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Abstract: In this work, we deduce a new criterion that guarantees the oscillation of solutions to linear
Sturm–Liouville delay noncanonical dynamic equations; these results emulate the criteria of the Hille
and Ohriska types for canonical dynamic equations, and these results also solve an open problem in
many works in the literature. Several examples are offered, demonstrating that the findings achieved
are precise, practical, and adaptable.
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1. Introduction

Various models from real-world applications include oscillation phenomena; for
mathematical biology models in which oscillation and/or delay behaviors can be described
with cross-diffusion expressions, see papers [1–3]. The study of dynamic equations is
addressed in this work because it involves a variety of real-world issues, such as the
turbulent flow of a polytrophic gas in a porous medium and non-Newtonian fluid theory;
see, e.g., [4–7] for further information. In consequence, we are concerned with the oscillatory
behavior of a class of Sturm–Liouville noncanonical delay dynamic equations(

px∆
)∆

(s) + q(s)x(τ(s)) = 0 (1)

on an arbitrary time scale T that is presumed above to be unbounded, where s ∈ [s0, ∞)T :=
[s0, ∞)∩T, s0 ≥ 0, s0 ∈ T, and p, q : T→ R+ are rd-continuous functions, and τ : T→ T is
a nondecreasing rd-continuous function satisfying τ(s) ≤ s on [s0, ∞)T and lims→∞ τ(s) =
∞. A time scale T is any closed real set. Define the forward jump operator σ : T→ T as

σ(s) = inf{ξ ∈ T : ξ > s},

and it is seen that g : T→ R is differentiable at s ∈ T given that

g∆(s) := lim
ξ→s

g(s)− g(ξ)
s− ξ
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exists when σ(s) = s and when g is continuous at s and σ(s) > s,

g∆(s) :=
g(σ(s))− g(s)

σ(s)− s
.

The classical theories of differential and difference equations are notably represented when
this time scale is equal to the reals or integers. There are numerous additional time scales
that are intriguing; this leads to the emergence of many applications. Beyond merely
unifying the corresponding theories for differential and difference equations, this novel
theory of these so-called “dynamic equations” also encompasses “in-between” cases. In
other words, we permitted the consideration of q-difference equations when T = qN0 :=
{qγ : γ ∈ N0 for q > 1}. These equations possess significant practical implications in
quantum theory (refer to [8]). Additionally, we permitted the consideration of different time
scales, including T = hN, T = N2, and T = Tn, where Tn represents the set of harmonic
numbers. For an introduction to the calculus of time scales, see Hilger [9] and Bohner and
Peterson [10]. Using a solution of Equation (1), we mean a nontrivial real-valued function
x ∈ C1

rd[Tx, ∞)T, Tx ∈ [s0, ∞)T such that px∆ ∈ C1
rd[Tx, ∞)T and x satisfies (1) on [Tx, ∞)T,

where Crd represents the set of rd-continuous functions. According to Trench [11], (1) is
considered to be in noncanonical form if∫ ∞

s0

∆ξ

p(ξ)
< ∞, (2)

and in canonical form if ∫ ∞

s0

∆ξ

p(ξ)
= ∞. (3)

If a solution x of (1) is neither eventually positive nor eventually negative, we refer to it as
oscillatory; otherwise, we refer to it as nonoscillatory. The solutions that vanish in some
neighborhood of infinity will be excluded from consideration. If all solutions of (1) oscillate,
then (1) is said to oscillate.

The following is a showing of oscillation results for differential equations that are
related to our oscillation results for (1), as well as an explanation of the significant contribu-
tions made by this paper. Fite [12] studied the oscillation of the differential equation

x′′(s) + q(s)x(s) = 0, (4)

and demonstrated that if ∫ ∞

s0

q(ξ)dξ = ∞, (5)

then (4) oscillates. Hille [13] enhanced (5) and proved that if

lim inf
s→∞

{
s
∫ ∞

s
q(ξ)dξ

}
>

1
4

, (6)

then (4) oscillates. Erbe [14] extended (6) to the delay differential equation

x′′(s) + q(s)x(τ(s)) = 0, (7)

and saw that if

lim inf
s→∞

{
s
∫ ∞

s

τ(ξ)

ξ
q(ξ)dξ

}
>

1
4

, (8)

then (7) oscillates. Ohriska [15] established another oscillation criterion of (7) and obtained
that if

lim sup
s→∞

{
s
∫ ∞

s

τ(ξ)

ξ
q(ξ)dξ

}
> 1, (9)

then (7) oscillates.
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Concerning second-order dynamic equations, Erbe et al. [16] made the Hille-type
criterion extended to the delay dynamic equation

x∆∆(s) + q(s)x(τ(s)) = 0, (10)

where ∫ ∞

s0

τ(ξ)q(ξ)∆ξ = ∞, (11)

and demonstrated that if

lim inf
s→∞

s
∫ ∞

σ(s)

(
τ(ξ)

σ(ξ)

)
q(ξ)∆ξ >

1
4l

,

where l := lim infs→∞
s

σ(s) > 0, then (10) oscillates. Karpuz [17] considered the linear
dynamic equation in the canonical form(

px∆
)∆

(s) + q(s)x(s) = 0, (12)

and obtained that if

lim inf
s→∞

{
R(s)

∫ ∞

s
q(ξ)∆ξ

}
>

1
4

,

where
R(s) :=

∫ s

s0

∆ξ

p(ξ)
→ ∞ as s→ ∞, (13)

then (12) oscillates. For the delay dynamic equation in the canonical form(
px∆

)∆
(s) + q(s)x(τ(s)) = 0, (14)

where (13) holds, Hassan et al. [18] proved that if

lim inf
s→∞

{
R(s)

∫ ∞

σ(s)

R(τ(ξ))
R(ξ)

q(ξ)∆ξ

}
>

1
4l

, (15)

where (13) holds and l := lim infs→∞
R(s)

R(σ(s))
> 0, then (14) oscillates. Hassan et al. [19]

improved condition (15) for (14) and showed that if

lim inf
s→∞

{
R(s)

∫ ∞

s

R(τ(ξ))
R(ξ)

q(ξ)∆ξ

}
>

1
4

,

then (14) oscillates. For further Hille-type criteria, see papers [20–22].
It is essential to emphasize that all of the aforementioned works concerning the

derivation of Hille- and Ohriska-type criteria for numerous differential and dynamical
equations share the canonical case as a unifying characteristic. Therefore, the focus of this
paper will be on emulating the criteria of the Hille and Ohriska types in the noncanonical
case (i.e., (2) holds). This result solves an open problem presented in many papers, e.g., [19].
The reader is pointed to related papers [23–30] and the sources listed therein.

2. Main Results

In this section, we will discuss the most significant findings of this paper and provide
examples to illustrate their significance.

Theorem 1. If (2) holds and for sufficiently large T ∈ [s0, ∞)T,

lim inf
s→∞

{(∫ ∞

s

∆ξ

p(ξ)

)(∫ s

T
q(ξ)∆ξ

)}
>

1
4

, (16)
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then (1) oscillates.

Proof. Assume that x is a nonoscillatory solution of (1) on [s0, ∞)T. Let x(s) > 0 and
x(τ(s)) > 0 hold on [s0, ∞)T, without a loss of generality. We have from (1) that, for
s ∈ [s0, ∞)T, (

px∆
)∆

(s) = −q(s)x(τ(s)) < 0. (17)

This yields that px∆ is decreasing on [s0, ∞)T. Hence, there are two possibilities:

(a) x∆(s) > 0 for all s ≥ s0;
(b) there is s1 ∈ [s0, ∞)T such that x∆(s) < 0 for all s ≥ s1.

First, we assume that (a) holds. Integrating (1) from s ≥ s0 to t ∈ [s, ∞)T, we see

p(s)x∆(s) > −p(t)x∆(t) + p(s)x∆(s) =
∫ t

s
q(ξ)x(τ(ξ))∆ξ

≥ x(τ(s))
∫ t

s
q(ξ)∆ξ.

By dividing by x(τ(s)) > 0 and letting t→ ∞, we obtain

∫ ∞

s
q(ξ)∆ξ ≤ p(s)x∆(s)

x(τ(s))
< ∞,

which is a contradiction with the assumption in (16).

Second, we suppose that (b) holds. Let s ∈ [s1, ∞)T. Define

w(s) := − x(s)
p(s)x∆(s)

> 0. (18)

According to product and quotient rules,

w∆(s) = − 1
p(s)x∆(s)

x∆(s)−
(

1
px∆

)∆
(s)xσ(s)

= − 1
p(s)

+

(
px∆)∆

(s)
p(s)x∆(s)(px∆)

σ
(s)

xσ(s)

(1)
= − 1

p(s)
− q(s)

x(τ(s))
p(s)x∆(s)

(
x

px∆

)σ

(s)

≤ − 1
p(s)

− q(s)
x(s)

p(s)x∆(s)

(
x

px∆

)σ

(s)

= − 1
p(s)

− q(s)w(s)wσ(s), (19)

which gives that w∆(s) < 0. By integrating (19) from s to t, we have

w(t)− w(s) ≤ −
∫ t

s

∆ξ

p(ξ)
−
∫ t

s
q(ξ)w(ξ)wσ(ξ)∆ξ.

Due to w > 0 and w∆ < 0 and assuming t→ ∞, we have∫ ∞

s

∆ξ

p(ξ)
≤ w(s)−

∫ ∞

s
q(ξ)w(ξ)wσ(ξ)∆ξ. (20)
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By multiplying (20) by
∫ s

s1
q(ξ)∆ξ, we obtain(∫ ∞

s

∆ξ

p(ξ)

)(∫ s

s1

q(ξ)∆ξ

)
≤ w(s)

∫ s

s1

q(ξ)∆ξ

−
(∫ s

s1

q(ξ)∆ξ

)(∫ ∞

s
q(ξ)w(ξ)wσ(ξ)∆ξ

)
. (21)

By integrating (1) and using the facts that
(

px∆)∆
(s) < 0 and x∆(s) < 0, we achieve that

p(s)x∆(s) ≤ p(s)x∆(s)− p(s1)x∆(s1)

= −
∫ s

s1

q(ξ)x(ξ)∆ξ

≤ −x(s)
∫ s

s1

q(ξ)∆ξ,

which implies

0 ≤W := lim inf
s→∞

{
w(s)

∫ s

s1

q(ξ)∆ξ

}
≤ 1.

Therefore, for any ε > 0, there is s2 ∈ [s1, ∞)T such that, for s ∈ [s2, ∞)T,(∫ ∞

s

∆ξ

p(ξ)

)(∫ s

s1

q(ξ)∆ξ

)
≥ P− ε and w(s)

∫ s

s1

q(ξ)∆ξ ≥W − ε, (22)

where

P := lim inf
s→∞

(∫ ∞

s

∆ξ

p(ξ)

)(∫ s

s1

q(ξ)∆ξ

)
.

According to (21) and (22), it follows that

P ≤ ε + w(s)
(∫ s

s1

q(ξ)∆ξ

)
−(W − ε)2

(∫ s

s1

q(ξ)∆ξ

) ∫ ∞

s

q(ξ)(∫ ξ
s1

q(ζ)∆ζ
)(∫ σ(ξ)

s1
q(ζ)∆ζ

)∆ξ

= ε + w(s)
(∫ s

s1

q(ξ)∆ξ

)

−(W − ε)2
(∫ s

s1

q(ξ)∆ξ

) ∫ ∞

s

(
−1∫ ·

s1
q(ζ)∆ζ

)∆

(ξ)∆ξ

= ε + w(s)
(∫ s

s1

q(ξ)∆ξ

)
− (W − ε)2, (23)

due to
∫ s

s1
q(ξ)∆ξ → ∞ as s→ ∞. Take the lim inf of both sides of (23) as s→ ∞, yielding

P ≤ ε + W − (W − ε)2.

By means of ε > 0 being arbitrary, we see that

P ≤W −W2 ≤ 1
4

.

This is a contradiction with (16). This completes the proof.
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Theorem 2. If (2) holds and for sufficiently large T ∈ [s0, ∞)T,

lim sup
s→∞

{(∫ ∞

s

∆ξ

p(ξ)

)(∫ s

T
q(ξ)∆ξ

)}
> 1, (24)

then (1) oscillates.

Proof. Assume that x is a nonoscillatory solution of (1) on [s0, ∞)T. Let x(s) > 0 and
x(τ(s)) > 0 hold on [s0, ∞)T, without a loss of generality. By (17), px∆ is strictly decreas-
ing on [s0, ∞)T. This yields that x∆(s) is eventually of one sign. Hence, there are two
possibilities:

(a) x∆(s) > 0 eventually;
(b) x∆(s) < 0 eventually.

If (a) is satisfied, then the proof is identical to Case (a) in Theorem 1, so it is eliminated.
If (b) is satisfied, there is s1 ∈ [s0, ∞) such that x∆(s) < 0 on [s1, ∞). By integrating (1)

from s1 to s, we obtain

p(s)x∆(s) ≤ p(s)x∆(s)− p(s1)x∆(s1) = −
∫ s

s1

q(ξ)x(τ(ξ))∆ξ

≤ −x(s)
∫ s

s1

q(ξ)∆ξ.

It follows that
p(ξ)x∆(ξ) ≤ p(s)x∆(s) ≤ −x(s)

∫ s

s1

q(ξ)∆ξ (25)

for ξ ∈ [s, ∞)T and s ∈ [s1, ∞)T. For t ∈ [s, ∞)T, we see

−x(s) ≤ x(t)− x(s) =
∫ t

s

p(ξ)x∆(ξ)

p(ξ)
∆ξ. (26)

Substituting (25) into (26), we arrive at

−x(s) ≤ −x(s)
(∫ s

s1

q(ξ)∆ξ

)(∫ t

s

∆ξ

p(ξ)

)
,

so (∫ t

s

∆ξ

p(ξ)

)(∫ s

s1

q(ξ)∆ξ

)
≤ 1.

Assuming t→ ∞, we obtain (∫ ∞

s

∆ξ

p(ξ)

)(∫ s

s1

q(ξ)∆ξ

)
≤ 1.

Consequently, we achieve that

lim sup
s→∞

{(∫ ∞

s

∆ξ

p(ξ)

)(∫ s

s1

q(ξ)∆ξ

)}
≤ 1,

which is a contradiction with (24). This completes the proof.

The examples that follow exemplify applications of the theoretical findings presented
in this paper.

Example 1. Consider the linear delay second-order dynamic equation[
sβ+1x∆(s)

]∆
+ ασβ−1(s)x(τ(s)) = 0 for s ∈ [s0, ∞)T, (27)
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where β ≥ 1 and α > 0 are constants. It is obvious that (2) holds since∫ ∞

s0

∆ξ

ξβ+1 < ∞,

for those time scales [s0, ∞)T, where
∫ ∞

s0

∆ξ

ξλ
< ∞ when λ > 1. This is satisfied for several time

scales (see [10], Theorems 5.64 and 5.65 and see [10], Example 5.63, where this result is not satisfied).
Note that

lim inf
s→∞

(∫ ∞

s

∆ξ

p(ξ)

)(∫ s

T
q(ξ)∆ξ

)
= α lim inf

s→∞

(∫ ∞

s

∆ξ

ξβ+1

)(∫ s

T
σβ−1(ξ)∆ξ

)
≥ α

β2 lim inf
s→∞

(∫ ∞

s

(
−1
ξβ

)∆
∆ξ

)(∫ s

T

(
ξβ
)∆

∆ξ

)
=

α

β2 .

We conclude that if [s0, ∞)T is a time scale where
∫ ∞

s0

∆ξ

ξλ
< ∞ when λ > 1, then, according to

Theorem 1, (27) oscillates if α >
β2

4
.

Example 2. Consider the linear delay second-order dynamic equation[
sσ(s) x∆(s)

]∆
+ αx(τ(s)) = 0 for s ∈ [s0, ∞)T, (28)

where α > 0 is a constant. It is evident that (2) is satisfied since

∫ ∞

s0

∆ξ

ξσ(ξ)
=
∫ ∞

s0

(
−1
ξ

)∆
∆ξ < ∞.

We have

lim sup
s→∞

(∫ ∞

s

∆ξ

p(ξ)

)(∫ s

T
q(ξ)∆ξ

)
= α lim sup

s→∞

(
(s− T)

∫ ∞

s

∆ξ

ξσ(ξ)

)
= α lim sup

s→∞

(
(s− T)

∫ ∞

s

(
−1
ξ

)∆
∆ξ

)
= α.

According to Theorem 1, this implies that (28) oscillates if α > 1.

3. Discussion and Conclusions

The results obtained in this paper apply to all time scales without restrictive conditions,
such as T = R, T = Z, T = hZ with h > 0, T = qN0 with q > 1, etc. (see [10]). And these
results, in contrast to previous results in the literature, do not assume the fulfillment of
condition (3) (canonical case) and therefore solve an open problem mentioned in many
papers (see [19]). Furthermore, it would be interesting to find such criteria for half-linear
dynamic equations of the form(

p
∣∣∣x∆
∣∣∣α−1

x∆
)∆

(s) + q(s)|x(τ(s))|α−1x(τ(s)) = 0,

where α > 0 is a constant.
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