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Abstract: The goal of this paper is to build some approximate closed-form solutions for a class of
dynamical systems involving a Hamilton–Poisson part. The chaotic behaviors are neglected. These
solutions are obtained by means of a new version of the optimal parametric iteration method (OPIM),
namely, the modified optimal parametric iteration method (mOPIM). The effect of the physical
parameters is investigated. The Hamilton–Poisson part of the dynamical systems is reduced to a
second-order nonlinear differential equation, which is analytically solved by the mOPIM procedure.
A comparison between the approximate analytical solution obtained with mOPIM, the analytical
solution obtained with the iterative method, and the corresponding numerical solution is presented.
The mOPIM technique has more advantages, such as the convergence control (in the sense that
the residual functions are smaller than 1), the efficiency, the writing of the solutions in an effective
form, and the nonexistence of small parameters. The accuracy of the analytical and corresponding
numerical results is illustrated by graphical and tabular representations. The same procedure could
be successfully applied to more dynamical systems.

Keywords: modified optimal parametric iteration method; periodical orbits; dynamical system;
Hamilton–Poisson realization

MSC: 37B65; 37C79; 65H20; 37J06; 37J35; 65L99

1. Introduction

Many nonlinear phenomena that appear in engineering, chemistry, physics, economics,
and biology can be modeled by the nonlinear dynamical systems of the form ẋ = f(x),
f = ( f1, f2, f3), where f(x) = g(x) + h(x) such that the system ẋ = g(x) admits a
Hamilton–Poisson structure (e.g., is a Hamilton–Poisson system) and h = (h1, h2, h3) is an
additive term. There are two functionally independent constants of motion, H = H(x) (the
Hamiltonian function) and C = C(x) (the Casimir function).

In the last decade, the dynamical properties have been examined by several researchers
as bifurcation route, Poincaré map, frequency spectrum, amplitude modulation, topological
horseshoe, the existence of heteroclinic orbit or homoclinic orbit, equilibria, Lyapunov
exponent spectrum, a dissipative system, phase portraits, bifurcation diagrams, and Hopf
bifurcation. These properties characterize the chaotic behaviors of the dynamical system.
Li et al. [1] studied a three-dimensional autonomous chaotic system that is found to possess
two nonhyperbolic equilibria. Pham et al. [2] introduced a new system with an infinite
number of equilibrium points. Wang et al. [3] presented a watermark encryption algorithm
for a new memristive chaotic system. Zhang et al. [4] proposed a numerical scheme for
the study of the dislocated projective synchronization (DPS) between the fractional-order
and the integer-order chaotic systems. Tong [5] investigated the chaotic attractor for a
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three-dimensional (3D) chaotic system that possess invariable Lyapunov exponent spec-
tra and controllable signal amplitude. He et al. [6] introduced a new four-dimensional
chaotic system with coexisting attractors having three quadratic nonlinearities and only
one unstable fixed point. Singh et al. [7] reported a new 4D dissipative chaotic system
studying the coexistence of asymmetric hidden chaotic attractors with a curve of equilib-
ria. Sun et al. [8] proposed a novel kind of compound–combination antisynchronization
scheme among five chaotic systems. Cicek et al. [9] implemented in practical applica-
tions a new three-dimensional continuous time chaotic system by an electronic circuit
design. Lai et al. [10] numerically investigated a new 3D autonomous chaotic system with
coexisting attractors. Varan et al. [11] implemented a synchronization circuit model of
a third-degree Malasoma system with chaotic flow. Su [12] investigated the horseshoe
chaos using the topological horseshoe theory, taking into account a three-dimensional (3D)
autonomous chaotic system. Zhou et al. [13] introduced and analyzed theoretically the
basic dynamical properties of a three-dimensional chaotic system. The result shows the
chaotic attractor by the realization of a circuit experiment. Akgul et al. [14] explored a
three-dimensional chaotic system with cubic nonlinearities. They applied the electronic
circuit implementation for real environment application. Pham et al. [15] introduced a
three-dimensional chaotic system displaying both hidden attractors with infinite equilibria
and hidden attractors without equilibrium. Zhang [16] investigated a method for generat-
ing complex grid multiwing chaotic attractors. Kacar [17] developed a four-dimensional
chaotic system and implemented an analogue circuit and microcontroller. Tuna et al. [18]
presented numerical, analog, and digital circuit modelings by using a 3D chaotic system
with a single equilibrium point. Naderi et al. [19] explored the exponential synchronization
of the chaotic system without a linear term and its application in secure communication by
using the exponential stability theorem and showing the ability and effectiveness of the
proposed method by numerical simulation. Li et al. [20] studied complicated dynamical
behaviors of a three-dimensional chaotic system with quadratic nonlinearities.

Recently, Liu et al. [21] developed a new multiwing chaotic system that has an excellent
effect on image encryption. Hu et al. [22] designed a circuit implementation to verify
the physical feasibility of an asymmetric memristor-based chaotic system with only one
equilibrium point. Sun et al. [23] studied a color image encryption scheme base on a 5D
memristive chaotic system. Wang et al. [24] explored the problem in image encryption
on the basis of a chaotic system with time delay. Guo et al. [25] proposed a multivortex
hyperchaotic system, emphasizing its application to image encryption and outstanding
anticropping and antinoise performance. Yildirim et al. [26] used the particle swarm
optimization (PSO) and ant colony optimization (ACO) to optimize the initial conditions
of a continuous-time chaotic system. Ding et al. [27] proposed a cryptosystem and its
application in image encryption. Lai et al. [28] proposed a four-dimensional multiscroll
chaotic system with application to image encryption. Lu et al. [29] proposed an encryption
algorithm for 3D medical models.

Recently, Karimov et al. [30] implemented an analog circuit and proposed a novel tech-
nique for reconstructing ordinary differential equations (ODEs) describing the circuit from
data. This technique is shown for a well-studied Rössler chaotic system. Karimov et al. [31]
studied the synchronization between a circuit modeling the Rössler chaotic system and a
computer model by using adaptive generalized synchronization.

Beyond chaotic behaviors, some systems could have nonlinear singularities. Such
systems are investigated using the topological degree theory and the qualitative analysis of
a Poincaré map with action angle variables [32]. Cheng et al. [33] established the existence
of homoclinic solutions for a differential inclusion system involving the p(t)-Laplacian
by using a variational principle. Fonda et al. [34] proved the existence and multiplicity
results for periodic solutions of Hamiltonian systems using the Poincaré–Birkhoff fixed
point theorem.

Many nonlinear differential problems from applied engineering are analytically solved by
some methods, namely, the multiple scales technique [35], the optimal iteration parametriza-
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tion method (OIPM) [36], the optimal homotopy asymptotic method (OHAM) [37–39], and
the optimal homotopy perturbation method (OHPM) [40–42].

The structure of this paper is as follows: In Section 2, we present in detail some
dynamical systems involving a Hamilton–Poisson part. The steps of the mOPIM technique
are the subject of Section 3. Section 4 presents the semianalytical solutions obtained by the
mOPIM method. Section 5 provides the numerical results and emphasizes the validation of
the method. The conclusions and perspectives are highlighted in Section 6.

2. A Class of Dynamical Systems Involving a Hamilton–Poisson Part

The T system analyzed in [43] describes the stability of the chaotic behavior by an
integrable deformation. This system has the following form:

ẋ = −ax + ay
ẏ = (c− a)x− axz
ż = −bz + xy

, a, b, c ∈ R, a 6= 0 , (1)

with a chaotic behavior for some positive values, a = 2.1, b = 0.6, c = 30 [44].
A Hamilton–Poisson part of the system (1) is

ẋ = ay
ẏ = −axz
ż = xy

, a ∈ R, a 6= 0 . (2)

The functionally independent constants of motion of the system (2) are{
H(x, y, z) = 1

2 x2 − az
C(x, y, z) = 1

2 y2 + a
2 z2 , a ∈ R, a 6= 0 . (3)

Remark 1. Considering the initial conditions:

x(0) = x0, y(0) = y0, z(0) = z0 , (4)

the phase curves of dynamics (1) are the intersections of the following surfaces:{ 1
2 x2 − az = 1

2 x2
0 − az0

1
2 y2 + a

2 z2 = 1
2 y2

0 +
a
2 z2

0
, for a 6= 0 . (5)

2.1. Closed-Form Solutions of the T System Involving a Hamilton–Poisson Part

For the system (2), there are following cases:

(i) In the case a > 0, the transformations y(t) = R
√

2 2u(t)
1+u2(t)

z(t) = R
√

2√
a

1−u2(t)
1+u2(t)

, (6)

where R =
√

1
2 y2

0 +
a
2 z2

0, u(t) is an unknown smooth function, provide the closed-form so-
lutions.

The third equation from Equation (2) yields

x(t) = − 2√
a

u̇(t)
1 + u2(t)

. (7)

From the first Equation (2), we obtain

ü(t)[1 + u2(t)]− 2u(t)[u̇(t)]2 + aR
√

2a · u(t)[1 + u2(t)] = 0. (8)



Mathematics 2023, 11, 4811 4 of 26

The initial conditions u(0) and u̇(0) obtained from Equations (4), (6), and (7) are

u(0) =

√
R
√

2− z0
√

a
R
√

2 + z0
√

a
, u̇(0) = −

√
a

2
x0[1 + u2(0)] , (9)

with R
√

2 + z0
√

a > 0.

(ii) For a < 0, the closed-form solutions can be written as y(t) = R
√

2 · 2·u(t)
1−u2(t)

z(t) = R
√

2|a| · 1+u2(t)
1−u2(t)

, (10)

where R =
√

1
2 z2

0 −
1

2|a|y
2
0.

Equation (2) yields

x(t) =
2√
|a|

u̇(t)
1− u2(t)

. (11)

The following nonlinear problem gives the unknown function u(t): ü(t) · (1− u2(t)) + 2u(t) · (u̇(t))2 − a|a|R
√

2 · u(t) · (1− u2(t)) = 0

u(0) =
√

z0−R
√

2
z0+R

√
2

, u̇(0) =
√
|a|

2 x0 ·
[
1− u2(0)

]
,

(12)

with z0 + R
√

2 > 0.

2.2. Other 3D Dynamical Systems Involving a Hamilton–Poisson Part

(i) A three-dimensional autonomous chaotic system with three multipliers presented
in [45] is 

ẋ = −ax + byz
ẏ = cy− dxz
ż = −kz + mxy

, a, b, c, d, k, m ∈ R , (13)

having a Hamilton–Poisson part, namely,
ẋ = byz
ẏ = −dxz
ż = mxy

, b, d, m ∈ R , (14)

with H = 1
2 (

1
b x2 + 1

d y2) and C = 1
2 (

1
b x2 − 1

m z2).
The closed-form solutions of the system (14) could be written as

x(t) = R
√

b 1+u2(t)
1−u2(t)

z(t) = R
√

m 2u(t)
1−u2(t)

y(t) = 2√
bm

u̇(t)
1−u2(t)

, (15)

where R =
√

1
b x2

0 −
1
m z2

0, for 1
b x2

0 −
1
m z2

0 > 0.
u(t) is an unknown smooth function, a solution of the nonlinear problem:

ü(t)[1− u2(t)] + 2u(t)[u̇(t)]2 + bmdR2 · u(t)[1 + u2(t)] = 0

u(0) =
√

b
m

|z0|
|x0+R

√
b|

, u̇(0) = 1
2 y0
√

bm(1− u2(0)) .
(16)
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If 1
b x2

0 −
1
m z2

0 < 0, then the closed-form solutions are
x(t) = R

√
b 2u(t)

1−u2(t)

z(t) = R
√

m 1+u2(t)
1−u2(t)

y(t) = 2√
bm

u̇(t)
1−u2(t)

, (17)

where R =
√

1
m z2

0 −
1
b x2

0, u(t) is an unknown smooth function, a solution of the
nonlinear problem (16), with the initial conditions

u(0) =
√

m
b

|x0|
|z0 + R

√
m|

, u̇(0) =
1
2

y0
√

bm(1− u2(0)) . (18)

(ii) The Qi chaotic system [46] has the form
ẋ = a(y− x) + yz
ẏ = cx− y− xz
ż = −bz + xy

, a, b, c ∈ R+ . (19)

The analysis of energy exchange was examined by transforming into a Kolmogorov-
type system. It is shown that this system possesses four forms of energy, by decompos-
ing the vector field of this chaotic system into four forms of torque: inertial, internal,
dissipative, and external.
The chaotic system presented in [47] is

ẋ = −ax + yz + dsign(y)
ẏ = by− xz
ż = −cz + xy

, a, b, c ∈ R∗+, d 6= 0 . (20)

The system can have hyperchaotic behaviors. A physically realizable system is shown
by a circuit implementation of the chaotic system.
The hyperchaotic system described in [48] is

ẋ = a(y− x) + yz
ẏ = cx− xz
ż = −bz + xy

, a, b, c ∈ R∗+ . (21)

A circuit experiment was implemented, proving rich dynamics, and can exhibit peri-
odic, quasi-periodic, chaos, and hyperchaos behavior.
The last three chaotic systems have the same Hamilton–Poisson part, namely,

ẋ = yz
ẏ = −xz
ż = xy

, (22)

with H = 1
2 (x2 + y2) and C = 1

2 (x2 − z2).
The proposed closed-form solutions of the system (22) are

x(t) = R 1+u2(t)
1−u2(t)

z(t) = R 2u(t)
1−u2(t)

y(t) = 2u̇(t)
1−u2(t)

, (23)
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where R =
√

x2
0 − z2

0, for x2
0 − z2

0 > 0, u(t) is an unknown smooth function, a solution
of the nonlinear problem (16), being a particular case of the system (14) with b = d =
m = 1.

(iii) The chaotic system with hyperbolic sine nonlinearity [49]
ẋ = −ax + yz
ẏ = −sh(y) + xz
ż = z− xy

, a > 0 , (24)

has a Hamilton–Poisson part, namely,
ẋ = yz
ẏ = xz
ż = −xy

, (25)

with H = 1
2 (x2 + z2) and C = 1

2 (x2 − y2).
The closed-form solutions of the system (25) could be

x(t) = R 1+u2(t)
1−u2(t)

y(t) = R 2u(t)
1−u2(t)

z(t) = 2u̇(t)
1−u2(t)

, (26)

where R =
√

x2
0 − y2

0, for x2
0 − y2

0 > 0, u(t) is an unknown smooth function, a solution
of the nonlinear problem (16) (taking b = m = d = 1) with the initial conditions

u(0) =
|y0|
|x0 + R| , u̇(0) =

1
2

z0(1− u2(0)) . (27)

If x2
0 − y2

0 < 0, then the closed-form solutions are
x(t) = R 2u(t)

1−u2(t)

y(t) = R 1+u2(t)
1−u2(t)

z(t) = 2u̇(t)
1−u2(t)

, (28)

where R =
√

y2
0 − x2

0, u(t) is an unknown smooth function, a solution of the nonlinear
problem (16), with the initial conditions

u(0) =
|x0|
|y0 + R| , u̇(0) =

1
2

z0(1− u2(0)) . (29)

(iv) The chaotic system explored in [50] has the form
ẋ = − ab

a+b x− yz + c
ẏ = ay + xz
ż = bz + xy

, a, b, c ∈ R , (30)

with the Hamilton–Poisson part:
ẋ = −yz
ẏ = xz
ż = xy

, a, b, c ∈ R , (31)

with H = 1
2 (x2 + y2) and C = 1

2 (y
2 − z2).
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The closed-form solutions of the system (31) are
y(t) = R 1+u2(t)

1−u2(t)

z(t) = R 2u(t)
1−u2(t)

x(t) = 2u̇(t)
1−u2(t)

, (32)

where R =
√

y2
0 − z2

0, for y2
0 − z2

0 > 0, u(t) is an unknown smooth function, a solution
of the nonlinear problem (16) (taking b = m = d = 1) with the initial conditions

u(0) =
|z0|
|y0 + R| , u̇(0) =

1
2

x0(1− u2(0)) . (33)

If y2
0 − z2

0 < 0, then the closed-form solutions are
y(t) = R 2u(t)

1−u2(t)

z(t) = R 1+u2(t)
1−u2(t)

x(t) = 2u̇(t)
1−u2(t)

, (34)

where R =
√

z2
0 − y2

0, u(t) is an unknown smooth function, a solution of the nonlinear
problem (16) (taking b = m = d = 1), with the initial conditions

u(0) =
|y0|
|z0 + R| , u̇(0) =

1
2

x0(1− u2(0)) . (35)

(v) A hyperchaotic system [51] explores the phase portraits, Lyapunov exponents, bifur-
cation diagram, and Poincaré map:

ẋ = −ay− xz
ẏ = −x + xz
ż = −d− xy

, a, d ∈ R . (36)

The Hamilton–Poisson part is 
ẋ = −xz
ẏ = xz
ż = −xy

, (37)

with H = x + y and C = 1
2 (y

2 + z2).
An electronic circuit was designed. This system generates multiwing nonequilib-
rium attractors.
The closed-form solutions of the system (37) could be

y(t) = R 2u(t)
1+u2(t)

z(t) = R 1−u2(t)
1+u2(t)

x(t) = 2u̇(t)
1+u2(t)

, (38)

where R =
√

y2
0 + z2

0, u(t) is an unknown smooth function, a solution to the nonlinear
problem

ü(t)[1 + u2(t)]− 2u(t)[u̇(t)]2 + R · u̇(t)[1− u2(t)] = 0
u(0) = |y0|

|z0+R| , u̇(0) = 1
2 x0(1 + u2(0)) .

(39)
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(vi) A three-dimensional autonomous chaotic system with only one positive term was
explored in [52]: 

ẋ = −x− 2y
ẏ = −xz− by− ax
ż = xy− cz

, a, b, c ∈ R∗+ , (40)

with a Hamilton–Poisson part, namely,
ẋ = −2y
ẏ = −xz
ż = xy

, (41)

with H = 1
2 (y

2 + z2) and C = 1
2 x2 + 2z.

The closed-form solutions of the system (41) could be written as
y(t) = R 2u(t)

1+u2(t)

z(t) = R 1−u2(t)
1+u2(t)

x(t) = − 2u̇(t)
1+u2(t)

, (42)

where R =
√

y2
0 + z2

0, u(t) is an unknown smooth function, a solution of the nonlinear
problem

ü(t)[1 + u2(t)]− 2u(t)[u̇(t)]2 − 2R · u(t)[1 + u2(t)] = 0
u(0) = |y0|

|z0+R| , u̇(0) = − 1
2 x0(1 + u2(0)) .

(43)

(vii) An autonomous chaotic system with cubic nonlinearity was presented in [53]:
ẋ = −ax + byz
ẏ = −cy3 + dxz
ż = ez− f xy

, a, b, c, d, e, f ∈ R∗+ . (44)

with the Hamilton–Poisson part, namely,
ẋ = byz
ẏ = dxz
ż = − f xy

, b, d, f ∈ R∗+ , (45)

with H = 1
2 (

1
b x2 − 1

d y2) and C = 1
2 (

1
d y2 + 1

f z2).
The closed-form solutions of the system (45) are

x(t) = R
√

b 1+u2(t)
1−u2(t)

y(t) = R
√

d 2u(t)
1−u2(t)

z(t) = 2√
bd

u̇(t)
1−u2(t)

, (46)

where R =
√

1
b x2

0 −
1
d y2

0, for 1
b x2

0 −
1
d y2

0 > 0, u(t) is an unknown smooth function, a
solution of the nonlinear problem:

ü(t)[1− u2(t)] + 2u(t)[u̇(t)]2 + bd f R2 · u(t)[1 + u2(t)] = 0

u(0) =
√

b
d

|y0|
|x0+R

√
b|

, u̇(0) = 1
2 z0
√

bd(1− u2(0)) .
(47)
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If 1
b x2

0 −
1
m y2

0 < 0, then the closed-form solutions are
x(t) = R

√
b 2u(t)

1−u2(t)

y(t) = R
√

d 1+u2(t)
1−u2(t)

z(t) = 2√
bd

u̇(t)
1−u2(t)

, (48)

where R =
√

1
d y2

0 −
1
b x2

0, u(t) is an unknown smooth function, a solution of the
nonlinear problem (47), with the initial conditions

u(0) =

√
d
b

|x0|
|y0 + R

√
d|

, u̇(0) =
1
2

z0
√

bd(1− u2(0)) . (49)

(viii) A three-dimensional chaotic system with a large scope was illustrated in [54]:
ẋ = ax + dxz + gy2

ẏ = by + exz + hz
ż = cz + f xy

, a, b, c, d, e, f , g, h ∈ R∗ , (50)

with the Hamilton–Poisson part
ẋ = dyz
ẏ = exz
ż = f xy

, d, e, f ∈ R∗ , (51)

with H = 1
2 (

1
d x2 − 1

e y2) and C = 1
2 (

1
e y2 − 1

f z2).
The closed-form solutions of the system (51) could be

x(t) = R
√

d 1+u2(t)
1−u2(t)

y(t) = R
√

e 2u(t)
1−u2(t)

z(t) = 2√
de

u̇(t)
1−u2(t)

, (52)

where R =
√

1
d x2

0 −
1
e y2

0, for 1
d x2

0 −
1
e y2

0 > 0, u(t) is an unknown smooth function, a
solution of the nonlinear problem:

ü(t)[1− u2(t)] + 2u(t)[u̇(t)]2 − de f R2 · u(t)[1 + u2(t)] = 0

u(0) =
√

d
e

|y0|
|x0+R

√
d|

, u̇(0) = 1
2 z0
√

de(1− u2(0)) .
(53)

If 1
d x2

0 −
1
e y2

0 < 0, then the closed-form solutions are
x(t) = R

√
d 1+u2(t)

1−u2(t)

y(t) = R
√

e 2u(t)
1−u2(t)

z(t) = 2√
de

u̇(t)
1−u2(t)

, (54)

where R =
√

1
b x2

0 −
1
m y2

0, u(t) is an unknown smooth function, a solution of the
nonlinear problem (53), with the initial conditions

u(0) =
√

e
d

|x0|
|y0 + R

√
e|

, u̇(0) =
1
2

z0
√

de(1− u2(0)) . (55)
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In the present paper, a modified version of the OPIM technique, namely, the modified
optimal parametric iteration method (mOPIM), is proposed to obtain the approximate
closed-form solutions of the system (2) subject to the initial conditions given by Equation (4).

3. The Basic Idea of the mOPIM Technique

Let the second-order nonlinear differential equation be

L[u(t)] +N[t, u(t), u̇(t), ü(t)]− g(t) = 0 , t ∈ I ⊂ R , (56)

subject to the initial conditions

B[u(t), u̇(t)] = 0, (57)

where L is a linear operator, N a nonlinear operator, B a boundary operator, g a known
function, u an unknown smooth function depending on the independent variable t, and
u̇(t) = du

dt .
Marinca et al. [36] proposed the following iterative scheme, namely, optimal paramet-

ric iteration method (OPIM), defined by

L[un+1(t)] +N[t, un, u̇n, ün] + αn(t, Ci)Nu[t, un, u̇n, ün]+
+βn(t, Cj)Nu̇[t, un, u̇n, ün] + γn(t, Ck)Nü[t, un, u̇n, ün] + · · · − g(t) = 0
B[un+1(t), u̇n+1(t)] = 0

, n ≥ 0, (58)

where αn(t, Ci), βn(t, Cj), and γn(t, Ck) are auxiliary continuous functions; NF = ∂N
∂F (ob-

tained from Taylor series expansion of the nonlinear operator N[t, u(t), u̇(t), ü(t)]); un+1(t)
is the (n + 1)-th-order approximate solution of Equations (56) and (57), denoted by ū(t);
and u0(t) is the initial approximation, a solution of the linear differential problem:

L[u0(t)]− g(t) = 0
B[u0(t), u̇0(t)] = 0 .

(59)

The real constants Ci, Cj, are Ck are unknown convergence-control parameters and
can be optimally computed.

Remark 2.

(1) In the case of nonlinear oscillators, the integration of Equation (58) produces secular terms
of the form t cos(ω0t), t sin(ω0t), t2 cos(ω0t), t2 sin(ω0t), t cos(2ω0t), t sin(2ω0t),
and so on. The presence of λ0(t, Cs) has the advantage of avoiding the secular terms that
appear through integration with the OPIM method, and that makes the oscillation amplitude
tend toward infinity (physically, the resonance phenomenon occurs).

(2) The OPIM method was successfully applied in the case of ODEs with boundary conditions
(see Ref) [55], such as

(a) Thin film flow of a fourth-grade fluid down a vertical cylinder

η f ′′(η) + f ′(η) + k η + 2b
[
( f ′(η))2 + 3η( f ′(η)2 f ′′(η))

]
= 0

f (1) = 0 , f ′(d) = 0 ,
(60)

where f ′(η) = d f
dη . The linear operator is chosen as L[ f (η)] = η f ′′(η) + f ′(η) + k η.

(b) Thermal radiation on MHD flow over a stretching porous sheet

f ′′′(η) + f (η) f ′′(η)− f ′(η)2 −M f ′(η) = 0
θ′′(η) +

(
a− be−γη

)
θ′(η)− ce−γηθ(η) = 0

f (1) = λ , f ′(0) = 1 , θ(0) = 1
f ′(η)→ 0 , θ(η)→ 0 as η → ∞ .

(61)
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The initial guess is chosen as θ0(η) = 0 and f (η) = λ + 1
λ (1− e−γη), with

γ = 1
2

(
λ +
√

λ2 + 4M + 4
)

.

(c) The oscillator with cubic and harmonic restoring force

u′′(t) + u(t) + a u3(t) + b sin u(t) = 0
u(0) = A , u′(0) = 0 .

(62)

The linear operator is chosen as L[u(t)] = u′′(t) + u(t).
(d) The Thomas–Fermi equation

y′′(x) =

√
y3(x)

x
⇔ x

[
y′′(x)

]2 − y3(x) = 0

y(0) = 1 , y(x)→ 0 as x → ∞.
(63)

The linear operator is chosen as L[y(x)] = y′′(x)− λ2y(x), and the nonlinear operator
yields N[y(x)] = x[y′′(x)]2 − y3(x) + y′′(x)− λ2y(x).

(e) Lotka–Volterra model with three species

x′(t) = x(1− x− αy− βz)
y′(t) = y(1− βx− y− αz)
z′(t) = z(1− αx− βy− z)
x(0) = a , y(0) = b , z(0) = c .

(64)

The initial approximations are chosen as x0(t) = ae−t, y0(t) = be−t, and z0(t) = ce−t

or x0(t) = ae−2t, y0(t) = b, and z0(t) = ce−t, and so on.

Next, we propose a modified version of the OPIM procedure, namely, the modified
optimal parametric iteration method (mOPIM), in the following form:

L[un+1(t)] + λ0(t, Cs)N[t, un, u̇n, ün] + αn(t, Ci)Nu[t, un, u̇n, ün]+
+βn(t, Cj)Nu̇[t, un, u̇n, ün] + γn(t, Ck)Nü[t, un, u̇n, ün] + · · · − g(t) = 0
B[un+1(t), u̇n+1(t)] = 0

, n ≥ 0, (65)

where the new auxiliary continuous function λ0(t, Cs) is a nonzero function and αn(t, Ci),
βn(t, Cj), and γn(t, Ck) have the same signification. The unknown real parameters Ci, Cj,
Ck, and Cs are optimally computed at least.

The (n + 1)-order approximate solution of Equation (65) is well determined if the
convergence-control parameters are known.

If u0(t) is the initial approximation of Equation (59), the nonlinear operatorsN[t, u0, u̇0, ü0],
Nu[t, u0, u̇0, ü0], Nu̇[t, u0, u̇0, ü0], and Nü[t, u0, u̇0, ü0] that appear in Equation (65) have the
form

∑nmax
i=1 hi(t)gi(t), (66)

where nmax is a positive integer, and hi(t) and gi(t) are known functions that depend on
u0(t).

Using the linearly independent functions h1, h2, · · · , hm, we introduce some types of
approximate solutions of Equation (56).

Definition 1. A sequence of functions {sm(t)}m≥1 of the form

sm(t) =
m

∑
i=1

αi
m · hi(t) , m ≥ 1, αi

m ∈ R, (67)

is called an mOPIM sequence of Equation (56).
Functions of the mOPIM sequences are called mOPIM functions of Equation (56).
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The mOPIM sequences {sm(t)}m≥1 with the property

lim
m→∞

R(t, sm(t)) = 0

are called convergent to the solution of Equation (56), where R(t, u(t)) = L[u(t)]+
N[t, u(t), u̇(t), ü(t)]− g(t).

Definition 2. The mOPIM functions F̃ satisfying the conditions∣∣∣R(t, F̃(t))
∣∣∣ < ε, B

(
F̃(t, Ci),

dF̃(t, Ci)

dt

)
= 0 (68)

are called ε-approximate mOPIM solutions of Equation (56).

Definition 3. The mOPIM functions F̃ satisfying the conditions

∞∫
0

R2(t, F̃(t)) dt ≤ ε, B
(

F̃(t, Ci),
dF̃(t, Ci)

dt

)
= 0 (69)

are called weak ε-approximate mOPIM solutions of Equation (56) on the real interval (0, ∞).

The existence of weak ε-approximate mOPIM solutions is built by the theorem pre-
sented above.

Theorem 1. Equation (56) admits a sequence of weak ε-approximate mOPIM solutions.

Proof. It is similar to the theorem from [56].

For un+1, an (n + 1)-order approximate solution of Equations (56) and (57), the valida-
tion of this procedure is highlighted by computing the residual function given by

R(t) = L[un+1(t)] +N[t, un+1(t), u̇n+1(t), ün+1(t)]− g(r) , t ∈ I ⊂ R , (70)

such that R(t) << 1, for all t ∈ I.

4. Approximate Analytic Solutions via mOPIM

This section emphasizes the applicability of the mOPIM procedure for the nonlinear
differential problems given by Equations (8) and (9) using only one iteration. This problem
could be written in the form of Equation (56), taking the following operators (g(t) = 0):

L[u(t)] = ü(t) + ω2
0u(t)

N[t, u(t), u̇(t), ü(t)] = ü(t)u2(t)− 2u(t)[u̇(t)]2 + aR
√

2a · u(t)[1 + u2(t)]−ω2
0u(t) , t > 0 .

(71)

Taking into consideration the linear operator given by Equation (71), the initial ap-
proximation u0(t), the solution of Equation (59) is

u0(t) = A cos(ω0t) + B sin(ω0t), (72)

with A = u(0), B = u̇(0)
ω0

.
Using Equation (71), a simple computation yields the following expressions:

Nu[t, u, u̇, ü] = 2uü− 2(u̇)2 + 3aR
√

2au2 + aR
√

2a−ω2
0 ,

Nu̇[t, u, u̇, ü] = −4uu̇ , Nü[t, u, u̇, ü] = u2 .
(73)
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Returning to Equation (65), there are a lot of possibilities to choose the following
auxiliary functions:

λ0(t, Cs) = D1 cos(ω0t) , αn(t, Ci) = D2 , βn(t, Cj) = D3 ,

γn(t, Ck) =
Nmax

∑
i=1

Bi cos(2iω0t) + Ci sin(2iω0t) ,
(74)

or

λ0(t, Cs) = D1 cos(ω0t)
αn(t, Ci) = D2 cos(2ω0t)
βn(t, Cj) = D3 sin(2ω0t)
γn(t, Ck) = E1 cos(4ω0t) + F1 sin(4ω0t) ,

and so on.

Taking into account Equation (74), for Nmax = 1, a simple computation yields

λ0(t, Cs)N[t, u0, u̇0, ü0] = T0 + P1 cos(2ω0t) + Q1 sin(2ω0t) + P2 cos(4ω0t) + Q2 cos(4ω0t)
αn(t, Ci)Nu[t, u0, u̇0, ü0] = T1 + M1 cos(2ω0t) + N1 sin(2ω0t)
βn(t, Ci)Nu̇[t, u0, u̇0, ü0] = M2 cos(2ω0t) + N2 sin(2ω0t)
γn(t, Ci)Nü[t, u0, u̇0, ü0] = T3 + G3 cos(2ω0t) + H3 sin(2ω0t) + G4 cos(4ω0t) + H4 sin(4ω0t)

(75)

where

T0 = a3/2 AD1R√
2
− 3a3/2 A3D1R

4
√

2
− 3a3/2 AB2D1R

4
√

2
− 1

2 AD1ω2
0 −

5
8 A3D1ω2

0 −
5
8 AB2D1ω2

0

P1 = a3/2 AD1R√
2
− a3/2 A3D1R√

2
− 1

2 AD1ω2
0 −

1
2 A3D1ω2

0 − AB2D1ω2
0

Q1 = a3/2BD1R√
2
− 3a3/2 A2BD1R

2
√

2
− a3/2B3D1R

2
√

2
− 1

2 BD1ω2
0 −

1
4 A2BD1ω2

0 −
3
4 B3D1ω2

0

P2 = − a3/2 A3D1R
4
√

2
+ 3a3/2 AB2D1R

4
√

2
+ 1

8 A3D1ω2
0 −

3
8 AB2D1ω2

0

Q2 = − 3a3/2 A2BD1R
4
√

2
+ a3/2B3D1R

4
√

2
+ 3

8 A2BD1ω2
0 −

1
8 B3D1ω2

0

T1 = 1
2

[
2
√

2a3/2D2R− 3
√

2a3/2 A2D2R− 3
√

2a3/2B2D2R− 2D2ω2
0 − 4A2D2ω2

0 − 4B2D2ω2
0

]
M1 = 3

√
2a3/2D2R

2
(
−A2 + B2)

N1 = −3
√

2a3/2 ABD2R
M2 = −4ABD3ω0
N2 = 2D3ω0(A2 − B2)

T3 = 1
4
(

A2E1 − B2E1 + 2ABF1
)

G3 = E1
2
(

A2 + B2)
H3 = F1

2
(

A2 + B2)
G4 = 1

4
(

A2E1 − B2E1 − 2ABF1
)

H4 = 1
4
(
2ABE1 + A2F1 − B2F1

)
.

By the integration of Equation (65) and using the expressions given by Equations (71)–(75),
the first-order approximate solution u1 could be obtained:

u1(t) = B̃0 + A cos(ω0t) + B sin(ω0t) + B̃1 cos(2ω0t) + C̃1 sin(2ω0t) + B̃2 cos(4ω0t) + C̃2 sin(4ω0t) , (76)

with the unknown real parameters B̃0, B̃1, B̃2 C0, B̃1, and B̃2, depending on the parameters T0,
T1, T3, P1, Q1, P2, Q2, M1, N1, M2, N2, G3, H3, G4, and H4, and can be optimally identified.

Analogously, for the value Nmax = 2, the expression γn(t, Ci)Nü[t, u0, u̇0, ü0] is a linear
combination between the elementary functions 1, cos(ω0t), sin(ω0t), cos(2ω0t), sin(2ω0t),
cos(4ω0t), sin(4ω0t), cos(6ω0t), and sin(6ω0t).

Then the first-order approximate solution u1 obtained from Equation (65) is a linear
combination between the elementary functions 1, cos(ω0t), sin(ω0t), cos(2ω0t), sin(2ω0t),
cos(4ω0t), sin(4ω0t), cos(6ω0t), and sin(6ω0t).

For an arbitrary integer number Nmax, inductively, the expression γn(t, Ci)Nü[t, u0, u̇0, ü0]
is a linear combination between the elementary functions 1, cos(2(i + 1)ω0t) and sin(2(i +
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1)ω0t), for i = 0, Nmax. Therefore, the the first-order approximate solution u1 will be of
the form

u1(t) = T0 + P0 cos(ω0t) + Q0 sin(ω0t) +
Nmax

∑
i=1

Bi cos(2iω0t) + Ci sin(2iω0t) , (77)

where the unknown convergence-control parameters T0, P0, Q0, Bi, and Ci for i = 1, Nmax
could be optimally computed.

Using the same procedure, the approximate closed-form solutions of the nonlinear
problems presented in Section 2.2 could be obtained by means of the mOPIM method.

5. Numerical Results and Discussions

This section illustrates the validation of the applied method by a comparison be-
tween the obtained analytic results and the corresponding numerical ones. Additionally,
the corresponding absolute errors are graphically and tabularly presented.

The unknown convergence-control parameters ω0, T0, P0, Q0, Bi, and Ci for i =
0, Nmax from Equation (77) are optimally computed for some values of the index number
Nmax and are exposed in Appendix A.

From Tables 1 and 2, it is easy to see that a good agreement between the obtained
analytic results and the corresponding numerical ones is revealed for Nmax = 25. For this
value of Nmax in Figure 1, the variation of absolute error is depicted.

A comparison between the approximate analytic solution ūmOPIM of
Equations (8) and (9) given by Equation (77) and the corresponding numerical solution
for a > 0 is highlighted in Tables 3 and 4 and qualitatively represented in Figures 2 and 3.
Similarly, for a < 0, the comparative solutions are exposed in Tables 5 and 6, respectively,
in Figures 4–6.

For the first dynamical system described in Section 2.2, the obtained solutions by the
mOPIM technique and the corresponding numerical results are presented in detail by the
comparison in Tables 7–12.

Table 1. Values of the absolute errors: εu = |unumerical − ūmOPIM| for a = 0.25, the initial conditions
x0 = 0.25, y0 = 0.5, z0 = 1.5, and different values of the index Nmax ∈ {5, 10, 15}; ūmOPIM analytic
approximate solution of Equations (8) and (9) obtained from Equations (77) and (A1)–(A5).

t Nmax = 5 Nmax = 10 Nmax = 15

0 1.665334 × 10−16 7.986389 × 10−13 5.800859 × 10−12

3 2.792333 × 10−5 1.071748 × 10−5 3.355308 × 10−8

6 1.996162 × 10−4 1.299889 × 10−5 3.921769 × 10−8

9 5.557844 × 10−4 4.809530 × 10−6 8.765128 × 10−8

12 1.658452 × 10−3 1.859888 × 10−5 1.230130 × 10−7

15 2.828080 × 10−3 1.196188 × 10−5 1.274314 × 10−7

18 3.438877 × 10−3 1.547642 × 10−5 9.088403 × 10−8

21 2.390172 × 10−3 1.324309 × 10−5 7.922086 × 10−8

24 2.233670 × 10−3 1.330894 × 10−6 1.494354 × 10−7

27 1.605828 × 10−3 5.178678 × 10−6 1.768828 × 10−7

30 7.452653 × 10−4 8.405924 × 10−6 4.481940 × 10−8
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Table 2. Values of the absolute errors: εu = |unumerical − ūmOPIM| for a = 0.25, the initial conditions
x0 = 0.25, y0 = 0.5, z0 = 1.5, and different values of the index Nmax ∈ {20, 25}; ūmOPIM analytic
approximate solution of Equations (8) and (9) obtained from Equations (77) and (A1)–(A5).

t Nmax = 20 Nmax = 25

0 3.382294 × 10−13 6.677991 × 10−14

3 7.806301 × 10−11 3.911580 × 10−10

6 3.264915 × 10−9 1.459806 × 10−10

9 1.069987 × 10−8 3.221471 × 10−10

12 6.903293 × 10−9 3.189073 × 10−10

15 1.322873 × 10−8 1.252072 × 10−10

18 1.967300 × 10−9 5.024303 × 10−11

21 1.064146 × 10−8 8.643594 × 10−11

24 7.988264 × 10−9 5.610625 × 10−11

27 5.097681 × 10−9 7.915236 × 10−10

30 8.908084 × 10−9 3.644332 × 10−10

2 4 6 8 10
t

5.´10
-9

1.´10
-8

1.5´10
-8

Εu

Figure 1. Profile of the absolute errors: εu = |unumerical − ūmOPIM| for a = 0.25, the initial conditions
x0 = 0.25, y0 = 0.5, z0 = 1.5, and Nmax = 25; ūmOPIM analytic approximate solution of Equations (8)
and (9) obtained from Equations (77) and (A5).

Table 3. The approximate analytic solution ūmOPIM (77) of Equations (8) and (9) and the correspond-
ing numerical solution for a = 0.25, the initial conditions x0 = 0.25, y0 = 0.5, z0 = 1.5, and Nmax = 25
(absolute errors: εu = |unumerical − ūmOPIM|).

t unumerical ūmOPIM εu

0 0.3027756377 0.3027756377 6.677991 × 10−14

3 0.0032845067 0.0032845071 3.911580 × 10−10

6 −0.2988484691 −0.2988484693 1.459806 × 10−10

9 −0.3403690488 −0.3403690485 3.221471 × 10−10

12 −0.0787141615 −0.0787141618 3.189073 × 10−10

15 0.2466436711 0.2466436712 1.252072 × 10−10

18 0.3620311865 0.3620311864 5.024303 × 10−11

21 0.1511730954 0.1511730953 8.643594 × 10−11

24 −0.1840136731 −0.1840136731 5.610625 × 10−11

27 −0.3662950369 −0.3662950376 7.915236 × 10−10

30 −0.2177176347 −0.2177176343 3.644332 × 10−10
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t
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uHtL

Figure 2. Profile of the auxiliary function ūmOPIM analytic approximate solution of
Equations (8) and (9) obtained from Equations (77) and (A5) for a = 0.25, the initial conditions
x0 = 0.25, y0 = 0.5, z0 = 1.5, and Nmax = 25: mOPIM solution (dotted line) and numerical solution
(solid line), respectively.

Table 4. The approximate analytic solution x̄mOPIM (7) and the corresponding numerical solution
for a = 0.25, the initial conditions x0 = 0.25, y0 = 0.5, z0 = 1.5, and Nmax = 25 (absolute errors:
εx = |xnumerical − x̄mOPIM|).

t xnumerical x̄mOPIM εx

0 0.25 0.2499999985 1.445188 × 10−9

3 0.4624590237 0.4624590276 3.972243 × 10−9

6 0.2570637655 0.2570636473 1.181607 × 10−7

9 −0.1634564945 −0.1634563481 1.463877 × 10−7

12 −0.4503182221 −0.4503184807 2.585838 × 10−7

15 −0.3324278454 −0.3324277961 4.932482 × 10−8

18 0.0705998931 0.0705998473 4.577343 × 10−8

21 0.4166639663 0.4166640231 5.680127 × 10−8

24 0.3935012294 0.3935012981 6.871170 × 10−8

27 0.0249032354 0.0249032010 3.434804 × 10−8

30 −0.3637331399 −0.3637329877 1.521911 × 10−7

Table 5. The approximate analytic solution ūmOPIM (77) of Equation (12) and the corresponding
numerical solution for a = −0.15, the initial conditions x0 = 0.25, y0 = 0.55, z0 = 1.5, and Nmax = 25
(absolute errors: εu = |unumerical − ūmOPIM|).

t unumerical ūmOPIM εu

0 0.7161175138 0.7161175138 1.417754 × 10−13

6 0.7032944482 0.7032944694 2.122879 × 10−8

12 0.3234806148 0.3234806047 1.015607 × 10−8

18 −0.3427164082 −0.3427164089 7.483426 × 10−10

24 −0.7086126654 −0.7086126721 6.768228 × 10−9

30 −0.7113611793 −0.7113611530 2.630958 × 10−8

36 −0.3530400106 −0.3530400526 4.201062 × 10−8

42 0.3128079068 0.3128079500 4.321215 × 10−8

48 0.7002348666 0.7002348370 2.953453 × 10−8

54 0.7185639058 0.7185638813 2.452961 × 10−8

60 0.3815739146 0.3815739314 1.683062 × 10−8
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yHtL

xHtL
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t

-1.0
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1.0

1.5

Figure 3. Profile of the closed-form solutions x̄mOPIM, ȳmOPIM, and z̄mOPIM given by Equations (6),
(7), and (A5) for a = 0.25, the initial conditions x0 = 0.25, y0 = 0.5, z0 = 1.5, and Nmax = 25: mOPIM
solution (dashed line) and numerical solution (solid line), respectively.
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Figure 4. Profile of the absolute errors: εu = |unumerical − ūmOPIM| for a = −0.15, the initial conditions
x0 = 0.25, y0 = 0.55, z0 = 1.5, and Nmax = 25; ūmOPIM analytic approximate solution of Equation (12)
obtained from Equations (77) and (A6).
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Figure 5. Profile of the auxiliary function ūmOPIM analytic approximate solution of Equation (12)
obtained from Equations (77) and (A6) for a = −0.15, the initial conditions x0 = 0.25, y0 = 0.55,
z0 = 1.5, and Nmax = 25: mOPIM solution (dotted line) and numerical solution (solid line), respectively.
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Table 6. The approximate analytic solution ȳmOPIM (10) and the corresponding numerical solution
for a = −0.15, the initial conditions x0 = 0.25, y0 = 0.55, z0 = 1.5, and Nmax = 25 (absolute errors:
εy = |ynumerical − ȳmOPIM|).

t ynumerical ȳmOPIM εy

0 0.55 0.550000000000338 3.379518 × 10−13

6 0.5206977593 0.5206979193 1.599459 × 10−7

12 0.1351805604 0.1351806190 5.861116 × 10−8

18 −0.1452987372 −0.1452987338 3.429793 × 10−9

24 −0.5325474695 −0.5325478658 3.963163 × 10−7

30 −0.5388373225 −0.5388373757 5.322350 × 10−8

36 −0.1509038596 −0.1509037212 1.383424 × 10−7

42 0.1297363561 0.1297365890 2.328451 × 10−7

48 0.5140640684 0.5140645556 4.872576 × 10−7

54 0.5558836780 0.5558836348 4.317333 × 10−8

60 0.1671020584 0.1671016723 3.860081 × 10−7

zHtL

xHtL

yHtL

10 20 30 40 50 60
t

-1.5

-1.0

-0.5

0.5

1.0

1.5

Figure 6. Profile of the closed-form solutions x̄mOPIM, ȳmOPIM, and z̄mOPIM given by Equations (10),
(11), and (A6) for a = −0.15, the initial conditions x0 = 0.25, y0 = 0.55, z0 = 1.5, and Nmax = 25:
mOPIM solution (dashed line) and numerical solution (solid line), respectively.

Table 7. The approximate analytic solution ūmOPIM (77) of Equation (16) and the corresponding
numerical solution for b = 0.250, d = 0.45, and m = 0.75, the initial conditions x0 = 1.25, y0 = 0.25,
z0 = 0.35, and Nmax = 25 (absolute errors: εu = |unumerical − ūmOPIM|).

t unumerical ūmOPIM εu

0 0.0813641358 0.0813641358 1.204730 × 10−13

2 0.0833334819 0.0833334819 3.184762 × 10−11

4 −0.0614111799 −0.0614111795 4.478518 × 10−10

6 −0.0980368958 −0.0980368959 3.483953 × 10−11

8 0.0379370221 0.0379370221 4.286203 × 10−11

10 0.1071197387 0.1071197380 6.304264 × 10−10

12 −0.0122874830 −0.0122874833 2.706000 × 10−10

14 −0.1100615848 −0.1100615850 1.659267 × 10−10

16 −0.0140666728 −0.0140666729 1.289021 × 10−10

18 0.1066938318 0.1066938312 5.206623 × 10−10

20 0.0396142006 0.0396141999 6.878308 × 10−10
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Table 8. The approximate analytic solution x̄mOPIM (15) and the corresponding numerical solution
for b = 0.250, d = 0.45, and m = 0.75, the initial conditions x0 = 1.25, y0 = 0.25, z0 = 0.35, and
Nmax = 25 (absolute errors: εx = |xnumerical − x̄mOPIM|).

t xnumerical x̄mOPIM εx

0 1.25 1.2499999999 4.884981 × 10−14

2 1.2508111827 1.2508111669 1.576702 × 10−8

4 1.2428981332 1.2428980804 5.279530 × 10−8

6 1.2575006684 1.2575006885 2.008940 × 10−8

8 1.2371144259 1.2371143740 5.186460 × 10−8

10 1.2621963761 1.2621964234 4.725770 × 10−8

12 1.2339311236 1.2339310851 3.854395 × 10−8

14 1.2638104780 1.2638105495 7.145415 × 10−8

16 1.2340468263 1.2340468062 2.005757 × 10−8

18 1.2619664732 1.2619665313 5.814743 × 10−8

20 1.2374362328 1.2374362326 1.857536 × 10−10

Table 9. The approximate analytic solution ūmOPIM (77) of Equations (16) and (27) and the corre-
sponding numerical solution for the initial conditions x0 = 1.55, y0 = 0.75, z0 = 0.35, and Nmax = 25
(absolute errors: εu = |unumerical − ūmOPIM|).

t unumerical ūmOPIM εu

0 0.2580453378 0.2580453378 5.551115 × 10−17

1 0.1368008897 0.1368008898 9.801889 × 10−11

2 −0.2307222259 −0.2307222257 1.978850 × 10−10

3 −0.1830075275 −0.1830075275 2.248004 × 10−11

4 0.1941280553 0.1941280555 1.241964 × 10−10

5 0.2218381157 0.2218381158 1.300534 × 10−10

6 −0.1497146227 −0.1497146226 1.003465 × 10−10

7 −0.2517490655 −0.2517490655 3.825217 × 10−11

8 0.0992567298 0.0992567296 2.150129 × 10−10

9 0.2715597650 0.2715597651 5.533706 × 10−11

10 −0.0447838420 −0.0447838418 1.849511 × 10−10

Table 10. The approximate analytic solution z̄mOPIM (26) and the corresponding numerical solution
for the initial conditions x0 = 1.55, y0 = 0.75, z0 = 0.35, and Nmax = 25 (absolute errors: εz =

|znumerical − z̄mOPIM|).

t znumerical z̄mOPIM εz

0 0.35 0.3500000044 4.438894 × 10−9

1 −0.7361776001 −0.7361776290 2.890399 × 10−8

2 −0.4979055030 −0.4979056583 1.552408 × 10−7

3 0.6489382094 0.6489379874 2.220426 × 10−7

4 0.6208728951 0.6208728159 7.920362 × 10−8

5 −0.5332290474 −0.5332288509 1.964807 × 10−7

6 −0.7158051879 −0.7158052698 8.184599 × 10−8

7 0.3915070650 0.3915068641 2.008447 × 10−7

8 0.7816900986 0.7816900816 1.693372 × 10−8

9 −0.2288523021 −0.2288520752 2.269252 × 10−7

10 −0.8186446175 −0.8186446186 1.138482 × 10−9
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Table 11. The approximate analytic solution ūmOPIM (77) of Equations (16) and (33) and the corre-
sponding numerical solution for the initial conditions x0 = 0.75, y0 = 0.95, z0 = 0.25, and Nmax = 25
(absolute errors: εu = |unumerical − ūmOPIM|).

t unumerical ūmOPIM εu

0 0.1339394440 0.1339394440 3.202993 × 10−13

1 0.3678152638 0.3678152642 3.647225 × 10−10

2 0.2279650712 0.2279650715 2.869146 × 10−10

3 −0.1454902169 −0.1454902166 2.825168 × 10−10

4 −0.3693950508 −0.3693950509 7.337930 × 10−11

5 −0.2180138015 −0.2180138015 8.116590 × 10−12

6 0.1568748321 0.1568748321 3.115582 × 10−11

7 0.3705660013 0.3705660013 2.219724 × 10−11

8 0.2078152196 0.2078152196 3.170524 × 10−11

9 −0.1680803111 −0.1680803110 8.022660 × 10−11

10 −0.3713269352 −0.3713269352 3.649314 × 10−11

Table 12. The approximate analytic solution ȳmOPIM (32) and the corresponding numerical solution
for the initial conditions x0 = 0.75, y0 = 0.95, z0 = 0.25, and Nmax = 25 (absolute errors: εy =

|ynumerical − ȳmOPIM|).

t ynumerical ȳmOPIM εy

0 0.95 0.9499999999 1.630917 × 10−13

1 1.2033009149 1.2033009655 5.063425 × 10−8

2 1.0169960446 1.0169959880 5.662388 × 10−8

3 0.9561549652 0.9561546963 2.689327 × 10−7

4 1.2061597339 1.2061598849 1.509541 × 10−7

5 1.0079868679 1.0079867476 1.203212 × 10−7

6 0.9627637335 0.9627636506 8.295834 × 10−8

7 1.2082915777 1.2082918531 2.753882 × 10−7

8 0.9992517322 0.9992516775 5.466931 × 10−8

9 0.9698056708 0.9698055682 1.025970 × 10−7

10 1.2096831387 1.2096832205 8.182391 × 10−8

mOPIM Solutions versus Iterative Solutions

To emphasize the advantages of the presented method, the iterative solutions are
obtained by the iterative method [57].

If the system (2) is integrated over the interval [0, t], it results in

x(t) = x(0) +
t∫

0

ay(s) ds

y(t) = y(0) + (−a)
t∫

0

x(s)z(s) ds

z(t) = z(0) +
t∫

0

x(s)y(s) ds

. (78)
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The iterative procedure leads to

x0(t) = x(0) , x1(t) = N1(x0, y0, z0) =

t∫
0

ay0(s) ds ,

y0(t) = y(0) , y1(t) = N2(x0, y0, z0) = −a
t∫

0

x0(s)z0(s) ds ,

z0(t) = z(0) , z1(t) = N3(x0, y0, z0) =

t∫
0

x0(s)y0(s) ds ,

· · ·

xm(t) = N1

(
m−1

∑
i=0

xi,
m−1

∑
i=0

yi,
m−1

∑
i=0

zi

)
− N1

(
m−2

∑
i=0

xi,
m−2

∑
i=0

yi,
m−2

∑
i=0

zi

)
,

ym(t) = N2

(
m−1

∑
i=0

xi,
m−1

∑
i=0

yi,
m−1

∑
i=0

zi

)
− N2

(
m−2

∑
i=0

xi,
m−2

∑
i=0

yi,
m−2

∑
i=0

zi

)
,

zm(t) = N3

(
m−1

∑
i=0

xi,
m−1

∑
i=0

yi,
m−1

∑
i=0

zi

)
− N3

(
m−2

∑
i=0

xi,
m−2

∑
i=0

yi,
m−2

∑
i=0

zi

)
,

m ≥ 2 .

(79)

The solutions of Equation (2), using the iterative algorithm, can be written as

xiter(t) =
∞

∑
m=0

xm(t) , yiter(t) =
∞

∑
m=0

ym(t) , ziter(t) =
∞

∑
m=0

zm(t) ,

The iterative solutions xiter(t), after six iterations and considering the initial conditions,
x(0) = 0.25, y(0) = 0.5, and z(0) = 1.5 (presented in Tables 13), and the physical constant
a = 0.250, taking into account the algorithm (79), become

xiter(t) =
6

∑
m=0

xm(t) = 0.25 + 0.125t− 0.01171875t2 − 0.0022786458t3−

−0.0000152587t4 + 0.0000139872t5

yiter(t) =
6

∑
m=0

ym(t) = 0.5− 0.0937499999t− 0.0273437499t2 − 0.0002441406t3+

+0.0002797444t4 + 0.0000886917t5

ziter(t) =
6

∑
m=0

zm(t) = 1.5 + 0.1249999999t + 0.0195312499t2 − 0.0081380208t3−

−0.0008799235t4 + 0.0001131693t5 + 0.0000217888t6 .

(80)

In Figure 7 and Table 13, respectively, is presented a parallel between the mOPIM
solutions x̄mOPIM and the corresponding iterative solutions xiter given in Equation (80). This
comparative analysis highlights the efficiency and the accuracy of the modified mOPIM
method using only one iteration.

The precision and efficiency of the mOPIM method (using just one iteration) against
the iterative method are described in [57] (using six iterations), arising from the presented
comparison.
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Figure 7. Profile of the approximate analytical solution x̄mOPIM(t) of Equation (2) given by Equa-
tion (A5), the iterative solution xiter(t) given by Equation (80), and the corresponding numerical
solution: mOPIM solution (dashed line), iterative solution (dotted line), and numerical solution (solid
line), respectively.

Table 13. Values of the approximate analytical solution x̄(t)mOPIM (A5), the iterative solution xiter(t)
(80), and the corresponding numerical solution.

t xnumerical x̄mOPIM xiter

0 0.25 0.2499999985 0.25
1 0.3610049696 0.3610048962 0.3610050309
2 0.4353207343 0.4353207328 0.4353288189
3 0.4624590237 0.4624590276 0.4626173487
4 0.4382012681 0.4382013071 0.4394406708
5 0.36632873959 0.3663287291 0.3719271924
6 0.2570637655 0.2570636473 0.2745357196
7 0.1235690104 0.1235688481 0.1667502201
8 −0.0208470389 −0.0208471012 0.0778136191
9 −0.1634564945 −0.1634563481 0.0783493199
10 −0.2914024236 −0.2914022766 0.3597669503

6. Conclusions

A new analytical approach, namely, the modified optimal parametric iteration method
(mOPIM), for solving second-order nonlinear differential equations is developed using
only one iteration.

In this way, the closed-form analytical approximate solutions are built for a class of
nonlinear dynamical systems that possess a Hamilton–Poisson structure.

The obtained results are validated by graphically comparing them with the corre-
sponding numerical solutions. The corresponding absolute errors are tabulated.

A comparison between the approximate analytical solution obtained with mOPIM,
the analytical solution obtained with the iterative method, and the corresponding numerical
solution highlights the advantages of the mOPIM method.

These comparisons prove the precision of the applied method in the sense that the
semianalytical solutions are approaching the exact solution; e.g., the residual functions are
much smaller than 1.
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The achieved results have high potential, especially given the strong alignment demon-
strated between the analytical and numerical outcomes, and they encourage the study of
other dynamical systems with similar properties.

The possibility of a comparison between our results and some experiments based
on the dynamical systems having a Hamilton–Poisson structure could be the subject of a
future work.
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Appendix A

Example A1. ūmOPIM is an approximate solution for the problem given by Equations (8) and (9)
for a = 0.25 and the initial conditions x0 = 0.25, y0 = 0.5, and z0 = 1.5. Numerical values of the
convergence-control parameters for ūmOPIM obtained from Equation (77) for different values for the
index number Nmax:

Nmax = 5

T0 = −1.3645226466 , P0 = 0.3027756377 , Q0 = −1.7310418583 , ω0 = 0.0394153192 ,
B1 = 0.7093487335 , B2 = 1.2883240097 , B3 = −1.1764589241 , B4 = 0.4816679436 ,
B5 = 0.0616408838 , C1 = 3.5032446205 , C2 = −1.8669879085 , C3 = 0.0104348798 ,
C4 = 0.1186588233 , C4 = −0.0550417462 ;

(A1)

Nmax = 10

T0 = −9011.7370963627 , P0 = 0.3027756377 , Q0 = −1.7310418583 , ω0 = 0.0394153192 ,
B1 = 6210.8028490882 , B2 = 9619.2607238330 , B3 = −8234.6607158170 , B4 = −210.0483113946 ,
B5 = 2351.3916977204 , B6 = −664.4449309727 , B7 = −126.7321978177 , B8 = 71.3655205047 ,
B9 = −4.6010168396 , B10 = −0.5965219421 , C1 = 15515.4057961291 , C2 = −9184.9969364177 ,
C3 = −3732.7329833587 , C4 = 5199.5230090236 , C5 = −853.5314228490 , C6 = −724.7564678249 ,
C7 = 278.3838751775 , C8 = 0.9713213732 , C9 = −10.3188952239 , C10 = 0.7303271719 ;

(A2)

Nmax = 15

T0 = −47347.6979077393 , P0 = 0.3027756377 , Q0 = −1.7310418583 , ω0 = 0.0394153192 ,
B1 = 28029.5077629018 , B2 = 36835.5243333928 , B3 = −9179.8819856227 , B4 = 6748.3077751689 ,
B5 = −36573.8987602883 , B6 = 15127.1823412952 , B7 = 20138.9557723050 , B8 = −15560.1819661824 ,
B9 = −994.3504561492 , B10 = 3600.9643953332 , B11 = −683.6662511842 , B12 = −203.6362320634 ,
B13 = 63.7919731956 , B14 = −0.3669805555 , B15 = −0.5538138073 , C1 = 76769.0237035164 ,
C2 = −31802.8567339913 , C3 = −3168.9430186607 , C4 = −20521.5129784862 , C5 = 2609.0540995573 ,
C6 = 33508.2041808617 , C7 = −19535.5993052800 , C8 = −7641.2956257950 , C9 = 8770.3427609209 ,
C10 = −846.2686310865 , C11 = −1054.9414015566 , C12 = 267.3544611641 , C13 = 20.1003607833 ,
C14 = −8.8834483561 , C15 = 0.2268151560 ;

(A3)
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Nmax = 20

T0 = −967.5126595695 , P0 = 0.3027756377 , Q0 = −1.7310418583 , ω0 = 0.0394153192 ,
B1 = 2740.0481328568 , B2 = −1289.5355545764 , B3 = 30.1379306896 , B4 = −1501.6912143488 ,
B5 = 176.5318482069 , B6 = 282.3553992710 , B7 = 759.2575638586 , B8 = 840.1223662276 ,
B9 = −834.3201849636 , B10 = −5.5261928550 , B11 = −1673.0815044222 , B12 = 1728.1749458879 ,
B13 = 386.5501596385 , B14 = −945.7592177044 , B15 = 212.2060828546 , B16 = 101.9956746232 ,
B17 = −41.2011238578 , B18 = 0.2468506681 , B19 = 1.0506131089 , B20 = −0.0499155941 ,
C1 = 582.6835445448 , C2 = −2277.9775827277 , C3 = 669.1992719574 , C4 = −817.4500787739 ,
C5 = 2002.4078423599 , C6 = −478.9899419870 , C7 = 1176.4604992800 , C8 = −1679.0510280463 ,
C9 = 92.3444387332 , C10 = −850.5364682209 , C11 = 1009.9587527470 , C12 = 1240.6680049797 ,
C13 = −1581.2283402896 , C14 = 127.9539803602 , C15 = 384.6671349478 , C16 = −121.1179441100 ,
C17 = −14.3470446223 , C18 = 8.7189429987 , C19 = −0.4327207477 , C20 = −0.0532528808 ;

(A4)

Nmax = 25

T0 = 284.5523341304 , P0 = 0.3027756377 , Q0 = −1.7310418583 , ω0 = 0.0394153192 ,
B1 = −528.8589464868 , B2 = 221.2216109757 , B3 = −144.7433158542 , B4 = 265.3657927300 ,
B5 = −80.3767491956 , B6 = 122.5588240050 , B7 = −123.7452538928 , B8 = 10.6109549611 ,
B9 = −76.3121750935 , B10 = −14.7700187846 , B11 = 35.9872889763 , B12 = −25.9433881704 ,
B13 = 144.7629231030 , B14 = −101.7550148999 , B15 = 137.2563254708 , B16 = −235.6150275432 ,
B17 = 49.5813537608 , B18 = 133.2591408631 , B19 = −77.1058866779 , B20 = −6.7841049282 ,
B21 = 12.9608550499 , B22 = −1.7913041691 , B23 = −0.3899441137 , B24 = 0.0740238524 ,
B25 = −0.0002980683 , C1 = −237.6252535273 , C2 = 351.5360968894 , C3 = −120.0478800258 ,
C4 = 207.6563594714 , C5 = −245.0201668432 , C6 = 120.8155649201 , C7 = −236.6305372578 ,
C8 = 172.7728096388 , C9 = −161.5337560363 , C10 = 214.8620570422 , C11 = −125.2654415037 ,
C12 = 178.6082589538 , C13 = −133.9751591901 , C14 = 44.7831135580 , C15 = −91.0809897652 ,
C16 = −65.0458536017 , C17 = 228.6410149566 , C18 = −97.4243988479 , C19 = −47.2422925946 ,
C20 = 38.4478919511 , C21 = −2.5170103548 , C22 = −2.9002648357 , C23 = 0.5041173148 ,
C24 = 0.0228154393 , C25 = −0.0046249029 ;

(A5)

Example A2. ūmOPIM is an approximate solution for the problem given by Equation (12) for
a = −0.15 and the initial conditions x0 = 0.25, y0 = 0.55, and z0 = 1.5. Numerical values of
the convergence-control parameters for ūmOPIM obtained from Equation (77) for the index number
Nmax = 25:

T0 = −498.4645306525 , P0 = 0.7161175138 , Q0 = 1.1462480835 , ω0 = 0.0205760819 ,
B1 = 5567.7561503224 , B2 = −2557.3756201650 , B3 = −24.0526079444 , B4 = −4536.4763384551 ,
B5 = 18.9495310643 , B6 = −1594.3125244820 , B7 = 2807.830856904494‘, B8 = 1085.0369966006 ,
B9 = 2220.3407169046 , B10 = −430.2028205305 , B11 = −1202.9330116243 , B12 = −1542.5116368755 ,
B13 = −1685.0510052802 , B14 = 1755.4969932100 , B15 = 184.6432353860 , B16 = 3151.9702978315 ,
B17 = −2802.6407490920 , B18 = −1327.1494147799 , B19 = 1751.9314703236 , B20 = −154.8029127736 ,
B21 = −250.6946133996 , B22 = 58.5619863696 , B23 = 6.1033794163 , B24 = −1.9850176785 ,
B25 = 0.0311893999 , C1 = −910.9801169394 , C2 = −4488.7637727948 , C3 = −572.0244213131 ,
C4 = −1240.3564960780 , C5 = 3181.5761108879 , C6 = 777.6814953289 , C7 = 3291.1950696635 ,
C8 = −1647.5022081926 , C9 = 409.8175067255 , C10 = −3731.2226729448 , C11 = 548.9690766667 ,
C12 = −1633.3295775178 , C13 = 3134.7853499242 , C14 = 296.6013345171 , C15 = 1310.7850374584 ,
C16 = −1596.0544956490 , C17 = −2761.7367458984 , C18 = 2716.4617087516 , C19 = 230.5836958001 ,
C20 = −792.7083895556 , C21 = 142.4832986312 , C22 = 52.3651535735 , C23 = −14.2557024111 ,
C24 = −0.1555375336 , C25 = 0.1217941765 .

(A6)
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