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Abstract: By using stochastic modeling, the investigation of the energy and wave characteristics
of novel structures that develop in the sea and ocean currents becomes one of the most important
advancements in the generation of sustainable and renewable energy. Theoretical examinations of
random nonlinear Kundu–Mukherjee–Naskar (RNKMN) structures have become recommended in
a random mode. The two-dimensional RNKMN equation permits exact and solved solutions that
give rise to solitonic structures with adaptable properties. The obtained stochastic waves, under
the influence of random water currents, represent a dynamically controlled system. It has been
demonstrated that the stochastic parameter modulates wave forcing and produces energy wave
collapse accompanied by medium turbulence. The fundamental wave characteristics establish an
exact pattern for describing sea and ocean waves.
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1. Introduction

Different types of nonlinear partial differential equations (NPDEs) can be used to
describe a variety of complex nonlinear physical processes [1–3]. In fact, NPDEs have
been the most extensively researched objects in various fields of applied science, such
as molecular biology, optical fiber communications, chemical engineering, superfluids,
solid-state physics, plasma physics, and many others [4–6]. The topic of optical solitons
is critical for the exploration of soliton propagation via nonlinear fiber. One of the most
well-known governing equations for the dynamics of optical solitons is the nonlinear
Schrödinger equation (NLSE), which plays a crucial role in the dynamics of nonlinear
effects in fiber optic communications. The NLSEs, which disclose solitary-type solutions,
have become the primary representative method for defining wave behaviors in numerous
vital applications [7–10].

Stochastic nonlinear partial differential equations (SNPDEs) are foundational models
of physical systems with unpredictable inputs, interactions, or environments. Indeed,
SNPDEs perform an important role in various fields of natural sciences [11–14]. Therefore,
finding solutions to SNPDEs is a prominent research topic. Brownian motion (Wiener
process) is a classic stochastic process that is both a martingale and a Markov process [15].
In dispersive environments, Brownian motion is frequently employed as a stochastic
process. It is used in biology, kinematics, new physics, engineering, and the study of flower
pollen in water [16–18]. Indeed, there is a vital link between stochastic processes and partial
differential equations. There are numerous processes that depend on particles moving

Mathematics 2023, 11, 4881. https://doi.org/10.3390/math11244881 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math11244881
https://doi.org/10.3390/math11244881
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0002-7351-2088
https://doi.org/10.3390/math11244881
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math11244881?type=check_update&version=1


Mathematics 2023, 11, 4881 2 of 11

stochastically in random potentials. As previously discovered, noise can be incorporated
directly into the equation when examining wave propagation using stochastic nonlinear
dispersive equations.

In this work, we demonstrate how the newly extended NLSE can be understood
in terms of Brownian motion. Specifically, we investigate the newly extended stochastic
NLSE (SNLSE) with Kerr law nonlinearity, which is also known as the stochastic nonlinear
Kundu–Mukherjee–Naskar (SKMN) equation [19–22]:

iφt + α φxy + i β φ(φ φ∗x − φ∗ φx)− iδ φ(x, t)Ξt = 0 , i =
√
−1, (1)

where φ(x, y, t) represents the nonlinear wave envelope and ∗ refers to the complex con-
jugate. The first and second terms represent, respectively, the temporal evolution of the
wave and the disturbance of the dispersion. The parameter β is distinct from conventional
Kerr law nonlinearity. The noise Ξt is a Brownian time derivative of Ξ(t), and δ denotes
the noise amplitude [23]. Hole waves, oceanic rogue waves, bending of light beams, and
erbium atoms are all described by Equation (1) [21,22].

This paper investigates certain aspects of the influence of noise, in the Itô sense, on the
SKMN equation. This is an enormously broad and fascinating field, with active study in a
variety of directions. This topic’s ability to mix methods from both classical and stochastic
analyses is one of its most intriguing aspects [24]. We employ a robust solver [25] to
reveal some new stochastic solutions for the SKMN equation. These solutions demonstrate
various important physics related to hole waves, oceanic rogue waves, bending of light
beams and erbium atoms, and many others.

The organization of this article is as follows. Section 2 presents the SKMN in the Itô
sense and its corresponding potential. Section 3 presents the closed form of solutions to the
SKMN equation using a powerful solver. Section 4 provides a physical interpretation of the
solution to the SKMN equation. The results are then summarized in Section 5.

2. The New Stochastic Solutions

The traveling wave solution [21] in Equation (1) is used as follows:

φ(x, y, t) = ei(−b1x−b2y+Ω t+θ)+δΞ(t)−δ2tQ(η), η = k1 x + k2 y−ω t. (2)

Here, b1 and b2 represent the soliton frequencies in the x- and y-directions, θ is the phase
constant of the soliton, and δ represents the wave number. k1 and k2 denote the inverse
width of the soliton along the x- and y-directions, and ω denotes the soliton velocity.
Equation (1) is reduced to two equations in the form of

− αb1b2Q(η)− 2βb1Q3(η)e2δΞ(t)−2δ2t + αk1k2Q′′(η)−ΩQ(η) = 0 (3)

for real and imaginary parts:

αb2k1Q′(η) + αb1k2Q′′(η) + δ2Q(η) = 0. (4)

In order to formulate the system of equations (real and imaginary), one can take the
expectation on both sides of Equation (3), yielding

− αb1b2Q(η)− 2βb1Q(η)3e−2δ2tE(e2δΞ(t)) + αk1k2Q′′(η)−ΩQ(η) = 0. (5)

Indeed, E(e2δΞ(t)) = e2δ2t, and then Equation (5) becomes

αk1k2Q′′(η)− 2βb1Q3(η)− (αb1b2 + Ω)Q(η) = 0. (6)
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By solving Equation (4), the dispersion-constrained equation for Equation (6) reads:

− b1

(
αb2 + 2βe

2δ2η
αb2k1+αb1k2+ω

)
+

αδ4k1k2

(αb2k1 + αb1k2 + ω)2 −Ω = 0. (7)

To find exact solutions to Equation (6), we integrate it, and after some algebraic steps, it is
transformed into an energy equation with the potential

V = − 1
2αk1k2

αb1b2Q2(η)− 1
2αk1k2

βb1Q4(η)− 1
2αk1k2

ΩQ2(η). (8)

By solving Equation (8), an exact solution to Equation (5) is expressed as:

Q(η) =
2(αb1b2 + Ω)e

η
√

αb1b2+Ω
√

α
√

k1
√

k2√
−βb1(αb1b2 + Ω)

(
e

2η
√

αb1b2+Ω
√

α
√

k1
√

k2 + 1

) ,

φ(x, y, t) =
2(αb1b2 + Ω)e

η
√

αb1b2+Ω
√

α
√

k1
√

k2 ei(−b1x−b2y+Ω t+θ)+δΞ(t)−δ2t

√
−βb1(αb1b2 + Ω)

(
e

2η
√

αb1b2+Ω
√

α
√

k1
√

k2 + 1

) . (9)

3. Closed-Form Solutions

We provide some new stochastic solutions to Equation (1). In view of the unified
solver [25], the stochastic solutions to Equation (1) are as follows:

Family I:

Q1,2(x, y, t) = ±

√
−(αb1b2 + Ω)

βb1
sech

(
±

√
αb1b2 + Ω

αk1k2
(k1 x + k2 y−ω t)

)
. (10)

Hence, the solutions to Equation (1) are

φ1,2(x, y, t) = ±

√
−(αb1b2 + Ω)

βb1
ei(−b1x−b2y+Ω t+θ)+δΞ(t)−δ2t sech

(
±

√
αb1b2 + Ω

αk1k2
(k1 x + k2 y−ω t)

)
. (11)

Family II:

Q3,4(x, y, t) = ±

√
−35 (αb1b2 + Ω)

36βb1
sech2

±√5 (αb1b2 + Ω)

12 αk1k2
(k1 x + k2 y−ω t)

. (12)

Hence, the solutions to Equation (1) are

φ3,4(x, y, t)=±

√
−35 (αb1b2+Ω)

36βb1
ei(−b1x−b2y+Ω t+θ)+δΞ(t)−δ2t sech2

±√5 (αb1b2+Ω)

12 αk1k2
(k1 x+k2 y−ωt)

. (13)

Family III:

Q5,6(x, y, t) = ±

√
−(αb1b2 + Ω)

2βb1
tanh

±√−(αb1b2 + Ω)

2αk1k2
(k1 x + k2 y−ω t)

. (14)



Mathematics 2023, 11, 4881 4 of 11

Hence, the solutions to Equation (1) are

φ5,6(x, y, t)=±

√
−(αb1b2+Ω)

2βb1
ei(−b1x−b2y+Ωt+θ)+δΞ(t)−δ2t tanh

±√−(αb1b2+Ω)

2αk1k2
(k1x+k2y−ωt)

. (15)

4. Physical Interpretation

In this work, we study the system of the Kundu–Mukherjee–Naskar model, which is
a powerful nonlinear model that exhibits the characteristics of the dynamics of hole and
oceanic waves. Namely, we consider this model via the Brownian motion process. This
process is defined as a stochastic process, which is continuous in time. For more properties
of the Brownian motion process {W(t)}t≥0, see [15].

In order to obtain some unique stochastic solutions to this model with multiplicative
noise in the Itô sense, we use the unified solver approach. This theoretical solver process
has been applied to identify some new and brief random solutions to the RNKMN model
with multiplicative random parameters, resulting in Solutions (9), (11), (13), and (15), which
exhibited a diversity of solitonic and dissipative structures. The obtained results account
for a number of intriguing wave phenomena with applications in water wave physics
and engineering. In fact, the provided solutions included blow-up and shock structure
solutions to the nonlinear system, in addition to bright, rational explosive, breather, shock-
like, explosively dissipated, and dark solitons.

The model with the noise term and random function Ξ(t) reduces to Equation (6).
The expectation of (3) with E(e2δΞ(t)) = e2δ2t transforms the equation into a probability
density function that is solved to yield several important solutions. Using Matlab Release
18 [26], we plot 2D, 3D, and contour graphs to explain the wave structures for some chosen
solutions to Equation (6) with appropriate parametric values, i.e., b1 = b2 = k1 = k2 = 0.5,
α = 2, β = −1.7.

Solution (9) expresses a set of random solitonic depictions, as shown in Figure 1.
Figure 1a,b present the effect of the intensive randomness coefficient on the structure,
amplitude, bandwidth, and energy. Figure 1b shows that with increasing time t, the
influence of randomness increases along with the rate of wave collapse. It was noted that
near-complete collapse occurs at t = 4. By increasing δ, we found that both wave amplitude
and width decreased and the wave began to collapse, as shown in Figure 1c.

In the same context, it was found that the dark solution (15), which exhibits a dissi-
pative wave, is affected by time t and the random coefficient δ, as shown in Figure 2. By
increasing t, the rate of collapse of the dissipative wave increased, as shown in Figure 2b.
Also, the parameter δ caused the wave to collapse and transform into a superwave with
a small amplitude, as shown in Figure 2c. In the absence of random effects, the studied
solutions are of great importance due to their different solitary characteristics, some of
which we aim to highlight. For example, Solution (9) yielded breather waves and both
localized and super solitons, as shown in Figure 3. Solution (13) formed two types of
applicable waves: the first was a shock-like soliton and the second was a winged soliton, as
shown in Figure 4. Figure 4a,b depicts the overlap between the solitonic and dissipative
waves, which is dependent on the system parameters.

On the other hand, Solution (15) is considered one of the most useful physical appli-
cations in the study of dissipative and explosive waves. Figure 5a,b show the formation
of the dissipated oscillatory waves with time. By varying x, the oscillatory form turned
into a rational explosive structure with high energy. Finally, Figure 6a,b depict a dissipative
blow-up wave.

In fact, the results of random waves exhibiting the properties of stochastic pulses
obtained in this work represent great progress in explaining physical phenomena with
decaying and damping characteristics that can cause a sharp decrease in wave amplitude
and dissipation coefficients. They are consistent with many of the observations made in
various fields, such as electrostatic waves in fiber optics, space plasma, and deep ocean
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water waves propagating in random environments [20,27–29]. If the stochastic properties of
the random pulse are neglected, our results are consistent with previous work on solitonic
and shock solutions [19–21]. We also provided a precise description of the explosive,
explosive-shock, and dissipative solutions of shock-like solitons, in addition to the winged
soliton solutions. This highlights the accuracy and importance of the method used in this
work [18,29–31].

In summary, the merits of the stochastic structures of the RNKMN model with the noise
term inspired the dynamical energy properties of the obtained solitary and dissipative waves.

(a) Trajectory of φ(x, y, t) for the deterministic case.

(b) Trajectory of φ(x, y, t) for the stochastic case.

(c) Plot of φ(x, y, t) with x, δ.

Figure 1. A set of random solitonic depictions of φ(x, y, t).
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(a) Trajectory of φ5(x, y, t) for the deterministic case.

(b) Trajectory of φ5(x, y, t) for the stochastic case.

(c) Plot of φ5(x, y, t) with x, δ.

Figure 2. A set of random solitonic depictions of φ5(x, y, t).
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(a) Plot of φ(x, y, t) with x, t.

(b) Plot of |φ(x, y, t)| with x, t.

(c) Plot of φ(x, y, t) with x, y.

Figure 3. A set of solitonic depictions of φ(x, y, t).
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(a) Plot of Imφ3(x, y, t) with x, t.

(b) Plot of Imφ3(x, y, t) with x, t.

(c) Plot of |φ3(x, y, t)| with x, t.

(d) Plot of |φ3(x, y, t)| with x, t.

Figure 4. A set of solitonic depictions of φ3(x, y, t).
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(a) 3D plot of Reφ5(x, y, t) with x, t.

(b) Contour plot of Reφ5(x, y, t) with x, t.

Figure 5. A set of solitonic structural of φ5(x, y, t).

(a) 3D plot for blow-up solution of Reφ5(x, y, t).

(b) Contour plot for blow-up solution of Reφ5(x, y, t).

Figure 6. Plot of Reφ5(x, y, t) with x, y.

5. Conclusions

We implemented a unified solver to solve the RNKMN equation. Significant wave
characteristics for exact solitary, oscillatory shock, breather, and super soliton waves were



Mathematics 2023, 11, 4881 10 of 11

examined in the RNKMN equation. The modulations of stochastic parameters on the
obtained solution amplitude and energy were investigated. It was noted that the stochastic
effects can demonstrate some amendments in collapsing dissipative and explosive water
waves. This theoretical investigation could be used in sea and ocean wave applications. Our
goal is to expand this approach to include decaying and damped characteristic dispersion
and dissipation nonlinear equations in future work. It is also necessary to investigate the
explosive, explosive-shock, and dissipative solutions of our model under fractal random
environmental conditions.
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