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Abstract: For decades, understanding the dynamics of infectious diseases and halting their spread
has been a major focus of mathematical modelling and epidemiology. The stochastic SIRS (susceptible–
infectious–recovered–susceptible) reaction–diffusion model is a complicated but crucial computa-
tional scheme due to the combination of partial immunity and an incidence rate. Considering the
randomness of individual interactions and the spread of illnesses via space, this model is a powerful
instrument for studying the spread and evolution of infectious diseases in populations with different
immunity levels. A stochastic explicit finite difference scheme is proposed for solving stochastic
partial differential equations. The scheme is comprised of predictor–corrector stages. The stability
and consistency in the mean square sense are also provided. The scheme is applied to diffusive
epidemic models with incidence rates and partial immunity. The proposed scheme with space’s
second-order central difference formula solves deterministic and stochastic models. The effect of
transmission rate and coefficient of partial immunity on susceptible, infected, and recovered people
are also deliberated. The deterministic model is also solved by the existing Euler and non-standard
finite difference methods, and it is found that the proposed scheme forms better than the existing
non-standard finite difference method. Providing insights into disease dynamics, control tactics, and
the influence of immunity, the computational framework for the stochastic SIRS reaction–diffusion
model with partial immunity and an incidence rate has broad applications in epidemiology. Public
health and disease control ultimately benefit from its application to the study and management of
infectious illnesses in various settings.

Keywords: stochastic numerical scheme; stability; consistency; diffusive SIRS model; partial immunity;
incidence rate and disease spread

MSC: 35R60; 65C30; 65M12

1. Introduction

For the stochastic diffusive epidemic model with partial immunity and an incidence
rate, a finite difference approach is a numerical method for solving the partial differential
equation (PDE). The PDE describes time- and space-variant population dynamics of the
susceptible, infected, and recovered groups. The model’s incidence rate term describes how
quickly new infections spread. At the same time, the partial immunity factor considers
that not everyone is vulnerable to the disease. The finite difference method transforms
the PDE into a set of ODEs, which can then be solved numerically. The spatial domain is

Mathematics 2023, 11, 4794. https://doi.org/10.3390/math11234794 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math11234794
https://doi.org/10.3390/math11234794
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0002-7048-574X
https://orcid.org/0000-0002-6009-5609
https://orcid.org/0000-0003-0735-6520
https://doi.org/10.3390/math11234794
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math11234794?type=check_update&version=2


Mathematics 2023, 11, 4794 2 of 22

grid-divided, and finite difference operators are used to approximate the PDE derivatives.
Multiple numerical techniques can then be used to solve the resulting system of ODEs.

The Euler technique is frequently used to resolve the system of ODEs. The Euler
method’s simplicity and explicitness may lead to inaccuracies when dealing with enormous
time increments. The Crank–Nicolson approach is more precise. However, it is implicit.
Compared to the Euler method, the Crank–Nicolson approach is more stable but demands
more processing power.

Using a stochastic solver is an alternative method for resolving the system of ODEs. A
stochastic solver would consider the unpredictability of the disease’s spread. Diseases with
low transmission rates or those whose prevalence is influenced by environmental variables
may benefit from this type of modelling.

When simulating the spread of infectious disease, stochastic modelling is a common
approach for examining the underlying dynamics of the disease. More so, it has been seen
that stochastic models are typically more illuminating than deterministic ones since the
latter can only predict one outcome given a particular set of conditions. A stochastic model,
on the other hand, forecasts several different possibilities. Using stochastic differential
equations, numerous scholars have suggested numerous mathematical models to charac-
terize the dynamics of epidemics in recent years (e.g., Refs. [1–4]). To obtain more realistic
systems of population interactions, authors have inserted temporal delays into such models
and explored their dynamical properties (see, for example, Refs. [5–7]).

Vaccination has the potential to play a significant role in disease control by reducing
the rate of reproduction and, consequently, the number of sick people in an endemic region.
It is well established that certain vaccines produce just transitory immunity while others
provide lifelong protection. Thus, the time it takes for an individual to develop immunity to
an infection or vaccine is considered a delay factor in many published works’ construction of
epidemic models (for example, refer to Refs. [8–10]). Based on the equivalent deterministic
model developed and explored in [11], the authors in [12] devised the stochastic SVIR
epidemic model. This was carried out because vaccinations are such an efficient technique
for reducing diseases.

It is common knowledge that accurate epidemic modelling relies heavily on accurate
incidence rates to explain infectious disease dynamics. Many researchers have advocated
nonlinear incidence rates as a more flexible model for dealing with genuine data and a more
nuanced approach to analyzing disease transmission than bilinear and standard incidence
rates [13].

A universal functional response F(S, τ) = βS
1+λ1S+λ2τ+λ3Sτ was recently introduced by

Hattaf et al. [14], where λ1, λ2, λ3 ≥ 0 are saturation factors assessing the psychological or
inhibitory effect. Using this equation, we can extrapolate from the literature a wide variety
of incidence rates. If λ1 = λ2 = λ3 = 0, for instance (see [15]), we obtain the bilinear
incidence rate F(S, τ) = βS. If λ2 = λ3 = 0, or if λ1 = λ3 = 0, the saturated incidence
function F(S, τ) =

βS
1+λ1S is produced (see [16,17]). If λ3 = 0, the Beddington–DeAngelis

functional response F(S, τ) = βS
1+λ1S+λ2τ is achieved (see [18,19] for details). If λ3 = λ1λ2,

the Crowley–Martin functional response F(S, τ) is found to be F(S, τ) = βS
1+λ1S+λ2τ+λ1λ2Sτ .

However, the influence of vaccinations on public health in populations is significantly
impacted by the duration of immunity, making it one of the most crucial components
of disease and vaccines. Individual immunity to infectious diseases was shown to last
anywhere from a few months to a lifetime [20]. For instance, the protection afforded
by the varicella [21] and pertussis [22] vaccines against infectious diseases is only brief.
Loss of immunological memory and the evolution of the disease are two key reasons
why immunity (whether infection-induced or vaccination-induced) diminishes for many
infectious disorders [23].

A few researchers have worked on numerical solutions to the epidemic models. While
Nowak et al. [24] proposed a deterministic model for the simulation of hepatitis B virus
infection, Wang and Wang [25] proposed an alternative model in which the virus moves
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randomly, and the concentration gradient is assumed to be proportional to the virus’s
population flux. Suryanto et al. provided a non-standard FDS for the numerical approxi-
mation of the SIR epidemic model with a saturated incidence rate. The scheme results are
dynamically consistent with the continuous model [26]. Naik et al. assumed a Crowley–
Martin functional response and a Holling type-II treatment rate for the SIR epidemic model.
They turned to homotopy analysis for the analytical solutions of the provided model. The
authors consider the model’s stability and find it can exist in two distinct states: disease-free
and endemic [27].

Physical phenomenon modelling is a fascinating field of study and practice. Partial
differential equations (PDEs) are utilized because they accurately describe the underlying
physical behavior [28–31]. There is a lot of research in the field of solving PDEs, and many
different methods are used [32–38]. Forty years ago, it was widely believed that advances
in nutrition, pharmaceuticals, and vaccines were largely responsible for the dramatic
drop in the human mortality rate that occurred then. Infectious infections have always
been a major problem for people and cattle. Traditional epidemic models cannot capture
how illnesses behave. As a result, it is crucial to think about epidemic models within a
stochastic framework. Therefore, fresh case-specific literature is necessary. The dynamics
of stochastic partial differential equations are the subject of many recent investigations.
The authors performed in-depth analyses of several physical phenomena using the finite
difference scheme [39–41]. Macas-Daz et al. [42] studied the stochastic epidemiology model
using a non-traditional finite difference approach. The dynamics of a stochastic model of
smoking were investigated by Raza et al., who devised a non-standard finite difference to
do so [43]. The stochastic fractional epidemic model was numerically approximated by
Nauman et al. [44]. The stochastic dengue epidemic model was solved by Raza et al. [45].
Alkhazzan et al. [46] examined and discussed the dynamics of an SVIR epidemic model. The
utilization of the fractional order Caputo fractional derivative co-infection illness epidemic
model has been examined in previous studies [47–50]. In chemistry, MiR-17-92 is critical in
regulating the Myc/E2F protein. A novel fractional-order delayed Myc/E2F/miR-17-92
network model revealing their relationship is proposed in [51].

There are several potential uses for the computational scheme developed for the
stochastic (SIRS) reaction–diffusion model with partial immunity and an incidence rate
in epidemiology and other fields of study. Some important information about its uses is
as follows:

1. Epidemiological Modelling: The primary use of this computational framework is the
modelling of infectious disease dynamics in populations. Because it allows researchers
to examine the impact of partial immunity on disease transmission and prevalence, it
is especially helpful when thinking about diseases with various levels of immunity.
This is particularly important in the case of influenza, where immunity can shift from
season to season due to strain changes.

2. Geographical Spread Analysis: Because this model includes diffusion, it can be used
to analyze the geographical spread of diseases. The ability to optimize healthcare
resource allocation and implement effective control measures relies on researchers
thoroughly understanding how diseases spread across geographic regions.

3. Vaccination Strategy: Vaccination techniques can be tested using the model. It is
useful for calculating the effects of vaccination rates, waning immunity, and partial
immunity on the overall disease burden in a community. Policymakers might use
these data as a reference when deciding how to proceed with vaccination drives.

4. Public Health Policy Planning: Infectious disease dynamics knowledge is essential
for public health policymaking. This model can shed light on how factors like inci-
dence rates and geographic location influence the spread of disease. It is useful for
determining how to allocate resources best and implement intervention techniques to
reduce disease spread.

5. Disease Evolution: By adding partial immunity, the model may also be used to
examine how diseases change over time. The immune response to diseases like HIV is
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complex and changes over time, which is particularly relevant. The model can show
how the disease may evolve and how therapies may alter its course.

Suppose you want to simulate the spread of disease. In that case, you can use the
finite difference approach or a computational methodology for a stochastic diffusive epi-
demic model with partial immunity and an incidence rate. This technique can examine
how changing certain variables impacts disease transmission and how efficient certain
preventative strategies are.

Researchers and public health officials can use the finite difference approach or com-
putational scheme for a stochastic diffusive epidemic model with partial immunity and an
incidence rate to better understand and manage disease transmission.

The solutions to the epidemic models can be found by applying analytical and nu-
merical methods. The analytical methods sometimes take more time to converge than
numerical methods when applied to nonlinear problems. Different methods exist to handle
nonlinear term(s) in differential equations. However, nonlinear terms are linearized using
implicit finite difference methods. However, for the explicit methods, linearization is not
required. So, linear finite difference schemes are sometimes useful for solving nonlinear
differential equations. An iterative method can also be adopted to overcome the deficiency
of explicit schemes when applied to problems having Neumann-type boundary conditions.
An iterative scheme is also employed in this work to manage such cases. The stopping
criteria of the iterative scheme for the deterministic model are also provided, and the
iterative will be stopped if this criterion is met. The Wiener process term is approximated
by the MATLAB built-in function of using normal distribution with mean zero. So, the
MATLAB built-in facility is adopted for solving the stochastic diffusive epidemic model.

Public Health Benefits:
As a powerful tool for comprehending and controlling infectious diseases, the sug-

gested computational framework for the stochastic SIRS reaction–diffusion model with
partial immunity and an incidence rate provides substantial advantages to public health.
By including an incidence rate and partial immunity, the model provides a more accurate
portrayal of disease dynamics in populations with different immunity levels. By taking
into account the inherent unpredictability in the interactions between individuals and
the distribution of diseases over space, the computational scheme’s stochastic explicit
finite difference method helps to model the dynamics of infectious disease transmission
and evolution.

An effective strategy for disease control can be developed with the use of the model’s
findings. Key parameters impacting disease dynamics can be identified by studying the
influence of transmission rates and coefficients of partial immunity on susceptible, infected,
and recovered people using the model. With this information, we may better develop
public health plans and tailored interventions to reduce the transmission of infectious
illnesses in various environments. In the end, public health authorities and lawmakers
can make better disease prevention and control decisions because of the computational
framework’s extensive use in epidemiology.

Limitations of the Study:
Even though the suggested computational paradigm sheds light on the dynamics of

infectious diseases, its limits must be recognized. The mathematical model’s assumptions
regarding homogenous mixing and constant parameters, among other simplifications,
are restricted. Complex real-world interactions and population-level fluctuations may be
beyond the scope of these assumptions.

Furthermore, the model assumes partial immunity, the integrity of which depends
on the accessibility of pertinent data and the thoroughness of immunity-related elements
taken into account.

Validation of Methods:
It is necessary to validate the stability and consistency of the suggested computational

strategy in the mean square sense and apply it to diffusive epidemic models with incidence
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rates and partial immunity. To further explore the process of validation, the subsequent
variables are examined:

Stability: The scheme’s stability is guaranteed by a thorough analysis that considers
the predictor–corrector stages. Establishing stability criteria demonstrates that the numeri-
cal solution exhibits convergence towards the accurate solution when the discretization
parameters progressively decrease.

Consistency: verifying consistency in the mean square sense demonstrates that as the
grid spacing decreases, the numerical solution converges to the theoretical solution of the
stochastic partial differential equations.

Comparison with existing model: The new technique is evaluated using the existing
Euler method and a non-standard finite difference method. The suggested technique is
demonstrated to be superior to the existing non-standard finite difference method in solving
the deterministic model through the provision of well-defined metrics and performance
indicators.

The reliability and correctness of the proposed computational scheme in capturing
the dynamics of infectious diseases within the stochastic SIRS reaction–diffusion model
framework with partial immunity and an incidence rate are ensured by implementing a
complete validation technique.

2. Stochastic Computational Scheme

An explicit two-stage scheme is proposed that can solve stochastic differential equa-
tions. Both stages of the scheme are explicit. The scheme consists of a fixed step size. The
first stage of the scheme is the Euler–Maruyama method, and the second stage contains
parameters that will be found later by comparing Taylor series expansion. For start-
ing the constructing procedure of the scheme, consider the following stochastic partial
differential equation:

dv = G
(

v,
∂2v
∂x2

)
dt + σvdW (1)

where σ is a constant, and W(t) represents a Winner process.
The proposed scheme will be constructed for the deterministic model (1). i.e., σ = 0.

Later on, the scheme will be constructed for the stochastic model (1).
The first stage of the scheme is expressed as:

vn+1
i = vn

i + dvn
i (2)

where vn+1
i represents the solutions of Equation (1) computed at ith grid point and at an

arbitrary time level. The solution computed at the first stage should not considered as a
final solution at (n + 1)th level. Stage (2) can also be considered as the predictor stage. The
corrector stage can be expressed as:

vn+1
i =

1
3

(
2vn

i + vn+1
i

)
+ a dvn

i + b dvn+1
i (3)

The values of parameters a and b can be determined by considering the Taylor series
expansion of vn+1

i as:

vn+1
i = vn

i + dvn
i +

1
2

d2vn
i + · · · (4)

By substituting Equation (4) into Equation (3), the following is obtained:

vn
i + dvn

i +
1
2

d2vn
i + · · · =

1
3

(
2vn

i + vn+1
i

)
+ a dvn

i + b dvn+1
i (5)

By using (2) into Equation (5):

vn
i + dvn

i +
1
2

d2vn
i + · · · =

1
3
(3vn

i + dvn
i ) + a dvn

i + b dvn
i + bd2vn

i (6)
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Equating coefficients of dvn
i and d2vn

i on both sides of Equation (6) yields:

1 = 1
3 + a + b
1
2 = b

}
(7)

Solving Equation (7), the values of a and b can be expressed as:

a =
1
6

and b =
1
2

(8)

The semi-discretization for stochastic Equation (1) is given by:

vn+1
i = vn

i + G

(
vn

i ,
∂2v
∂x2

∣∣∣∣n
i

)
∆t + σvn

i ∆W (9)

and

vn+1
i =

1
3

(
2vn

i + vn+1
i

)
+ a

(
G

(
vn

i ,
∂2v
∂x2

∣∣∣∣n
i

)
∆t + σvn

i ∆W

)
+ b

(
G

(
vn+1

i ,
∂2v
∂x2

∣∣∣∣n+1

i

)
∆t + σvn+1

i ∆W

)
(10)

where a and b will be chosen from Equation (8) and ∆W ∼ N(0, ∆t).
Letting G = d1

∂2v
∂x2 in Equation (1), the fully discretized equations are:

vn+1
i = vn

i + d1(
vn

i+1 − 2vn
i + vn

i−1

(∆x)2 )∆t + σvn
i ∆W (11)

and

vn+1
i =

1
3

(
2vn

i + vn+1
i

)
+ a

{
d1

(
vn

i+1 − 2vn
i + vn

i−1

(∆x)2

)
∆t + σvn

i ∆W

}
+ b

{
d1

(
vn+1

i+1 − 2vn+1
i + vn+1

i−1

(∆x)2

)
∆t + σvn+1

i ∆W

}
(12)

3. Stability Analysis

The stability analysis of the proposed scheme for stochastic parabolic linear equations
will be performed by applying Fourier series analysis. The analysis provides the conditions
on step size and involved parameters. The stability analysis assumes the dependent
variable by the component of the Fourier series. The transformations are given as:

vn+1
i = Qn+1eiIψ, vn+1

i = Qn+1eiIψ

vn
i±1 = Qne(i±1)Iψ, vn+1

i±1 = Qn+1e(i±1)Iψ

}
(13)

where I =
√
−1.

It yields by substituting some of the transformations from Equation (13) into the first
stage of the proposed scheme (11).

Qn+1eiIψ = QneiIψ +
d1∆t

(∆x)2

(
e(i+1)Iψ − 2eiIψ + e(i−1)Iψ

)
Qn + σeiIψ∆WQn (14)

Dividing both sides of Equation (14) by eiIψ yields:

Qn+1
= Qn + d

(
eIψ − 2 + e−Iψ

)
Qn + σ∆WQn

where d = d1∆t
(∆x)2 .

Using trigonometric identities yields:

Qn+1
= (1 + 2d(cosψ− 1) + σ∆W)Qn (15)
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Similarly, upon substituting some of the transformations from Equation (13) into the
second stage of the proposed scheme (12), it gives:

Qn+1eiIψ = 1
3

(
2QneiIψ + Qn+1eiIψ

)
+ a
{

d1

(
e(i+1)Iψ−2eiIψ+e(i−1)Iψ

(∆x)2

)
Qn∆t + σeiIψQn∆W

}
+

b
{

d1

(
e(i+1)Iψ−2eiIψ+e(i−1)Iψ

(∆x)2

)
Qn+1∆t + σeiIψQn+1∆W

} (16)

Dividing both sides of Equation (16) by eiIψ yields:

Qn+1 =
1
3

(
2Qn + Qn+1

)
+ a

{
2d1

(cosψ− 1)

(∆x)2 ∆t + σ∆W

}
Qn + b

{
2d1

(cosψ− 1)

(∆x)2 ∆t + σ∆W

}
Qn+1 (17)

Using Equation (15) in Equation (17) produces:

Qn+1 =

[
2
3
+ 2ad(cosψ− 1) + σ∆W

]
Qn +

[
1
3
+ 2bd(cosψ− 1) + σ∆W

]
[1 + 2d(cosψ− 1) + σ∆W]Qn (18)

The amplification factor for the scheme is given as:

Qn+1

Qn =
(

2
3 + 2ad(cosψ− 1) +

(
1
3 + 2bd(cosψ− 1)

)
(1 + 2d(cosψ− 1))

)
+ ( 1

3 + 2bd(cosψ− 1) + 1 +

2d(cosψ− 1) + 1)σ∆W + σ2(∆W)2
(19)

Applying the expected value on the square of amplitudes of the two consecutive
Fourier components of the solution of the differential equations using the proposed scheme
and also using the inequality give the stability condition for the proposed stochastic scheme
as:

E|Q
n+1

Qn |2 ≤ 2E| 23 + 2ad(cosψ− 1) +
(

1
3 + 2bd(cosψ− 1)

)
(1 + 2d(cosψ− 1))|2 + 2|2bd(cosψ− 1) + 7

3+

2d(cosψ− 1)|2E|σ∆W|2 + 2σ4E|(∆W)2|2
(20)

If

2|2
3
+ 2ad(cosψ− 1) +

(
1
3
+ 2bd(cosψ− 1)

)
(1 + 2d(cosψ− 1))|2 < 1

and let
λ = 2σ2|7

3
+ 2bd(cosψ− 1) + 2d(cosψ− 1)|2 + 6∆t

Then, inequality (20) can be expressed as:∣∣∣∣Qn+1

Qn

∣∣∣∣2 ≤ 1 + λ∆t (21)

Therefore, the proposed stochastic numerical scheme is conditionally stable.

Theorem 1. The proposed stochastic numerical scheme (11)–(12) is consistent in the mean square
sense.

Proof. Let P be the smooth function:

L(P)n
i = P((n + 1)∆t, i∆x)− P(n∆t, i∆x)− d1

∫ (n+1)∆t

n∆t
Pxx(s, i∆x)ds− σ

∫ (n+1)∆t

n∆t
P(s, i∆x)dW(s) (22)
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Ln
i P = P((n + 1)∆t, i∆x)− P(n∆t, i∆x)− ∆t

[
d1(a+ 1

3 )
(∆x)2 (P(n∆t, (i + 1)∆x)− 2P(n∆t, i∆x)+

P(n∆t, (i− 1)∆x)) + d1b
(∆x)2

(
P((n + 1)∆t, (i + 1)∆x)− 2P((n + 1)∆t, i∆x) + P((n + 1)∆t, (i− 1)∆x)

)]
−

σ
(

a + 1
3

)
P(n∆t, i∆x)(W((n + 1)∆t)−W(n∆t))− σbP((n + 1)∆t, i∆x)(W((n + 1)∆t)−W(n∆t))

(23)

where P((n + 1)∆t, i∆x) = P(n∆t, i∆x) + d1∆t
(∆x)2 (P(n∆t, (i + 1)∆x) − 2P(n∆t, i∆x)+

P(n∆t, (i− 1)∆x)) + σP(n∆t, i∆x)(W((n + 1)∆t)−W(n∆t)).
The following equations can be obtained from Equations (22) and (23):

E|L(P)n
i − Ln

i P|2 = E| − d1

∫ (n+1)∆t

n∆t
Pxx(s, i∆x)ds− σ

∫ (n+1)∆t

n∆t
P(s, i∆x)dW(s)+

d1(a + 1
3 )

(∆x)2 (P(n∆t, (i + 1)∆x)− 2P(n∆t, i∆x) + P(n∆t, (i− 1)∆x))+

d1b
(∆x)2 (P((n + 1)∆t, (i + 1)∆x)− 2P((n + 1)∆t, i∆x) + P((n + 1)∆t, (i− 1)∆x))

+σ(a +
1
3
)P(n∆t, i∆x)(W((n + 1)∆t)−W(n∆t))

+σbP((n + 1)∆t, i∆x)(W((n + 1)∆t)−W(n∆t))|2

(24)

Equation (24) can be rewritten as:

E|L(P)n
i − Ln

i P|2 ≤ 2d2
1E|
∫ (n+1)∆t

n∆t
Pxx(s, i∆x)ds

− ∆t
(∆x)2 {(a +

1
3
)(P(n∆t, (i + 1)∆x)− 2P(n∆t, i∆x) + P(n∆t, (i− 1)∆x))+

b(P((n + 1)∆t, (i + 1)∆x)− 2P((n + 1)∆t, i∆x) + P((n + 1)∆t, (i− 1)∆x))}

|2 + 2σ2E|
∫ (n+1)∆t

n∆t
P(s, i∆x)dW(s)− (a +

1
3
)P(n∆t, i∆x)(W((n + 1)∆t)−W(n∆t))−

bP((n + 1)∆t, i∆x)(W((n + 1)∆t)−W(n∆t))|2

(25)

Now, the following result is used:

E
∣∣∣∣∫ t

t◦
f (s, w)dWs

∣∣∣∣2m
≤ (t− t◦)

n−1[m(2m− 1)]m
∫ t

t◦
E
[
| f (s, w)|2m

]
ds (26)

where t◦ is the initial time.
By using the result (26) in (25), the following inequality can be obtained:

E|L(P)n
i − Ln

i P|2 ≤ 2d2
1E|
∫ (n+1)∆t

n∆t
Pxx(s, i∆x)ds− ∆t

(∆x)2 {(a +
1
3
)(P(n∆t, (i + 1)∆x)

−2P(n∆t, i∆x) + P(n∆t, (i− 1)∆x)) + b(P((n + 1)∆t, (i + 1)∆x)− 2P((n + 1)∆t, i∆x) +

P((n + 1)∆t, (i− 1)∆x))}|2 + 2σ2∆t
∫ (n+1)∆t

n∆t
E[|P(s, i∆x)− (a +

1
3
)P(n∆t, i∆x)− bP((n + 1)∆t, i∆x)|2]ds

(27)

Thus, implementation of limits when ∆x → 0, ∆t→ 0 and (n∆t, i∆x)→ (t, x) then
results in:

E
∣∣L(P)n

i − Ln
i P
∣∣2 → 0 (28)

Therefore, the proposed stochastic numerical scheme is consistent in the mean square
sense. �
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4. Diffusive Stochastic Epidemic Model

Let S, I, and R represent the densities of susceptible, infectious, and recovered people
at location x and time t. Letting β(x) represent the transmission rate and µ(x) denote the
natural mortality of people, α(x) is used for mortality caused by the disease, γ(x) denotes
the rate of losing of immunity,

∧
(x) denotes the birth rate of susceptible people, δ(x)

represents the recovery rate, and these functions are positive Holder continuous functions.
By following [52] for the deterministic model, the stochastic SIRS model is expressed as:

∂S
∂t

= d1
∂2S
∂x2 + ∧(x)− β(x)

S(t, x)I(t, x)
1 + mI(t, x)

− µ(x)S + γ(x)R + (1− p)δ(x)I + σ1SW(t) (29)

∂I
∂t

= d2
∂2 I
∂x2 +

SI
1 + mI

− (δ(x) + µ(x) + α(x))I + σ2 IW(t) (30)

∂R
∂t

= d3
∂2R
∂x2 + pδ(x)I − (µ(x) + γ(x))R + σ3RW(t) (31)

Subject to the boundary conditions:

∂S
∂x

= 0,
∂I
∂x

= 0,
∂R
∂x

= 0 for t > 0, xε∂Ω (32)

and initial conditions are given as:

S(0, x) = f1(x), I(0, x) = f2(x), R(0, x) = f3(x) (33)

For d1 = d2 = d3 = 0 and σ1 = σ2 = σ3 = 0, the disease-free equilibrium points can
be determined from the following equations:

∧
(x)− β(x)

SI
1 + mI

− µ(x)S + r(x)R + (1− p)δ(x)I = 0 (34)

SI
1 + mI

− (δ(x) + µ(x) + α(x))I = 0 (35)

pδ(x)I − (µ(x) + γ(x))R = 0 (36)

By solving Equations (34)–(36), the disease-free equilibrium points are found as:

B(
∧(x)
µ(x)

, 0, 0)

Theorem 2. The system of Equations (29)–(31) with d1 = d2 = d3 = 0 and σ1 = σ2 = σ3 = 0 is
locally stable if β(x) ∧ (x) < α(x)µ(x) + δ(x)µ(x).

Proof. The Jacobian of the system (29)–(31) with dS = dI = dR = 0 and σ1 = σ2 = σ3 = 0 is
given as:

J =


− β(x)I

1+mI − µ (1− ρ)δ(x) + β(x)mSI
(1+mI)2 −

βS
1+mI γ(x)

β(x)I
1+mI −α(x)− δ(x)− µ(x)− β(x)mIS

(1+mI)2 +
β(x)S
1+mI 0

0 δ(x)ρ −γ(x)− µ(x)

 (37)
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The Jacobian at the disease-free equilibrium point B is given by:

J|B =


−µ(x) (1− ρ)δ(x)− β(x)

∧
(x)

µ(x) γ(x)

0 −α(x)− δ(x)− µ(x)− β(x)
∧
(x)

µ(x) 0
0 δ(x)ρ −γ(x)− µ(x)

 (38)

The Eigenvalue of J|B is found to be:

λ1 = −µ(x), λ2 = −γ(x)− µ(x), λ3 =
−α(x)µ(x)− δ(x)µ(x)− µ2(x) + β(x) ∧ (x)

µ(x)

Since λ1 and λ2 are negative, and λ3 will be negative if:

−α(x)µ(x)− δ(x)µ(x)− µ2(x) + β(x)
∧
(x) < 0

it is implied that:
β(x)

∧
(x) < α(x)µ(x) + δ(x)µ(x) + µ2(x)

�

5. Discussions

A stochastic finite difference method is proposed, which is an explicit scheme. The
scheme can be applied to discretize time variables in the considered stochastic parabolic
equations. The second-order central difference formulas discretize the space terms since the
considered diffusive epidemic model consists of the second-order spatial derivatives. The
scheme is conditionally stable, and it is conditionally convergent. The scheme can be used
for both classical and stochastic parabolic equations. The stability condition of the scheme
depends upon both the time and space step sizes and the contained parameters in the
epidemic diffusive model. For the adopted model, the boundary conditions are Neumann
type. So, to handle these boundary conditions using the finite difference explicit scheme, an
additional iterative scheme is also employed. The iterative scheme requires an initial guess
to start the solution procedure. It also requires a stopping criterion for breaking the loop
over the iterations. The outer loop is employed for using the iterative scheme that will be
stopped if the maximum of norms of solutions computed on two consecutive iterations will
be less than some tolerance. The iterative scheme will be stopped if the solution satisfies
the mentioned criterion. Otherwise, it will continue to find the solution over the new
iteration. So, the convergence of the solution depends on the employed numerical schemes
for discretizing the stochastic partial differential equations and stopping or converging the
criteria of the iterative scheme.

Given the abundance of mathematical models about epidemic diseases documented
in the literature, employing an approximate analytical or numerical scheme to solve even
the most complex ones is necessary. A numerical scheme for solving deterministic and
stochastic models is proposed in this work. Additionally, existing numerical schemes for
deterministic cases are contrasted to the scheme. The scheme under consideration is capable
of solving both deterministic and stochastic models. The Euler–Maruyama technique is
available as a method for solving stochastic differential equations. The method applies
stochastic models to the classical forwards Euler method for deterministic models. If the
coefficient of the Weiner process term remains constant, the method precisely integrates
it. However, it approximates the integral of the Weiner process term with respect to
the variable coefficient. The proposed methodology yields a more precise solution for
deterministic models than the Euler method. Approximating the integral of the stochastic
component of the differential equation is the function of the stochastic component of
the scheme.
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6. Results

There exist numerical schemes for finding solutions to epidemic models and
providing a guarantee for obtaining positive solutions. Among these schemes, the
non-standard finite difference method (NSFD) can be used to solve epidemic models
and guarantee the positivity of the solution. Among the existing NSFD methods, one
provides an unconditionally stable solution and gives surety for the positive solution.
In this work, a comparison of the proposed numerical scheme is made with the existing
NSFD method. Figure 1 compares the stochastic and deterministic solutions using
the proposed scheme. Figures 2–4 show this comparison, and the first-order forward
Euler method obtains the solution. Due to the lack of first-order accuracy of the
NSFD, the obtained solution deviates slightly from the first- or second-order solutions.
The first-order solution is obtained by employing the forward Euler method, and the
second-order solution is obtained by the proposed scheme for the deterministic model.
This deficiency in existing finite difference has also been proved in [53] for the diffusive
models. Since the solutions to an epidemic remain positive for some chosen values of
parameters, any numerical scheme can be considered for those cases. Therefore, the
proposed scheme and first-order Euler methods are also employed for the epidemic
model. Figure 5 shows the effect of the transmission rate parameter on the susceptible
people. The susceptible people grow by rising transmission rate parameters. The effect
of the transmission rate parameter on infected people can be seen in Figure 6. The
infected people grow as the transmission rate parameter enhances. The effect of the
transmission rate parameter on recovered people can be seen in Figure 7. The recovered
people are also grown by rising transmission rate parameters. Since recovered people
become susceptible, when recovered people grow, the susceptible people also grow.
The number of infected people increases because susceptibility converts to infection by
rising transmission rate parameters. The effect of the coefficient of partial immunity
on susceptible individuals is shown in Figure 8. The susceptible people decay by
the rising coefficient of the partial immunity parameter. Figures 9 and 10 show the
effect of the coefficient of partial immunity on infected and recovered people. The
infected people decay, and the recovered people grow by enhancing the coefficient of
partial immunity. The coefficient of partial immunity produces growth in the body’s
immune system, leading to decay in infected people and growth in recovered people.
Figures 11–13 show the contour plots for susceptible, infected, and recovered people
for the deterministic model. The variation in both space coordinates can be seen in
these contour plots. The mesh plots underneath the contours are also displayed in
Figures 14–16 for the stochastic model. The effect of the Wiener process term can be
seen in the mesh underneath the contour plots. The large coefficient of the Wiener
process term gives more oscillation-type solutions than those with a small coefficient
of Weiner process terms.
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Figure 1. Comparison of stochastic and deterministic solutions of the considered model using
d1 = 0.3, d2 = 0.1, d3 = 0.3, Λ = 0.7, β = 0.01, p = 0.5, m = 0.5, δ = 0.5, µ = 0.07, α = 0.05, γ = 0.03,
S0 = 15, I0 = 30, N = 70, σ1 = 0.1, σ2 = 0.1, σ3 = 0.1.
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Figure 2. Comparison of proposed, Euler, and NSFD methods for susceptible people in the deter-
ministic model using d1 = 0.3, d2 = 0.1, d3 = 0.3, Λ = 1.7, β = 0.3, p = 0.m = 0.1, δ = 0.5, µ = 0.5,
α = 0.5, γ = 0.3, S0 = 15, I0 = 30, N = 70.
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Figure 3. Comparison of proposed, Euler, and NSFD methods for infected people in the deterministic
model using d1 = 0.3, d2 = 0.1, d3 = 0.3, Λ = 1.7, β = 0.3, p = 0.m = 0.1, δ = 0.5, µ = 0.5, α = 0.5,
γ = 0.3, S0 = 15, I0 = 30, N = 70.
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Figure 4. Comparison of proposed, Euler, and NSFD methods for recovered people in the determinis-
tic model using d1 = 0.3, d2 = 0.1, d3 = 0.3, Λ = 1.7, β = 0.3, p = 0, m = 0.1, δ = 0.5, µ = 0.5, α = 0.5,
γ = 0.3, S0 = 15, I0 = 30, N = 70.
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Figure 5. Effect of transmission rate on susceptible people in the deterministic model using
d1 = 0.3, d2 = 0.1, d3 = 0.3, Λ = 1.7, p = 0.5, m = 0.1, δ = 0.5, µ = 0.7, α = 0.5, γ = 0.3, S0 = 15,
I0 = 30, N = 70.
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Figure 6. Effect of transmission rate on infected people in the deterministic model using d1 = 0.3,
d2 = 0.1, d3 = 0.3, Λ = 1.7, p = 0.5, m = 0.1, δ = 0.5, µ = 0.7, α = 0.5, γ = 0.3, S0 = 15, I0 = 30,
N = 70.
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Figure 7. Effect of transmission rate on recovered people in the deterministic model using
d1 = 0.3, d2 = 0.1, d3 = 0.3, Λ = 1.7, p = 0.5, m = 0.1, δ = 0.5, µ = 0.7, α = 0.5, γ = 0.3,
S0 = 15, I0 = 30, N = 70.
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Figure 8. Effect of coefficient of partial immunity on susceptible people in the deterministic model
using d1 = 0.3, d2 = 0.1, d3 = 0.3, Λ = 1.7, β = 0.1, m = 0.1, δ = 0.5, µ = 0.7, α = 0.5, γ = 0.3,
S0 = 15, I0 = 30, N = 70.
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Figure 9. Effect of coefficient of partial immunity on infected people in the deterministic model using
d1 = 0.3, d2 = 0.1, d3 = 0.3, Λ = 1.7, β = 0.1, m = 0.1, δ = 0.5, µ = 0.7, α = 0.5, γ = 0.3, S0 = 15,
I0 = 30, N = 70.
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Figure 10. Effect of coefficient of partial immunity on recovered people in the deterministic model
using d1 = 0.3, d2 = 0.1, d3 = 0.3, Λ = 1.7, β = 0.1, m = 0.1, δ = 0.5, µ = 0.7, α = 0.5, γ = 0.3,
S0 = 15, I0 = 30, N = 70.
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Figure 11. Contour plot on susceptible people in the deterministic model using d1 = 0.3,
d2 = 0.1, d3 = 0.3, Λ = 0.7, β = 0.1, m = 0.4, p = 0.2, δ = 0.5, µ = 0.1, α = 0.5, γ = 0.1,
S0 = 3.5, I0 = 1.702, N = 100.
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Figure 12. Contour plot on infected people in the deterministic model using d1 = 0.3, d2 = 0.1,
d3 = 0.3, Λ = 0.7, β = 0.1, m = 0.4, p = 0.2, δ = 0.5, µ = 0.1, α = 0.5, γ = 0.1, S0 = 3.5,
I0 = 1.702, N = 100.
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Figure 13. Contour plot on recovered people in the deterministic model using d1 = 0.3, d2 = 0.1,
d3 = 0.3, Λ = 0.7, β = 0.1, m = 0.4, p = 0.2, δ = 0.5, µ = 0.1, α = 0.5, γ = 0.1, S0 = 3.5,
I0 = 1.702, N = 100.
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Figure 14. Mesh plot underneath contours for susceptible people of the stochastic model using
d1 = 0.3, d2 = 0.1, d3 = 0.3, Λ = 0.7, β = 0.1, m = 0.5, p = 0.9, δ = 0.5, µ = 0.1, α = 0.1, γ = 0.3,
S0 = 15, I0 = 30, N = 70, σ1 = 0.5, σ2 = 0.1, σ3 = 0.1.



Mathematics 2023, 11, 4794 19 of 22

Mathematics 2023, 11, x FOR PEER REVIEW 18 of 22 
 

 

 
Figure 14. Mesh plot underneath contours for susceptible people of the stochastic model using 𝑑ଵ =0.3, 𝑑ଶ = 0.1, 𝑑ଷ = 0.3, 𝛬 = 0.7, 𝛽 = 0.1, 𝑚 = 0.5, 𝑝 = 0.9, 𝛿 = 0.5, 𝜇 = 0.1, 𝛼 = 0.1, 𝛾 = 0.3, 𝑆 =15, 𝐼 = 30, 𝑁 = 70, 𝜎ଵ = 0.5, 𝜎ଶ = 0.1, 𝜎ଷ = 0.1. 

 
Figure 15. Mesh plot underneath contours for infected people of the stochastic model using 𝑑ଵ =0.3, 𝑑ଶ = 0.1, 𝑑ଷ = 0.3, 𝛬 = 0.7, 𝛽 = 0.1, 𝑚 = 0.5, 𝑝 = 0.9, 𝛿 = 0.5, 𝜇 = 0.1, 𝛼 = 0.1, 𝛾 = 0.3, 𝑆 =15, 𝐼 = 30, 𝑁 = 70, 𝜎ଵ = 0.5, 𝜎ଶ = 0.1, 𝜎ଷ = 0.1. 

Figure 15. Mesh plot underneath contours for infected people of the stochastic model using
d1 = 0.3, d2 = 0.1, d3 = 0.3, Λ = 0.7, β = 0.1, m = 0.5, p = 0.9, δ = 0.5, µ = 0.1, α = 0.1,
γ = 0.3, S0 = 15, I0 = 30, N = 70, σ1 = 0.5, σ2 = 0.1, σ3 = 0.1.

Mathematics 2023, 11, x FOR PEER REVIEW 19 of 22 
 

 

 
Figure 16. Mesh plot underneath contours for recovered people of the stochastic model using 𝑑ଵ =0.3, 𝑑ଶ = 0.1, 𝑑ଷ = 0.3, 𝛬 = 0.7, 𝛽 = 0.1, 𝑚 = 0.5, 𝑝 = 0.9, 𝛿 = 0.5, 𝜇 = 0.1, 𝛼 = 0.1, 𝛾 = 0.3, 𝑆 =15, 𝐼 = 30, 𝑁 = 70, 𝜎ଵ = 0.5, 𝜎ଶ = 0.1, 𝜎ଷ = 0.1. 

7. Conclusions 
A computational scheme has been proposed for solving the stochastic diffusive SIRS 

model with an incidence rate and partial immunity. An additional iterative scheme has 
also been employed for handling Neumann-type boundary conditions applied on each 
domain end. So, a stopping criterion was also set up to stop the iterative procedure for the 
deterministic model. The computational framework utilized for the stochastic SIRS reac-
tion–diffusion model with partial immunity and an incidence rate holds significant po-
tential and adaptability within epidemiology and mathematical modelling. It has wide-
ranging uses and can improve our understanding of infectious disease dynamics and help 
us create better prevention and treatment methods. Due to its ability to account for factors 
including partial immunity, regional diffusion, and changing incidence rates, this model 
is invaluable for public health planning and disease management. This computational 
technique adds to our understanding of infectious diseases in various populations and 
geographical locations by examining the complex relationship between immunity, spatial 
spread, and disease transmission. In the face of new infectious diseases and endemic path-
ogens, it is crucial to assess immunization tactics, research disease evolution, and forecast 
future trends. Because of its stochastic nature, the model more accurately represents epi-
demiological processes, which is important because of the inherent uncertainty in disease 
transmission. This is of great use when the spread of a disease is heavily influenced by 
chance and the activities of individuals. This method links theoretical epidemiological 
studies and real-world public health policymaking. The concluding points can be ex-
pressed as: 
1. Comparison showed that the proposed scheme was more accurate than the existing 

NSFD scheme for the deterministic model. 
2. Susceptible, infected, and recovered people were seen to grow by enhancing trans-

mission parameters. 

Figure 16. Mesh plot underneath contours for recovered people of the stochastic model using
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7. Conclusions

A computational scheme has been proposed for solving the stochastic diffusive SIRS
model with an incidence rate and partial immunity. An additional iterative scheme has
also been employed for handling Neumann-type boundary conditions applied on each
domain end. So, a stopping criterion was also set up to stop the iterative procedure for the
deterministic model. The computational framework utilized for the stochastic SIRS reaction–
diffusion model with partial immunity and an incidence rate holds significant potential
and adaptability within epidemiology and mathematical modelling. It has wide-ranging
uses and can improve our understanding of infectious disease dynamics and help us create
better prevention and treatment methods. Due to its ability to account for factors including
partial immunity, regional diffusion, and changing incidence rates, this model is invaluable
for public health planning and disease management. This computational technique adds to
our understanding of infectious diseases in various populations and geographical locations
by examining the complex relationship between immunity, spatial spread, and disease
transmission. In the face of new infectious diseases and endemic pathogens, it is crucial to
assess immunization tactics, research disease evolution, and forecast future trends. Because
of its stochastic nature, the model more accurately represents epidemiological processes,
which is important because of the inherent uncertainty in disease transmission. This is of
great use when the spread of a disease is heavily influenced by chance and the activities of
individuals. This method links theoretical epidemiological studies and real-world public
health policymaking. The concluding points can be expressed as:

1. Comparison showed that the proposed scheme was more accurate than the existing
NSFD scheme for the deterministic model.

2. Susceptible, infected, and recovered people were seen to grow by enhancing transmis-
sion parameters.

3. Infected and recovered people were also grown by raising the coefficient of
partial immunity.

4. The proposed scheme performed better than the existing non-standard finite difference
method in order of accuracy.

The stochastic SIRS reaction–diffusion model with partial immunity and an incidence
rate is useful for researchers, politicians, and medical professionals in a world where infec-
tious illnesses threaten public health systems. Using it, we may better manage infectious
disease outbreaks, distribute scarce resources, and prepare for emergencies, all of which
improve public health and lessen these crises’ toll on the world’s population. Upon the
conclusion of this project, it is possible to propose further applications for the existing
strategy [54–56]. This model will continue to be at the forefront of attempts to address the
ever-changing environment of infectious illnesses as research in this field develops.
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