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Abstract: In this article, we introduce a new subgradient extra-gradient algorithm to find the common
element of a set of fixed points of a Bregman relatively nonexpansive mapping and the solution set of
an equilibrium problem involving a Pseudomonotone and Bregman–Lipschitz-type bifunction in
reflexive Banach spaces. The advantage of the algorithm is that it is run without prior knowledge of
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1. Introduction

Let X be a reflexive real Banach space and C be a closed, convex and nonempty subset
of X. We denote the dual space of X by X∗. The minimization problem for a function
f : C → R is defined as

Find x∗ ∈ C such that f (x∗) ≤ f (y), ∀y ∈ C. (1)

In this case, x∗ is called a minimizer of f , and Argminy∈C f (y) denotes the set of
minimizers of f . Minimization problems are very useful in optimization theory as well as
convex and nonlinear analysis. An important generalization of Problem (1) for a bifunction
f :C×C→R is the following equilibrium problem (EP), defined as

Find x∗ ∈ C such that f (x∗, y) ≥ 0, ∀y ∈ C. (2)

We denote by EP( f ) the solutions set of (2). Many interesting and demanding problems in
nonlinear analysis, such as complementarity, the fixed point, Nash equilibria, optimization,
the saddle point and variational inequality problems, can be reformulated as equilibrium
problems (cf. [1–4]). Some authors have obtained results regarding the existence and
stability of solutions of (EP) (cf. [5,6]).

However, equilibrium problems in finite as well as infinite dimensional spaces were
studied by [7–10]. Dadashi et al. [11] studied the subgradient extra-gradient method for
Pseudomonotone equilibrium problems.
Recently, several authors have combined equilibrium problems with fixed-point prob-
lems. They have presented algorithms to solve them in Hilbert spaces [9,12]. Also, some
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authors have presented several methods for solving fixed-point problems in metric spaces,
see [13–15].

One of the most popular methods used to solve equilibrium problems is the extra-
gradient method. Authors have considered the extra-gradient method for monotone and
Pseudomonotone equilibrium problems [4,16–21].
In [8], Reich and Sabach studied equilibrium problems and fixed-point problems in Banach
spaces. In their paper, they presented two algorithms to find the common fixed points
of many finite, firmly nonexpansive Bregman operators. Very recently, inspired by the
extra-gradient method, Yang and Liu [22] presented an algorithm, which is called the
subgradient extra-gradient method, to find a common solution to equilibrium problems and
the fixed point of a quasinonexpansive mapping without the knowledge of the Lipschitz-
type constants of the bifunction in Hilbert spaces. The algorithm is as follows:

yn = argmin{λn f (xn, y) + 1
2 ‖xn − y‖2 : y ∈ C},

zn = argmin{λn f (yn, y) + 1
2 ‖xn − y‖2 : y ∈ Tn},

tn = αnx0 + (1− αn)zn,

xn+1 = βnzn + (1− βn)Stn,

where µ ∈ (0, 1), λ0 > 0 and x0 ∈ H is arbitrary. Also,

Tn = {v ∈ H : 〈xn − λnwn − yn, v− yn〉 6 0},

wn ∈ ∂2 f (xn, yn) such that xn − λnwn − yn ∈ NC(yn) and

λn+1=

{
min

{
µ(‖zn−yn‖2+‖yn−xn‖2)

f (xn ,zn)− f (xn ,yn)− f (yn ,zn)
, λn

}
, i f f (xn, zn)− f (xn, yn)− f (yn, zn) > 0,

λn, otherwise,

in addition, the sequences {αn} and {βn} satisfy the conditions

(i) {αn} ⊂ [0, 1] and ∑∞
n=0 αn = ∞,

(ii) lim supn→∞ βn ≤ 0, or ∑∞
n=0 |αnβn| < ∞.

Inspired by the above work, in the present paper, we introduce a new subgradient
extra-gradient algorithm to find the common element of a set of fixed points of a Bregman
relatively nonexpansive mapping and the solution set of an equilibrium problem involving
a Pseudomonotone and Bregman–Lipschitz-type bifunction in reflexive Banach spaces.

This paper is organized as follows: In Section 2, we recall some definitions and
preliminary results. Section 3 deals with our algorithm and the relevant convergence
analysis. Finally, in Section 4, we illustrate the proposed subgradient extra-gradient method
by considering two numerical experiments.

2. Materials and Methods

In this section, we recall some definitions and preliminaries. Suppose that f : X →
(−∞, ∞] is a convex, proper and lower semicontinuous function. We denote by Argmin
the set of minimizers of f . If Argmin f is a singleton, its unique element is denoted
by argminx∈X f (x). Additionally, we denote by dom f the domain of f ; that is, the set
{x ∈ X : f (x) < ∞}. Let x ∈ int dom f . Given the proper, convex and lower semicontinu-
ous function f : X → (−∞, ∞], its subdifferential at some x ∈ X is defined as

∂ f (x) = {ξ ∈ X∗ : f (x) + 〈y− x, ξ〉 ≤ f (y), ∀y ∈ X}.

Concerning this definition, we have

(i) ∂ f (x) is empty when f (x) = ∞,
(ii) ∂ f (x) is not in general empty when x ∈ dom f ,
(iii) ∂ f (x) is nonempty when x ∈ int dom f ; precisely, int dom f ⊂ dom(∂ f ).
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It will be useful to stress these facts in the present exposition. The function f ∗ : X∗ →
(−∞, ∞] defined by

f ∗(ξ) = sup{ 〈x, ξ〉 − f (x) : x ∈ X},

is called the Fenchel conjugate of f . It can be shown that ξ ∈ ∂ f (x) is equivalent to

f (x) + f ∗(ξ) = 〈x, ξ〉. (3)

We can show that f ∗ is a proper, convex and lower semicontinuous function. The function
f is called cofinite if dom f ∗=X∗. Let f : X → (−∞,+∞] be a convex function. Given
x ∈ int dom f and y ∈ X, the right-hand derivative of f at x in the direction y is given by

f ◦(x, y) := lim
t↓0

f (x + ty)− f (x)
t

. (4)

A function f is called Gâteaux differentiable at x∈int dom f if the limit as t→ 0 in (4) exists
for each y. The function f is said to be Gâteaux differentiable if it is Gâteaux differentiable
at each x∈int dom f . In this case, the gradient of f at x is the linear function ∇ f (x), which
is defined by 〈y,∇ f (x)〉 := f ◦(x, y) for all y ∈ X. We say that f is Fréchet differentiable at
x if it is Gâteaux differentiable and the limit as t→ 0 in (4) is attained uniformly for every
y ∈ X with ‖y‖ = 1. Also, we say that f is uniformly Fréchet differentiable on a bounded
subset E of X if the limit is attained uniformly for x ∈ E and ‖y‖ = 1.

The function f : X → (−∞,+∞) is called Legendre if it satisfies the following
two conditions:
(L1) int dom f 6= ∅ and subdifferential ∂ f is single valued on its domain,
(L2) int dom f ∗ 6= ∅ and ∂ f ∗ is single valued on its domain.

Since X is reflexive, we always have (∂ f )−1 = ∂ f ∗ (see [23], p. 83). This fact, combined
with Conditions (L1) and (L2), implies the following equalities which will be very useful in
the sequel:

∇ f =(∇ f ∗)−1,

ran ∇ f =dom ∇ f ∗ = int dom f ∗,

ran ∇ f ∗ =dom ∇ f = int dom f .

Also, Conditions (L1) and (L2), in conjunction with Theorem 5.4 of [24],
imply that the functions f and f ∗ are strictly convex on the interior of their respective

domains and f is Legendre if and only if f ∗ is Legendre. Several interesting examples
of Legendre functions are presented in [24]. Among them are the functions 1

p ‖·‖p with
p ∈ (1, ∞), where the Banach space X is smooth and strictly convex.

Given a Gâteaux differentiable convex function f : X → R, the Bregman distance with
respect to f is defined as

D f (x, y) := f (x)− f (y)− 〈∇ f (y), x− y〉, x, y ∈ E.

Note that D f : dom f × int dom f → [0,+∞] is not a distance in the usual sense of the
term. In general, D f is not symmetric and does not satisfy the triangle inequality. Clearly,
D f (x, x) = 0, but D f (y, x) = 0 may not imply x = y. In our case, when f is Legendre, this
indeed holds (see [24], Theorem 7.3(vi)). However, D f satisfies the three-point identity

D f (x, y) + D f (y, z)− D f (x, z) = 〈x− y,∇ f (z)−∇ f (y)〉,

and four-point identity

D f (x, y) + D f (w, z)− D f (x, z)− D f (w, y) = 〈x− w,∇ f (z)−∇ f (y)〉,

for any x, w ∈ dom f and y, z ∈ int dom f .
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More information regarding Bregman functions and distances can be found in [4,24–31].
A function f : X → (−∞,+∞] is called totally convex at a point x ∈ int dom f if its
modulus of total convexity at x, that is, the function υ f (x, ·):[0,+∞)→[0, ∞], defined by

υ f (x, t) := inf{D f (y, x) : y ∈ dom f , ‖y− x‖ = t},

is positive whenever t > 0. This notion was first introduced by Butnariu and Iusem in [28].
Let E be a nonempty subset of X. The modulus of the total convexity of f on E is defined by

υ f (E, t) = inf{υ f (x, t) : x ∈ E ∩ int dom f }.

A function f is called totally convex on bounded subsets if υ f (E, t) is positive for any
nonempty and bounded subset E and for any t > 0. We will need the following lemmas in
the proof of our results.

Lemma 1 ([32]). If f : X → R is uniformly Fréchet differentiable and bounded on bounded subsets
of X, then ∇ f is uniformly continuous on bounded subsets of X from the strong topology of X to
the strong topology of X∗.

The function f is called sequentially consistent (see [33]) if, for any two sequences
{xn} ⊂ dom f and {yn} ⊂ int dom f , such that {xn} is bounded,

lim
n→∞

D f (yn, xn) = 0,

and this implies that
lim

n→∞
‖yn − xn‖ = 0.

Lemma 2 ([28]). If dom f contains at least two points, then the function f is totally convex on
bounded sets if and only if the function f is sequentially consistent.

Lemma 3 ([34]). Let f : X → R be a Legendre function such that ∇ f ∗ is bounded on bounded
subsets of int dom f ∗. Let x0 ∈ X. If {D f (x0, xn)} is bounded, then the sequence {xn} is
bounded too.

Let f be a function and C be a closed, convex and nonempty subset of int dom f .
The Bregman projection (see [35]) concerning f of x ∈ int dom f onto C is defined as

the necessarily unique vector
←−−
Proj f

C(x) ∈ C, which satisfies

D f (
←−−
Proj f

C(x), x) = inf{D f (y, x) : y ∈ C}.

The Bregman projection concerning totally convex and Gâteaux differentiable func-
tions has a variational characterization ([33], Corollary 4.4, p. 23).

Lemma 4. Let f be Gâteaux differentiable and totally convex on int dom f . Let C be a closed,
convex and nonempty subset of int dom f and x ∈ int dom f . Then, the following statements
are equivalent:

(i) The vector x̂ ∈ C is the Bregman projection of x onto C concerning f .
(ii) The vector x̂ ∈ C is the unique solution of the variational inequality

〈z− y,∇ f (x)−∇ f (z)〉 ≥ 0, ∀y ∈ C.

(iii) The vector x̂ ∈ C is the unique solution of the inequality

D f (y, z) + D f (z, x) ≤ D f (y, x), ∀y ∈ C.
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With an admissible function f : X → (−∞,+∞], we associate the bifunction Vf :
X× X∗ → [0,+∞] (see [36,37]) defined by

Vf (x, x∗) = f (x)− 〈x, x∗〉+ f ∗(x∗), ∀x ∈ X, x∗ ∈ X∗.

Recall some properties of the bifunction Vf . For all x ∈ X and x∗ ∈ X∗, we have

Vf (x, x∗) = D f (x,∇ f ∗(x∗)), (5)

Also, for all x ∈ X and x∗, y∗ ∈ X∗ (see [38]), we have

Vf (x, x∗) + 〈∇ f ∗(x∗)− x, y∗〉 ≤ Vf (x, x∗ + y∗), (6)

Let f : X → (−∞,+∞] be a proper, lower semicontinuous function. Then, f ∗ : X∗ →
(−∞,+∞] is a proper, convex and weak∗ lower semicontinuous function (see [39]). There-
fore, Vf is convex concerning the second variable. Hence, we have

D f

(
z,∇ f ∗

(
N

∑
i=1

ti∇ f (xi)

))
≤

N

∑
i=1

tiD f (z, xi), ∀z ∈ X, (7)

where {xi}N
i=1 ⊂ X and {ti}N

i=1 ⊂ (0, 1) with ∑N
i=1 ti = 1.

Let B be the closed unit ball and S be the unit sphere of a Banach space X. Let
rB := {z ∈ X : ‖z‖ ≤ r} for all r > 0 and f : X → R be a function. We say that f
is uniformly convex on bounded subsets (see [40]) if ρr(t) > 0 for all r, t > 0, where
ρr : [0, ∞)→ [0, ∞] is the gauge of the uniform convexity of f and is defined by

ρr(t) = inf
x,y∈rB, ‖x−y‖=t,α∈(0,1)

α f (x) + (1− α) f (y)− f (αx + (1− α)y)
α(1− α)

, ∀t ≥ 0.

Lemma 5 ([41]). Let f : X → R be a uniformly convex function on bounded subsets of X and
r > 0 be a constant. Then,

f

(
n

∑
k=0

αkxk

)
≤

n

∑
k=0

αk f (xk)− αiαjρr( ‖xi − xj‖),

for all i, j ∈ {0, 1, 2, ..., n}, xk ∈ rB, αk ∈ (0, 1) and k = 0, 1, 2, ..., n with
n

∑
k=0

αk = 1, where ρr is

the gauge of the uniform convexity of f .

The function f is also said to be uniformly smooth on bounded subsets (see [40]) if

lim
t↓0

σr(t)
t

= 0 for all r > 0,

where σr : [0, ∞)→ [0, ∞] is defined by

σr(t) = sup
x∈rB,y∈S,α∈(0,1)

α f (x + (1− α)ty) + (1− α) f (x− αty)− f (x)
α(1− α)

,

for all t ≥ 0. A function f is said to be super coercive if

lim
‖x‖→∞

f (x)
‖x‖ = +∞.

Theorem 1 ([40]). Let f : X → R be a super coercive convex function. Then, the following
are equivalent:
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(i) f is uniformly smooth on bounded
subsets of X and bounded on bounded subsets.

(ii) f is Fréchet differentiable and ∇ f is uniformly
norm-to-norm continuous on bounded subsets of X.

(iii) dom f ∗ = X∗, f ∗ is super coercive and uniformly convex on bounded subsets of X∗.

Theorem 2 ([40]). Suppose that f : X → R is a convex function which is bounded on bounded
subsets of X; then, the following are equivalent:

(i) f is super coercive and uniformly convex on bounded subsets of X.
(ii) dom f ∗ = X∗, f ∗ is bounded on bounded subsets and

uniformly smooth on bounded subsets of X∗.
(iii) dom f ∗ = X∗, f ∗ is Fréchet differentiable and ∇ f ∗ is uniformly norm-to-norm continuous

on bounded subsets of X∗.

Theorem 3 ([42]). Suppose that f : X → (−∞,+∞] is a Legendre function. The function f is
totally convex on bounded subsets if and only if f is uniformly convex on bounded subsets.

Lemma 6 ([43]). Let C be a nonempty convex subset of X and f : C → R be a convex and subdif-
ferentiable function on C. Then, f attains its minimum at x∈C if and only if 0∈∂ f (x)+NC(x),
where NC(x) is the normal cone of C at x; that is,

NC(x) := {x∗ ∈ X∗ : 〈x− z, x∗〉 ≥ 0, ∀z ∈ C}.

Lemma 7 ([44]). Let f and g be two convex functions on X such that there is a point x0 ∈
dom f ∩ dom g where f is continuous. Then,

∂( f + g)(x) = ∂ f (x) + ∂g(x), ∀x ∈ X.

Let C be a closed convex subset of X. A function g : X × X → (−∞,+∞], such that
g(x, x) = 0 for all x ∈ C, is called a bifunction.

Throughout this paper, we consider bifunctions with the following properties:
B1. g is monotone on C, that is

g(x, y) + g(y, x) ≤ 0, ∀x, y ∈ C.

B2. g is Pseudomonotone on C; that is,

g(x, y) ≥ 0⇒ g(y, x) ≤ 0, ∀x, y ∈ C.

B3. g is Bregman γ- strongly Pseudomonotone on C if there exists a constant γ ≥ 0
such that

g(x, y) ≥ 0⇒ g(y, x) ≤ −γD f (y, x), ∀x, y ∈ C.

B4. g is Bregman–Lipschitz-type continuous on C; that is, there exist two positive constants
c1, c2 such that

g(x, y) + g(y, z) ≥ g(x, z)− c1D f (y, x)− c2D f (z, y), ∀x, y, z ∈ C,

the constants c1, c2 are called Bregman–Lipschitz coefficients with respect to f (See [19]).

Lemma 8 ([19]). Let C be a nonempty closed convex subset of a reflexive Banach space X and
f : X → R be a Legendre and super coercive function. Suppose that g : X× X → R is a bifunction
satisfying B1− B4. For the arbitrary sequences {xn} ⊂ C and {λn} ⊂ (0,+∞), let {wn} and
{zn} be sequences generated by
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 wn = argmin{λng(xn, y) + D f (y, xn) : y ∈ C},

zn = argmin{λng(wn, y) + D f (y, xn) : y ∈ C}.

Then, we have

D f (x∗, zn) ≤ D f (x∗, xn)− (1− λnc1)D f (wn, xn)− (1− λnc2)D f (zn, wn), ∀x∗ ∈ EP(g).

Let S : X → X be a mapping; the set of the fixed points of S is

F(S) = {x ∈ X : S(x) = x}.

A point p ∈ X is called an asymptotic fixed point of S if X contains a sequence {xn} with
xn ⇀ p such that ‖Sxn − xn‖ → 0. The set of asymptotic fixed points of S is denoted by
F̂(S). The term “symptotic fixed point” was coined and used by Reich [45].

Definition 1. Let S : X → X be a mapping with F(S) 6= ∅. Then,
(i) S is called Bregman quasinonexpansive if D f (y, Sx) ≤ D f (y, x) for all x ∈ X, y ∈ F(S).
(ii) S is called Bregman relatively nonexpansive if S is Bregman quasinonexpansive and F(S) = F̂(S).

Bregman quasinonexpansive mappings were studied by Butnariu et al. [46]. Here, we
assume that the bifunction g satisfies the following conditions:
A1. g is Pseudomonotone on C.
A2. g is Bregman–Lipschitz-type continuous on C.
A3. g(x, ·) is convex, lower semicontinuous and subdifferentiable on X for every fixed
x∈X.
A4. g is jointly weakly continuous on X×C in the sense that, if x ∈ X, y ∈ C and {xn}, {yn}
converge weakly to x, y , respectively, then g(xn, yn)→ g(x, y) as n→ ∞.

Remark 1. If g satisfies A1−A4, then EP(g) is closed and convex (see [35]). If S is a Bregman
quasinonexpansive mapping, then F(S) is a closed convex subset of X ([33], Proposition 1).

Lemma 9 ([47]). Let f : X → (−∞,+∞] be uniformly Fréchet differentiable and totally convex
on bounded subsets of X. Let C be a nonempty closed and convex subset of int dom f , CB(C)
denote the family of nonempty closed bounded subsets of C and T : C → CB(C) be a Bregman
relatively nonexpansive mapping. Then, F(T) is closed and convex.

Let f : X→(−∞,+∞] be a Gâteaux differentiable function and x ∈ X; recall that the
proximal mapping of a proper convex and lower semicontinuous function g : C→(−∞,+∞]
concerning f is defined by

Prox f
g(·)(x) := argmin

{
g(y) + D f (y, x) : y ∈ C

}
. (8)

Lemma 10 ([19]). Let f : X → (−∞,+∞] be a super coercive and Legendre function. Let x ∈
intdom f , C ⊂ intdom f and g : C → (−∞,+∞] be a proper convex and lower semicontinuous
function. Then, the following inequality holds:

g(y)− g(Prox f
g(x)) + 〈Prox f

g(x)− y,∇ f (x)−∇ f (Prox f
g(x))〉 ≥ 0, ∀y ∈ C. (9)

Lemma 11 ([48]). Let {sn} be a sequence of non-negative real numbers satisfying the inequality

sn+1 ≤ (1− αn)sn + αnβn, ∀n ≥ 0,

where {αn} and {βn} satisfy the conditions

(i) {αn} ⊂ [0, 1] and ∑∞
n=0 αn = ∞,
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(ii) lim supn→∞ βn ≤ 0, or ∑∞
n=0 |αnβn| < ∞.

Then, limn→∞ sn = 0.

Lemma 12 ([49]). Let {an} be a sequence of real numbers such that there exists a subsequence
{ni} ⊂ N such that ani < ani+1 for all i ∈ N. Then, there exists a subsequence {mk} ⊂ N such
that mk → ∞, and the following properties are satisfied by all (sufficiently large) numbers k ∈ N :

amk ≤ amk+1 and ak ≤ amk+1.

In fact, mk=max{j ≤ k : aj < aj+1}.

3. Main Results

In this section, we assume that f :X→R is a Legendre, super coercive and totally
convex function on bounded subsets of X such that∇ f ∗ is bounded on bounded subsets of
int dom f ∗ and the bifunction g:X×X→R satisfies A1−A4. Now, we present the following
Algorithm 1, and we prove a convergence theorem.

Algorithm 1 Subgradient extra-gradient algorithm

Choose λ0∈[α, β]⊂(0, p), where p=min{ 1
c1

, 1
c2
} , x0∈X and µ∈(0,1). Set n=0 and go to

Step 1.
Step 1. Given the current iterate xn, compute

yn = argmin{λng(xn, y) + D f (y, xn) : y ∈ C}.

Step 2. Choose wn∈∂2g(xn, yn) such that ∇ f (xn)−λnwn−∇ f (yn)∈NC(yn) and compute

zn = argmin{λng(yn, y) + D f (y, xn) : y ∈ Tn},

where

Tn = {v ∈ X| 〈v− yn, ∇ f (xn)− λnwn −∇ f (yn)〉 6 0}.

Step 3. Choose {αn} and {βn} such that

{αn} ⊂ (0, 1),
∞

∑
n=0

αn = ∞, lim
n→∞

αn = 0 and βn ∈ [a, b] ⊂ (0, 1),

then compute

tn = ∇ f ∗
(

αn∇ f (x0) + (1− αn)∇ f (zn)
)

,

xn+1 = ∇ f ∗
(

βn∇ f (zn) + (1− βn)∇ f (Stn)
)

,

λn+1=

{
min

{
µ(D f (zn ,yn)+D f (yn ,xn))

g(xn ,zn)−g(xn ,yn)−g(yn ,zn)
, λn

}
, i f g(xn, zn)−g(xn, yn)−g(yn, zn) > 0,

λn, otherwise.

Set n:=n+1 and go back to Step 1.

The following lemmas will be useful in the proof of the main theorem.

Lemma 13. The sequence {λn} generated by Algorithm 1 is bounded below with lower bound
min

{
µ

max(c1,c2)
, λ0

}
.
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Proof of Lemma 13. Since g satisfies the Bregman–Lipschitz-type condition with constants
c1 and c2, for the case of g(xn, zn)− g(xn, yn)− g(yn, zn) > 0, we have

g(xn, zn)− g(xn, yn)− g(yn, zn) 6 c1D f (zn, yn) + c2D f (yn, xn)

6 max(c1, c2)(D f (zn, yn) + D f (yn, xn)).

From the definition of λn, we see that this sequence is bounded from below. Indeed, if
λ0 6 µ

max(c1,c2)
, then {λn} is bounded from below by λ0; otherwise, {λn} is bounded from

below by µ
max(c1,c2)

.

Remark 2. It is obvious that the sequence {λn} is decreasing and the limit of {λn} exists and we
denote lim

n→+∞
λn = λ. Clearly, λ > 0. If λ0 6 µ

max(c1,c2)
, then {λn} is a constant sequence.

Lemma 14. The sequence {wn} generated by Algorithm 1 is well defined, and C⊆Tn.

Proof of Lemma 14. It follows from Lemmas 6 and 7 and the condition A3 that

yn = argmin{λng(xn, y) + D f (y, xn) : y ∈ C},

if and only if

0∈λn∂2g(xn, yn)+∇1D f (yn, xn) + NC(yn).

There exists wn ∈ ∂2g(xn, yn) and w ∈ NC(yn) such that

λnwn+∇ f (yn)−∇ f (xn)+w=0.

Thus, we have

〈y− yn, ∇ f (xn)−∇ f (yn)〉=〈y− yn, w + λnwn〉
= 〈y− yn, w〉+ 〈y− yn, λnwn〉
6 〈y− yn, λnwn〉, ∀y ∈ C.

This implies that 〈y− yn, ∇ f (xn)−∇ f (yn)− λnwn〉 6 0 for all y ∈ C. Hence, C ⊆ Tn.

Lemma 15. Suppose that S:X→X is a Bregman quasinonexpansive mapping. Let {xn}, {yn}, {zn}
and {tn} be sequences generated by Algorithm 1 and F(S)∩EP(g) 6=∅. Then, the sequences
{xn}, {yn}, {zn} and {tn} are bounded.

Proof of Lemma 15. Since

zn = argmin{λng(yn, y) + D f (y, xn) : y ∈ Tn} = Prox f
λng(yn ,.)(xn),

by Lemma 10, we have

λn

(
g(yn, zn)− g(yn, y)

)
6 〈zn − y,∇ f (xn)−∇ f (zn)〉, ∀y ∈ Tn. (10)

Know that

F(S) ∩ EP(g) ⊆ C ⊆ Tn.

Assume that u ∈ F(S) ∩ EP(g). Substituting y = u into the last inequality, we have

λn

(
g(yn, zn)− g(yn, u)

)
6 〈zn − u,∇ f (xn)−∇ f (zn)〉. (11)
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From u ∈ EP(g), we obtain g(u, yn) > 0. Thus, g(yn, u) 6 0 because of the Pseudomono-
tonicity of g. Hence, from (11) and λn > 0, we obtain

λng(yn, zn) 6 〈zn − u,∇ f (xn)−∇ f (zn)〉. (12)

Since wn∈∂2g(xn, yn), we obtain

g(xn, y)−g(xn, yn)>〈y−yn, wn〉, for all y ∈ X.

Substituting y = zn into the last inequality, we obtain that

g(xn, zn)− g(xn, yn) > 〈zn − yn, wn〉.

We have
λn

(
g(xn, zn)− g(xn, yn)

)
> λn〈zn − yn, wn〉. (13)

From definition of Tn, we have

〈zn − yn,∇ f (xn)− λnwn −∇ f (yn)〉 6 0,

we have
〈zn − yn,∇ f (xn)−∇ f (yn)〉 6 〈zn − yn, λnwn〉. (14)

Combining (12)–(14) with the three-point identity, we obtain that

λn

(
g(xn, zn)− g(xn, yn)− g(yn, zn)

)
> 〈u− zn, ∇ f (xn)−∇ f (zn)〉+ 〈zn − yn, λnwn〉

> 〈u− zn, ∇ f (xn)−∇ f (zn)〉+ 〈zn − yn, ∇ f (xn)−∇ f (yn)〉
= D f (u, zn)− D f (u, xn) + D f (zn, yn) + D f (yn, xn).

We have

D f (u, zn) 6 λn

(
g(xn, zn)− g(xn, yn)− g(yn, zn)

)
+ D f (u, xn)

− D f (zn, yn)− D f (yn, xn).

We obtain

D f (u, zn) 6
µλn
λn+1

(
D f (zn, yn) + D f (yn, xn)

)
+ D f (u, xn)− D f (zn, yn)− D f (yn, xn). (15)

On the other hand
lim

n→+∞
λn

λn+1
µ = µ, µ ∈ (0, 1). (16)

There exists N ∈N such that for all n > N, we have 0 < λn
λn+1

µ < 1. So, D f (u, zn)6 D f (u, xn)

for all n > N. Therefore, we have
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D f (u, xn+1) = D f

(
u,∇ f ∗

(
βn∇ f (zn) + (1− βn)∇ f (Stn

))
6 βnD f (u, zn) + (1− βn)D f (u, Stn)

6 βnD f (u, zn) + (1− βn)D f (u, tn)

= βnD f (u, zn) + (1− βn)D f

(
u,∇ f ∗

(
αn∇ f (x0) + (1− αn)∇ f (zn)

))
6 βnD f (u, zn) + (1− βn)αnD f (u, x0) + (1− βn)(1− αn)D f (u, zn) (17)

6 (βn + (1− βn)(1− αn))D f (u, xn) + (1− βn)αnD f (u, x0)

6 (βn + (1− βn)(1− αn) + αn(1− βn)) max(D f (u, xn), D f (u, x0))

6 max
(

D f (u, xn), D f (u, x0)
)

...

6 D f (u, x0).

Therefore, the sequence {Dg(u, xn)} is bounded, and by Lemma 3, the sequence {xn} is
bounded. We have D f (u, zn) 6 D f (u, xn), which implies that {zn} is bounded. From (??)
and using Lemma 8, we derive that

D f (u, xn+1) 6 βnD f (u, zn) + (1− βn)αnD f (u, x0) + (1− βn)(1− αn)D f (u, zn)

6 (βn + (1− βn)(1− αn))D f (u, zn) + (1− βn)αnD f (u, x0)

6 (βn+(1−βn)(1−αn))
(

D f (u, xn)−(1−λnc1)D f (yn, xn)−(1−λnc2)D f (zn, yn)
)
+ (1− βn)αnD f (u, x0)

6
(

βn+(1−βn)(1−αn)
)(

D f (u, xn)−(1−λnc1)D f (yn, xn)
)
+ (1−βn)αnD f (u, x0).

We get that

(βn+(1−βn)(1−αn))(1−λnc1)D f (yn, xn)

6 (βn+(1−βn)(1−αn))D f (u, xn)− D f (u, xn+1) + (1−βn)αnD f (u, x0).

Considering the limit supreme in the last inequality as n → ∞, we obtain that
lim

n→∞
D f (yn, xn)=0. Therefore, {yn} is bounded. Clearly, {tn} is bounded.

Now, we are ready to prove our main theorem.

Theorem 4. Let S be a Bregman relatively nonexpansive mapping. Assume that A1−A4 are
satisfied and Ω:=F(S)∩EP(g) 6= ∅. Then, the sequence {xn} generated by Algorithm 1 converges
strongly to

←−−
Proj f

Ω(x0).

Proof of Theorem 4. By Remark 1 and Lemma 9, Ω is closed and convex. Assume that
x∗ =

←−−
Proj f

Ω(x0). By Lemma 4, we have

〈z− x∗, ∇ f (x0)−∇ f (x∗)〉 6 0, ∀z ∈ Ω. (18)

From Lemma 8, we obtain D f (x∗, zn) 6 D f (x∗, xn) for all n > N. Therefore,
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D f (x∗, xn+1) = D f

(
x∗, ∇ f ∗

(
βn∇ f (zn) + (1− βn)∇ f (Stn

))
6 βnD f (x∗, zn) + (1− βn)D f (x∗, Stn)

6 βnD f (x∗, zn) + (1− βn)D f (x∗, tn) (19)

= βnD f (x∗, zn) + (1− βn)D f (x∗,∇ f ∗(αn∇ f (x0) + (1− αn)∇ f (zn)))

6 βnD f (x∗, zn) + (1− βn)αnD f (x∗, x0) + (1− βn)(1− αn)D f (x∗, zn).

We have

D f (x∗, xn+1) 6
(

βn + (1− βn)(1− αn)
)

D f (x∗, zn) + (1− βn)αnD f (x∗, x0). (20)

From (15), we obtain

D f (x∗, zn) 6 D f (x∗, xn)−
(

1− µλn
2λn+1

)(
D f (zn, yn) + D f (yn, xn)

)
. (21)

Know that

βn + (1− βn)(1− αn) = 1− αn(1− βn) < 1.

From (20) and (21), we have

D f (x∗, xn+1) 6 D f (x∗, zn) + (1− βn)αnD f (x∗, x0)

6 D f (x∗, xn)−
(

1− µλn
λn+1

)
(D f (zn, yn) + D f (yn, xn)) + (1− βn)αnD f (x∗, x0). (22)

We divide the proof into two parts:

Case 1. In this case, we suppose that there exists N1 ∈ N (N1 > N), such that

D f (x∗, xn+1)6D f (x∗, xn),

for all n > N1. Then, the limit lim
n→∞

D f (x∗, xn) exists. Let lim
n→∞

D f (x∗, xn) = l. By (22),

we obtain(
1− µλn

λn+1

)
(D f (zn, yn)+D f (yn, xn))6D f (x∗, xn)−D f (x∗, xn+1)+(1−βn)αnD f (x∗, x0). (23)

From (23), the fact that

lim
n−→∞

(
1− µλn

λn+1

)
= 1− µ > 0 and lim

n−→∞
αn = 0,

we obtain that

(1− µ) lim sup
n−→∞

(D f (zn, yn) + D f (yn, xn)) 6 0.

We have

lim
n−→∞

D f (zn, yn) = lim
n−→∞

D f (yn, xn) = 0.

From Lemma 2, we get that

lim
n→∞

‖yn − xn‖ = lim
n→∞

‖zn − yn‖ = 0. (24)
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Since {xn} is bounded, there exists a subsequence {xnk} which converges weakly to some
z0 ∈ X and

lim sup
n−→∞

〈xn − x∗, ∇ f (x0)−∇ f (x∗)〉 = lim
k−→∞

〈xnk − x∗, ∇ f (x0)−∇ f (x∗)〉

= 〈z0 − x∗, ∇ f (x0)−∇ f (x∗)〉. (25)

From (24) and xnk ⇀ z0, we have ynk ⇀ z0 and z0 ∈ C. Since

ynk = Prox f
λnk g(xnk ,·)(xnk ),

by Lemma 10 we deduce that

λnk

(
g(xnk , y)− g(xnk , ynk )

)
> 〈y− ynk , ∇ f (xnk )−∇ f (ynk )〉, ∀y ∈ C. (26)

Considering the limit in the last inequality as k → ∞ and using the assumptions A4,
lim

k−→∞
λnk= λ > 0, we obtain

λ(g(z0, y)− g(z0, z0)) > 〈y− z0, ∇ f (z0)−∇ f (z0)〉, ∀y ∈ C.

Which implies that g(z0, y) ≥ 0, for all y ∈ C. That is, z0 ∈ EP(g).

Next, we prove z0∈F(S). From xnk⇀z0 and (24), we obtain znk ⇀ z0. Note that,

lim
n−→∞

αn = 0,

therefore,

D(znk , tnk ) = D
(
znk ,∇ f ∗(αnk∇ f (x0)+(1− αnk )∇ f (znk ))

)
≤ αnk D(znk , x0) + (1− αnk )D(znk , znk )

= αnk D(znk , x0).

We obtain that

lim
k−→∞

D(znk , tnk ) = 0.

We get that
lim

k−→∞
‖znk − tnk‖ = 0, (27)

and thus tnk ⇀ z0. Let

r = sup
n
{‖∇ f (zn)‖, ‖∇ f (Stn)‖}.

The sequences {zn} and {Stn} are bounded and ∇ f is bounded on bounded subsets of X,
we have r < ∞. In view of Lemma 1 and Theorem 1, dom f ∗ = X∗, f ∗ is super coercive and
uniformly convex on bounded subsets of X∗. Applying (5) and Lemma 5, we obtain

D f
(

x∗, xnk+1
)
=D f

(
x∗,∇ f ∗

(
βnk ∇ f (znk ) +

(
1− βnk

)
∇ f (Stnk )

))
=Vf

(
x∗, βnk∇ f (znk ) +

(
1− βnk

)
∇ f (Stnk )

)
= f (x∗) + f ∗

(
βnk ∇ f (znk ) +

(
1− βnk

)
∇ f
(
Stnk

))
−
〈

x∗, βnk∇ f (znk ) +
(
1− βnk

)
∇ f
(
Stnk

)〉
≤ f (x∗) + βnk f ∗

(
∇ f (znk )

)
+
(
1− βnk

)
f ∗
(
∇ f
(
Stnk

))
− βnk

(
1− βnk

)
ρ∗r
(
‖∇ f (znk )−∇ f

(
Stnk

)
‖
)

−
〈

x∗, βnk∇ f (znk ) +
(
1− βnk

)
∇ f
(
Stnk

)〉
.

T is a Bregman relatively nonexpansive mapping and
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f (x) + f ∗(x∗)=〈x, x∗〉

we have

D f
(
x∗, xnk

)
≤ f (x∗) + βnk

〈
znk ,∇ f (znk )

〉
− βnk f (znk ) +

(
1− βnk

)〈
Stnk ),∇ f

(
Stnk

)〉
−
(
1−βnk

)
f
(
Stnk

)
−βnk

(
1−βnk

)
ρ∗r
(
‖∇ f (znk )−∇ f

(
Stnk

)
‖
)
−βnk

〈
x∗,∇ f (znk )

〉
−
(
1−βnk

)〈
x∗,∇ f

(
Stnk

)〉
=βnk D f

(
x∗, znk

)
+
(
1− βnk

)
D f
(

x∗, Stnk

)
− βnk

(
1− βnk

)
ρ∗r
(
‖∇ f (znk )−∇ f

(
Stnk

)
‖
)
,

therefore,

βnk

(
1−βnk

)
ρ∗r
(
‖∇ f (znk )−∇ f

(
Stnk

)
‖
)
6βnk D f

(
x∗,znk

)
+
(
1−βnk

)
D f
(
x∗,Stnk

)
−D f

(
x∗,xnk

)
6βnk D f

(
x∗,znk

)
+
(
1−βnk

)
D f
(
x∗,tnk

)
−D f

(
x∗,xnk

)
6
(
1−βnk

)
D f
(

x∗,∇ f ∗(αnk∇ f (x0)+(1−αnk )∇ f (znk )
)
+βnk D f

(
x∗,xnk

)
−D f

(
x∗,xnk

)
6
(
1−βnk

)
αnk D(x∗,x0)+

(
1−βnk

)
(1−αnk )D(x∗,znk )+βnk D f

(
x∗,xnk

)
−D f

(
x∗,xnk

)
6
(
1−βnk

)
αnk D(x∗,x0)+

(
1−βnk

)
(1−αnk )D(x∗,xnk )+βnk D f

(
x∗,xnk

)
−D f

(
x∗,xnk

)
.

Passing the limit in the last inequality as k→∞, we obtain

lim
k−→∞

ρ∗r
(
‖∇ f (znk )−∇ f

(
Stnk

)
‖
)
= 0.

We prove that

lim
k→∞
‖∇ f (z̄nk )−∇ f (Stnk )‖ = 0.

If this is not the case, there exists ε0 > 0 and a subsequence {nkm} of {nk} such that

‖∇ f (znkm
)−∇ f (znkm

)‖ ≥ ε0.

Since ρ∗ is nondecreasing, we obtain

ρ∗r (ε0) ≤ ρ∗r ( ‖∇ f (znkm
)−∇ f (znkm

)‖) for all m ∈ N.

Letting m→ ∞, we obtain ρ∗r (ε0) ≤ 0. But this is a contradiction to the uniform convexity
of f ∗ on the bounded subsets of X∗. From Theorems 2 and 3, ∇ f ∗ is uniformly continuous
on the bounded subset of X∗. Therefore, lim

n→∞
‖znk−Stnk‖=0. This, together with (27) and

the triangle inequality, gives

lim
n→∞

‖tnk − Stnk‖=0.

The function f is uniformly continuous on the bounded subset of X ([50], Theorem 1.8),
lim

n→∞
[ f (tnk )− f (Stnk )]=0, and so, from the definition of the Bregman distance, we obtain

lim
k−→∞

D f (tnk , Stnk ) = 0.

and thus z0 is an asymptotic fixed point of Bregman relatively nonexpansive mapping S.
Therefore, z0∈F̂(S)=F(S). Hence, z0∈Ω .

We now prove that lim
n→∞

D f (x∗, xn)=0. We have
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D f (x∗, tn) =D f

(
x∗,∇ f ∗(αn∇ f (x0) + (1− αn)∇ f (zn))

)
=Vf

(
x∗, αn∇ f (x0) + (1− αn)∇ f (zn)

)
≤Vf

(
x∗, αn∇ f (x0) + (1− αn)∇ f (zn)− αn(∇ f (x0)−∇ f (x∗))

)
+ αn〈tn − x∗,∇ f (x0)−∇ f (x∗)〉

=Vf (x∗, (1− αn)∇ f (zn) + αn∇ f (x∗)) + αn〈tn − x∗,∇ f (x0)−∇ f (x∗)〉
≤(1− αn)D f (x∗, zn) + αnD f (x∗, x∗) + αn〈tn − x∗,∇ f (x0)−∇ f (x∗)〉.

We have

D f (x∗, xn+1) 6βnD f (x∗, zn) + (1− βn)D f (x∗, tn)

6βnD f (x∗, zn) + (1− βn)
(
(1− αn)D f (x∗, zn) + αn〈tn − x∗,∇ f (x0)−∇ f (x∗)〉

)
=
(

βn + (1− βn)(1− αn)
)

D f (x∗, zn) + αn(1− βn)〈tn − x∗,∇ f (x0)−∇ f (x∗)〉

=
(

1− αn(1− βn)
)

D f (x∗, zn) + αn(1− βn)〈tn − x∗,∇ f (x0)−∇ f (x∗)〉 (28)

From tn ⇀ z0 and z0 ∈ Ω, we obtain that

lim sup
n→∞

〈tn − x∗,∇ f (x0)−∇ f (x∗)〉 = 〈z0 − x∗,∇ f (x0)−∇ f (x∗〉 6 0. (29)

From Lemma 11 and (28), we deduce that

lim
n→∞

D f (x∗, xn+1) = 0.

From Lemma 2, we have ‖x∗−xn+1‖ → 0. Since xnk ⇀ z0, we have z0 = x∗.

Case 2. There exists a subsequence {D f (x∗, xnj)} of {D f (x∗, xn)} such that

D f (x∗, xnj) 6 D f (x∗, xnj+1) for all j∈N.

By Lemma 12, there exists an increasing sequence {mk}⊂N such that lim
k→∞

mk = ∞, and the

following inequalities hold for all k ∈ N:

0 6 D f (x∗, xmk ) 6 D f (x∗, xmk+1) and D f (x∗, xk) 6 D f (x∗, xmk+1). (30)

From (22), we have(
1− µλn

λn+1

)
(D f (zn, yn)+D f (yn, xn))6D f (x∗, xn)−D f (x∗, xn+1)+αn(1−βn)D f (x∗, x0).

Substituting n = mk into the last inequality, we obtain(
1− µλmk

λmk+1

)
(D f (zmk , ymk ) + D f (ymk , xmk )) 6 D f (x∗, xmk )− D f (x∗, xmk+1) + αmk (1− βmk )D f (x∗, x0).

From (20), we have

lim
k→∞

1− µλmk
λmk+1

=1− µ>0 and lim
k→∞

αmk=0,

we obtain

lim
k→∞

D f (zmk , ymk ) = lim
k→∞

D f (ymk , xmk ) = 0.
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Using the same argument as in the proof of Case 1 and by (29), we obtain that

lim sup
k→∞

〈tmk − x∗,∇ f (x0)−∇ f (x∗)〉 6 0. (31)

From (28) for all mk ≥ N1, we have

D f (x∗, xmk+1) ≤ (1− αmk (1− βmk ))D f (x∗, xmk ) + αmk (1− βmk )〈tmk − x∗,∇ f (x0)−∇ f (x∗)〉. (32)

From (31) and Lemma 11, we derive that

lim
k→∞

D f (x∗, xmk+1) = 0.

On the other hand, we have

D f (x∗, xk) 6 D f (x∗, xmk+1),

we have
lim
k→∞

D f (x∗, xk) = 0.

From Lemma 2, we obtain that lim
k→∞
‖x∗−xk‖=0. Therefore, xk −→ x∗, which is the

desired result.

4. Application

In this section, we consider the particular equilibrium problem corresponding to
the function g defined for every x, y ∈ X by g(x, y) = 〈y−x, Ax〉, with A:X→X∗ being
L-Lipschitz continuous; that is, there exists L > 0 such that

‖Ax− Ay‖ 6 L‖x− y‖ for all x, y ∈ X.

So, we obtain the classical variational inequality:

Find z ∈ C such that 〈y− z, Az〉 ≥ 0, ∀y ∈ C. (33)

The set of solutions to this problem is denoted by VI(A, C). We have ([19], Lemma 4.1)

argmin{λng(xn, y)+D f (y, xn) : y ∈ C} = argmin{λn〈y− yn, Axn〉+D f (y, xn) : y∈C}

=
←−−
Proj f

C

(
∇ f ∗(∇ f (xn)− λn Axn)

)
.

Therefore, we derive that

argmin{λn〈y−yn, Ayn〉+D f (y, xn) : y ∈ Tn}=
←−−
Proj f

Tn
(∇ f ∗(∇ f (xn)− λn Ayn).

Let X be a real Banach space. The modulus of convexity δX :[0, 2]→[0, 1] is defined by

δX(ε) = inf
{

1− ‖x+y‖
2 : ‖x‖ = ‖y‖ = 1, ‖x− y‖ ≥ ε

}
.

The space X is called uniformly convex if δX(ε) > 0 for every ε ∈ (0, 2], and is called
p-uniformly convex if p ≥ 2 and there exists cp > 0 such that δX(ε) ≥ cpεp for any ε ∈ (0, 2].

The modulus of smoothness ρX(t) : [0, ∞)→ [0, ∞) is defined by

ρX(t) = sup
{
‖x+ty‖+‖x−ty‖

2 − 1 : ‖x‖ = ‖y‖ = 1
}

,

The space X is called uniformly smooth if

lim
t→0

ρX(t)
t = 0.
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For a p-uniformly convex space, the metric and Bregman distance have the following
relation [51]:

t‖x− y‖p ≤ D 1
p ‖·‖p(x, y) ≤ 〈x− y, Jp

X(x)− Jp
X(x)〉, (34)

where t > 0 is a fixed number and the duality mapping Jp
X(x):X→2X∗ is defined by

Jp
X(x) = { f ∈ X∗ : 〈x, f 〉 = ‖x‖p, ‖ f ‖ = ‖x‖p−1},

for every x ∈ X. We know that X is smooth if and only if Jp
X is a single-valued mapping of

X into X∗. We also know that X is reflexive if and only if Jp
X is surjective, and X is strictly

convex if and only if Jp
X is one-to-one. Therefore, if X is a smooth, strictly convex and

reflexive Banach space, then Jp
X is a single-valued bijection, and in this case, Jp

X = (Jq
X∗)
−1,

where Jq
X∗ is the duality mapping of X∗.

For p = 2, the duality mapping Jp
X is called the normalized duality mapping and is

denoted by J. The function φ:X2→R is defined by

φ(y, x) =‖ y ‖2 −2〈y, Jx〉+ ‖ x ‖2,

for all x, y ∈ X. The generalized projection ΠC from X onto C is defined by

ΠC(x) = argminy∈Cφ(y, x) ∀x ∈ X,

where C is a nonempty closed and convex subset of X.
Let X be a uniformly smooth and uniformly convex Banach space and f= 1

2 ‖·‖2. Therefore,

∇ f = J, D 1
2 ‖·‖2(x, y) = 1

2 φ(x, y) and
←−−
Proj

1
2 ‖·‖

2

C = ΠC.

If X is a Hilbert space, then

∇ f = I, D 1
2 ‖·‖2(x, y) = 1

2‖x− y‖2 and
←−−
Proj

1
2 ‖·‖

2

C = PC,

where PC is the metric projection.
Hence, we have the following corollary:

Corollary 1. Let X be a uniformly smooth and two-uniformly convex Banach space and C be a
nonempty closed and convex subset of X. Let S be a Bregman relatively nonexpansive mapping and
g(x, y)=〈y−x, Ax〉 for all x, y∈X. Let A:X→X∗ be a monotone and Lipschitz-continuous mapping.

Suppose that Ω = F(S) ∩ VI(A, C) 6= ∅, {αn} ⊂ (0, 1), lim
n→∞

αn=0,
∞

∑
n=0

αn=∞, βn∈[a, b] ⊂

(0, 1), and {λn} is sequence defined in Algorithm 1. Then, the sequence {xn} generated by

λ0, x0 ∈ X, µ ∈ (0, 1),

yn = ΠC

(
J−1(J(xn)− λn Axn

)
,

Tn = {x ∈ X|
〈

x− yn, J(xn)− λn Axn − J(yn)
〉
6 0},

zn = ΠC

(
J−1(J(xn)− λn Ayn

)
,

tn = J−1
(

αn J(x0) + (1− αn)J(zn)
)

,

xn+1 = J−1
(

βn J(zn) + (1− βn)J(Stn)
)

.

converges strongly to x∗=ΠΩ(x0).

5. Numerical Experiment

In the following, two numerical experiments are considered to demonstrate the appli-
cability of our main result.
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Example 1. Let X = R, C = [0, 1], f = 1
2 | · |2 and Sx = x

2 sin(x), and we consider x0 = 109 > 0,
βn = 1

2 , αn = 1
10n+1 and λ0 = 1

2 as well as µ = 0.9 and ε = 0.001. Define the bifunction g on
C×C into R as follows:

g(x, y) = Bx(y− x),

where

Bx =

{
0, x ≤ ε,
sin(x− ε), ε ≤ x.

The bifunction g satisfies the conditions A1, A3, A4 and A5. Furthermore,

g(x, y) + g(y, z)− g(x, z) = (y− z)(Bx− By)

≥ −|y− z||x− y|

≥ − (y−z)2

2 − (x−y)2

2

= −D 1
2 ‖·‖

2(z, y)− D 1
2 ‖·‖

2(y, x),

which proves the condition A2 with c1 = c2 = 1. A simple computation shows that Algorithm 1
takes the following form: 

yn = xn − λnBxn,
Tn = X,
zn = xn − λnByn,
tn = αnx0 + (1− αn)zn,
xn+1 = βnzn + (1− βn)

tn
2 sin(tn),

λn+1 =

min
{

µ((xn−yn)2+(zn−yn)2)
(zn−yn)(Bxn−Byn)

, λn

}
, i f (zn − yn)(Bxn − Byn) ≤ 0,

λn, otherwise.

The decreasing values of xn and also the values of |xn−xn+1| are shown in Figure 1; we see
that the sequences {|xn−xn+1|} and {|xn|} converge to zero.

Now, another numerical example is given in an infinite dimensional space to show
that our algorithm is efficient. We will use some notations that were introduced in [52].

Figure 1. The plotting of |xn| and |xn−1−xn|.
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Example 2. Suppose that X = L2([0, 1]) with norm ‖x‖2:=
∫ 1

0 |x(t)|
2dt and inner product

〈x, y〉:=
∫ 1

0 x(t)y(t)dt for all x, y in X. Let C:={x ∈ X : ‖x‖ 6 1} be the unit ball. Define an
operator G:C→X by

G(x)(t) =
∫ 1

0

(
x(t)− F(t, s)h(x(s))

)
ds + g(t), x ∈ C, t ∈ [0, 1],

where
F(t, s) = 2tset+s

e
√

e2−1
, h(x) = cos x, g(t) = 2tet

e
√

e2−1
.

From [53], G is monotone (hence Pseudomonotone) and L-Lipschitz continuous with c = 2. The
bifunction g is defined by g(x, y) = 〈G(x), y−x〉, and S:X→X is defined by S(x) = 1

2‖x‖ and
f (x) = 1

2‖x‖2. We consider x0 = 1, βn = 1
2 , αn = 1

10n+1 and λ0 = 1
2 as well as ε = 10−6. The

decreasing values of ‖xn‖ and also the values of ‖xn − xn+1‖ are shown in Figure 2.

Figure 2. The plotting of ‖ xn ‖ and ‖ xn−1−xn ‖.

6. Conclusions

The equilibrium problem encompasses, among its particular cases, convex optimiza-
tion problems, variational inequalities, fixed-point problems, Nash equilibrium problems
and other problems of interest in many applications. This paper proposes the subgra-
dient extra-gradient algorithm to find a solution to an equilibrium problem involving
a Pseudomonotone, which is also a fixed point of a Bregman relatively nonexpansive
mapping in reflexive Banach spaces. We proved the strong convergence theorems for the
proposed algorithm. Several experiments are reported to illustrate the numerical behavior
of our algorithm.
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