic
element within the control system, continuously analyzing and adjusting to the discrepancies
between the predicted and actual performance of the robot. Its integration is particularly vital
because, despite the model-free nature of the control method and the initial learning of system
dynamics, there remains an inherent unpredictability in real-world scenarios. The use of this
observer allows the system to not just rely on pre-learned data but to actively adapt to new situations,
ensuring both the safety and effectiveness of the robotic rehabilitation process. By continually
estimating and compensating for unforeseen variations and uncertainties, the robust online observer
significantly enhances the reliability of the control system, a crucial aspect in medical applications
where patient-specific needs and safety are paramount.

Proof. In the initial step, we demonstrate that the estimator precisely approximates the
composite nonlinearity, D. To initiate, we introduce the auxiliary error variables in the
following manner:

eud0 = ud0 − e1, eud1 = ud1 − D, eud2 = ud2 −
.

D (16)

Taking into account Equations (9)–(15), one can derive the following:

.
eud0 = −α1L

1
3 |ud0 − e|

2
3 sign(ud0 − e) + ud1 − D = −α1L

1
3 |ud0 − e|

2
3 sign(eud0) + eud1 (17)

.
eud1 = −α2L

1
2 |ud1 − j0|

1
2 sign(ud1 − j0) + ud2 −

.
D = −α2L

1
3
∣∣eud1 −

.
eud0

∣∣ 1
2 sign(eud1 −

.
eud0) + eud2 (18)

.
eud2 = −α3L|ud2 − ξ1|sign(ud2 − j1)−

..
D = −α3L

∣∣eud2 −
.
eud1

∣∣sign
(
eud2 −

.
eud1

)
−

..
D (19)

where Equation (19) is equivalent to

.
eud2 ∈= −α3L

∣∣eud2 −
.
eud1

∣∣sign
(
eud2 −

.
eud1

)
+ [−LD, LD] (20)
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in which [−LD, LD] denotes the bound for the unknown term
..
D. As established in Lemma

2 of reference [46], the estimation errors eud0 , eud1 and eud2 converge to zero within a finite
time. Consequently, after a short time range To, the following equations are valid:

eud0(t) = e, ud1(t) = D, ud2 =
.

D (21)

Up to this point, we have demonstrated that the estimation is accurate, and the proposed
observer compensates for inaccuracies in deep neural network estimation. Now, to show the
stability of whole closed-loop systems, we introduce the following Lyapunov function

V1 =
1
2

k1e2
1 +

1
2

e2
2 (22)

The time derivative of the Lyapunov function as presented in Equation (22) can be
expressed as:

.
V1 = k1e1e2 + e2

.
e2 = k1e1e2 + e2(pdnn + hdnnq(t) + D− g(y)) (23)

Substituting the proposed control input into Equation (23), we obtain:

.
V1 = k1e1e2 + e2(pdnn − (pdnn − g(y) + k1e1 + k2e2 + k3ed + ua1) + D− g(y)) (24)

In Equation (21), we demonstrated ua1 = D; consequently, with the results in Equation
(24) it is directly deduced that

.
V1 = −k2e2

2 (25)

This derivative being a negative definite signifies the stability of the closed-loop
system. As a result, the closed-loop system naturally gravitates towards the desired
trajectory, ensuring that the error dynamics eventually reduce to zero. Importantly, this
stability is maintained regardless of the precision of the neural state-space estimator or the
chosen initial conditions. �

Figure 2 depicts the suggested control strategy. This approach integrates robust control
as proposed in Equation (10), facilitating the accommodation of disturbances within the
model. Such a configuration guarantees that the controller remains adaptive and robust,
making it ideal for managing rehabilitation robots.
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Figure 2. Schematic representation of the proposed model-free neural state-space controller for
rehabilitation robots, integrating a trained neural state-space model with a proposed observer and
control law to drive the robot with unknown dynamics towards desired reference values.
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4. Numerical Simulations

In this section, we assess the efficacy of the proposed approach using various examples.
Specifically, in Examples 1 and 2, we showcase the capability of the proposed technique
in managing the unknown intricate dynamics of the system under two distinct initial
conditions. The values of the system’s parameters are defined according to the values listed
in Table 1. In Example 3, we leverage data derived from the algorithm to achieve control
objectives that change over time.

4.1. Training Neural State-Space Model

For data generation, we used step inputs of varying amplitudes (with the amplitude
altered randomly) to excite the system, subsequently measuring and logging the position
and velocity of both links in the 2-DOF robot. These data were sourced by simulating the
system model as described in Equation (6).

In our research, we employed a two-layer multi-layer perceptron (MLP) neural net-
work, each layer containing 128 nodes. We selected the hyperbolic tangent (tanh) activation
function for its effectiveness in normalizing outputs. The network’s initial weights were
set using the Glorot initializer, and biases were initialized to zeros, providing a stable
starting point for training. The model was trained over 2000 epochs using the Adam
optimizer, a choice that ensures efficient and adaptive learning. This setup strikes a balance
between learning capacity and computational efficiency, tailored to the demands of our
state estimation task.

The accumulated training data were then utilized to train the neural network in
an offline mode. For this training, 100 time histories of states of the system and their
corresponding derivatives were utilized. A representative sample from these 100 samples,
as employed in the training phase, is illustrated in Figure 3. Although the dataset may
appear modest in size, it is sufficient for several reasons:
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- The diversity of the data: The time histories were generated using varying amplitudes
of step inputs, which provided a rich set of dynamic responses from the system,
encompassing a wide range of possible states.

- Suitability for a shallow network: The neural network employed is relatively shallow;
such networks can effectively model complex relationships without the need for large
volumes of data that might be required for deeper networks.
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- Convergence of the loss function: The loss function, as shown in Figure 4 of our paper,
exhibits a strong convergence pattern. After a significant initial decrease, it stabilizes
with minor fluctuations, indicating that the network has successfully captured the
underlying system dynamics.
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Figure 4 depicts the loss function evolution during the neural network training for
representing the system’s neural state-space model. This loss function offers a perspective
into the neural network’s optimization history. Observing this function allows us to
gauge the evolution and convergence of the training, confirming that the neural network
effectively represents the core dynamics of the system.

4.2. Example 1

Figure 5 showcases the control outcomes for link 1 and link 2 of the rehabilitation
robot, utilizing the proposed control methodology with initial system states defined as[

ψ1(0), ψ2(0),
.
ψ1(0),

.
ψ2(0)

]
= [1, 0.5, 0, 0]. The visuals effectively highlight the notable

proficiency of the recommended robust adaptive controller. Also, this figure illustrates the
controller’s adeptness, integrating a neural state-space model combined with a finite-time
observer and feedback linearization term, in tackling the control challenges of a completely
unknown system. It is noteworthy that no information from the system’s model is employed,
underscoring the method’s relevance for real-world applications. This intrinsic capacity to
navigate uncertainties is paramount when controlling rehabilitation robots.

4.3. Example 2

To further gauge the efficacy of our proposed controller, we conducted an auxil-
iary test by altering the initial state values of the system. We present the system’s time
history and control input when the ignition velocities of the robot links deviate from
zero, differing from the previous example. The chosen initial states for this test are[

ψ1(0), ψ2(0),
.
ψ1(0),

.
ψ2(0)

]
= [1,−0.5, 0.2,−0.3].

Figure 6 provides insight into the controller’s capability to ensure system stability
under these varied conditions. Moreover, the controller consistently operates within a
permissible spectrum, guaranteeing viable control signal magnitudes. Remarkably, even
when faced with wholly unknown system dynamics, the proposed controller showcases
the excellent performance, accomplishing state stabilization in under 0.2 time units.
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Figure 5. Temporal response of the rehabilitation robot’s states ψ,
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ψ, and q and control input for both

link 1 and link 2. The depicted behavior corresponds to a scenario where both links have a reference
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.
ψ2(0)

]
= [1, 0.5, 0, 0].
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.
ψ, and q and control input for both

link 1 and link 2. The depicted behavior corresponds to a scenario where both links have a reference

point at the origin and an initial condition given by
[
ψ1(0), ψ2(0),

.
ψ1(0),

.
ψ2(0)

]
= [1,−0.5, 0.2,−0.3].

4.4. Example 3

We now examine a scenario where the reference values for links 1 and 2 are represented
by a step function and differ from one another. The initial conditions remain consistent
with the previously discussed example (Example 2). Figure 7 presents the outcomes for this
scenario. As depicted in the figure, both links adhere to their respective reference points
and achieve these points within a short timeframe. The controller operates based on the
error dynamics and the knowledge derived from the pre-trained neural state space.

In summary, our simulations reveal that the introduced control methodology excels
in tracking control for the rehabilitation robot, even when faced with entirely unknown
dynamics. It ensures the system’s stability and robustness. These results underscore the
effectiveness of the proposed control strategy and highlight its suitability for real-world
scenarios characterized by unexpected dynamics and prevalent uncertainties.



Mathematics 2023, 11, 4791 12 of 14

Figure 7. Time-series representation of the rehabilitation robot’s states ψ,
.
ψ, and q for both link

1 and link 2, tracking their respective step references. The data highlight the robot’s behavior
when transitioning toward different reference values, starting from an initial condition defined by[

ψ1(0), ψ2(0),
.
ψ1(0),

.
ψ2(0)

]
= [1,−0.5, 0.2,−0.3]. The dashed lines indicate the desired reference

trajectories for each link.

5. Conclusions

In this study, we introduced an innovative control scheme tailored for rehabilitation
robots, emphasizing the integration of machine learning algorithms with classical control
techniques. As the field of robotic rehabilitation continues its swift evolution, the need for
a reliable and precise control mechanism becomes ever more pressing. Our methodology
responds to this imperative by seamlessly integrating adaptability with precision. It is
designed to accommodate the unique rehabilitation needs of each patient, ensuring person-
alized therapy without compromising on safety and effectiveness. Central to our approach
is the model-free feedback linearization control mechanism, enriched by the capabilities of
deep neural networks. Even though the controller operates without a predefined model,
learning system dynamics primarily during the training phase, we incorporated an online
observer. This observer ensures real-time, robust estimation of uncertainties, facilitating the
system’s adaptability to challenges that might arise beyond its initial training. Our reliance
on the Lyapunov stability theorem offered the requisite verification of the controller’s sta-
bility. For numerical simulations, at first, we generated data by applying step inputs with
randomly varied amplitudes to a simulated 2-DOF robotic system, capturing the resulting
positions and velocities. This simulation provided 100 time histories of the system’s states
and their derivatives, which served as the training dataset for our neural network. Post-
training, we implemented the model in three distinct numerical simulations with varying
initial conditions and step references for each robotic link. These simulations demonstrated
the efficacy of our controller, showcasing its robust performance and adaptability to un-
known and dynamic uncertainties. While our presented approach lays a robust foundation
for controlling rehabilitation robots, there remain avenues for further enhancements. One
such recommendation would be to explore the integration of finite-time control policies as
an alternative to feedback linearization. Such an integration could potentially elevate the
agility and overall performance of the control system, ensuring even more efficient and
responsive rehabilitation robot operations in diverse scenarios.
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