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Abstract: This manuscript describes the design of a controller that assures predefined-time conver-
gence in fractional-order sliding mode control (PTFOSMC) for a quadrotor UAV subjected to matched
perturbation. Moreover, predefined-time techniques enable the establishment of a time constraint for
convergence as a control parameter, distinguishing them from finite- and fixed-time controllers. The
proposed control offers the advantage of sliding mode control, exhibiting rapid response and robust
performance for the quadrotor subsystems. Notably, the suggested controller is devoid of terms
dependent on the initial conditions of the quadrotor. Additionally, an established switching-type
predefined-time controller with fractional-order is introduced to bolster robustness against external
disturbances and alleviate the chattering problem associated with the sliding mode technique. The
application of the Lyapunov function is employed to analyze the predefined-time stability of the
quadrotor utilizing the suggested PTFOSMC. Numerical results are provided to demonstrate the
effectiveness of the suggested scheme.

Keywords: quadrotor UAV; predefined-time stability; fractional order; sliding mode control; Lyapunov
function; external disturbances

MSC: 93D30; 93-11

1. Introduction
1.1. Motivations and Background

Quadrotors have grown in popularity in recent years as a result of rapid technical
advancement, which has had a considerable impact on current electronic components, such
as microcontrollers, sensors, and low-cost development. These advancements work in
favor of this platform, propelling it to mainstream status. Many researchers have tackled
the topic of trajectory tracking of quadrotor systems in the past decade due to the numerous
applications of this vehicle [1,2], including military, highway monitoring [3], photogra-
phy and videography, geographic mapping of inaccessible terrain and locations, delivery
systems [4], surveillance [5], detection, scientific research and development, identification
of different objects, search and rescue missions [6], and agriculture. The dynamics of the
quadrotor system in real flight involve parameter uncertainty and external disturbances,
which negatively impact stabilization and tracking performance. Different control methods
have been developed to address these challenges, particularly sliding mode control (SMC)
and advanced control systems based on SMC, such as nonsingular fast terminal SMC [7],
fixed-time distributed robust SMC [8], adaptive backstepping fast terminal SMC [9], devel-
oping PID in sliding mode controllers [10], etc.
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1.2. Related Works

One of the most challenging aspects of UAVs is achieving smooth, precise flight. To
attain this, optimal, stable controllers must be implemented under external disturbances.
A literature review will be offered in this subsection. An investigation of sliding mode
controllers in predefined time is suggested by the authors in [11]. They conducted a
comparison analysis that emphasized the benefits and drawbacks of each technique used
for the flight controller to drive a quadrotor. According to the findings of the comparison
analysis, the fractional-order integral terminal sliding-mode control method was chosen as
the optimal solution for a quadrotor system. The quadrotor model was obtained using the
Lagrange-Euler approach in [12]. To adhere to the position trajectory, a predictive control
approach with integral action is formulated, and H∞ control is devised to stabilize the
orientation of the quadrotor. The researchers in [13] offer a robust control strategy based
on a second-order SMC approach to improve quadrotor position tracking performance.
In [14], the external disturbances and unknown states of the quadrotor are calculated using
an observer. This is done to estimate the total disturbances and control the quadrotor.
The controller and observer are designed in the attitude and position subsystems. An
observer is formed to assess outside disturbances and unknown situations. The TSMC
is intended to provide finite-time convergence performance through composite learning,
neural approximation, and disturbance estimation [15].

The current study provides a FO hybrid finite-time control strategy with fractional-
order dynamics to address the trajectory tracking of quadrotors, motivated by previous
research and inspired by Reference [16]. The quadrotor system, benefiting from fixed-time
stability, can achieve convergence to a stable range within a specified upper-bound con-
vergence time, independent of the initial operational states [17]. As a result, the authors in
ref. [18] introduces distributed fixed-time control methods to enhance the performance of
power systems. On the flip side, the fixed-time control approach exhibits superior capa-
bilities in surmounting these limitations. Nevertheless, estimating the convergence time
of the nonlinear system under the fixed-time control approach is not straightforward; it
requires the use of a sophisticated estimation function grounded in tuning parameters [19].
Predefined-time stability can keep the nonlinear system stable within a predetermined
upper limited convergence time, which is directly associated with an adjustable vari-
able [20,21]. Although less conservative than the fixed-time control approaches now in use,
the system’s upper limited convergence time under predefined-time control methods is
still adequate [22,23]. The fixed-time control method and the finite-time control method
have drawbacks, which can be more effectively addressed by the predefined-time control
strategy. Fractional-order integral/derivative operators have been extensively used in
research on the control of engineering systems. A fractional-order error manifold for robot
manipulators was developed in [24] to achieve good performances and a more flexible PID
controller structure.

In general, sliding-mode control stands out as a potent nonlinear control strategy
employing discontinuous control to steer system state trajectories onto a predefined sliding
surface. Its straightforward implementation and advantageous resilience characteristics
make the SMC approach a popular choice, particularly for its robustness against model
parameter uncertainty and external disturbances. Indeed, the effectiveness of this approach,
a quality relatively rare among nonlinear design strategies, has spurred the exploration of
various new research avenues within the broader field of sliding mode control. The majority
of current SMC methods utilize a linear sliding mode surface, leading the system state
variables to converge asymptotically or exponentially to the origin within a finite time [14].
To address this problem, terminal SMC was introduced to ensure finite-time stability [7,11].
A hybrid finite-time control technique based on nonsingular terminal SMC and adaptive
integral SMC approaches is provided to handle quadrotor path tracking problems with
unknown dynamics and disturbances in [25]. The initial conditions of the state variables
adversely affect the achieved finite time, with this impact intensifying as the values of
these initial states increase. Recent endeavors in this domain have focused on fixed-time
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stability [17,19]. On the flip side, the settling time holds significance in the trajectory
tracking of the quadrotor system. Consequently, a novel concept called predefined-time
stability has emerged to enhance state convergence [19,20,22]. Moreover, the aim is to
showcase the efficacy and superior performance of the proposed control for the quadrotor
system in comparison to existing control methods. Subsequently, communication network
and load changes are integrated into simulations using the Matlab/Simulink platform.

1.3. Contributions

Inspired by the works described in the related works subsection and guided by the
paper in [26], a novel predefined-time fractional-order sliding mode controller (PTFOSMC)
method based on fractional calculus, SMC, and predefined-time stability is suggested
to improve the dynamic performance of the quadrotor. The current study examines the
disturbances and variations in the drag coefficients of rotational and translational sub-
systems. The proposed PTFOSMC ensures that the quadrotor system will converge to a
stable zone with specified performance within the predetermined time. In comparison with
standard SMC [9,10], the PTFOSMC may offer better results, such as faster convergence
speed, reduced overshoot, lower error, and lower chattering impact. The contributions of
this research can be encapsulated in the following key points:

• The proposed method completes the stabilization and optimization procedures within
a predefined time.

• The predefined-time fractional-order sliding mode control exhibits minimal overshoot,
the smallest error, and faster variable convergence.

• Utilizing the proposed control, the stability of the quadrotor system within a prede-
fined time is assessed through the application of the Lyapunov function. Simulations
are employed to validate the efficacy of the suggested control for the quadrotor system.

• The simulation results show that, in comparison to current flight controllers, the
suggested controller enables the quadrotor to achieve the intended flight trajectory
with high accuracy.

2. Preliminary Knowledge
2.1. Predefined-Time Stability

The subsequent section revisits the predefined-time stability of integer-order systems.
We examine the characteristics of the integer-order system.

ẋ = g1(t, x) (1)

where x ∈ Rn represents the system state. Function g1 : R+ ×Rn 7→ Rn is nonlinear, and if
we consider the origin as an equilibrium point, then g1(t, 0) = 0. The initial condition is
x0 = x(0). The subsequent definitions bear particular significance.

Definition 1 (Globally finite-time design [27]). Any solution x(t) of (1) converges to the origin
at some finite time, and the origin of (1) is asymptotically stable; that is, x(t) = 0 ∀t ≥ T(x(0)),
where T : Rn → R≥0 is the function of the settling time.

Definition 2 (Globally fixed-time design [28]). If the settling-time function is bounded and the
origin of system (1) is finite-time stable, then the basis is fixed-time stable, i.e.,
∃Tmax > 0 : T(x(0)) ≤ Tmax, ∀x(0) ∈ Rn.

Definition 3 (Settling-time design [29]). Let the set of all settling-time function bounds for
system (1) be written above:

T = {Tmax ∈ R+ : T(x0) ≤ Tmax}. (2)

Furthermore, the ensuing definitions elucidate the design centered on prescribed-time
stability and the design rooted in prescribed-time stability.
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Definition 4 (Prescribed-time design [29]). Take the T set given in (2). In the specific instance
for system (1), Tmax can be modified by a specific selection of system parameters, ρ, Tmax = Tmax(ρ),
referred to the concept of prescribed-time stability. This design is accomplished by selecting
Tmax(ρ) ∈ T and finding the inverse of the settling-time function, allowing for modifying ρ.

Remark 1. It is crucial to emphasize that the precise fixed stabilization time for a system built upon
prescribed-time stability remains unknown but is confined within Tmax(ρ). In contrast, a design
system employing predefined-time stability features a known stabilization time.

Definition 5 (Predefined-time design [30]). For a predefined-time constant, Tc > 0, the origin of
system (1) is predefined-time stable if it is fixed-time stable and the settling-time function is fulfilled.

T(x(0)) ≤ Tc, ∀x(0) ∈ Rn,

where Tc is signified by a predefined time.

2.2. Fractional-Order Calculus

The differentiation and integration of fractional order are studied in fractional calculus.
The following operators are defined [31,32].

Definition 6. The following definition applies to the function f (t) using the Riemann–Liouville
fractional derivative order α [31]:

RL
a Dα

t f (t) =
1

Γ(m− α)

dm

dtm

∫ t

a

f (τ)
(t− τ)α−m+1 dτ

where Γ(.) is the Gamma function and (m− 1) < α 6 m.

Definition 7. The definition of the fractional-order derivative, as introduced by Caputo for a
function f (t), can be expressed as follows [31]:

C
a Dα

t f (t) =
1

Γ(m− α)

∫ t

a

f m(τ)

(t− τ)α−m+1 dτ, (m− 1) < α < m

with m ∈ N∗ and α ∈ R+.

Property 1. The Caputo derivative is the equivalent of the following equality [32].

C
t0

Dα
t

(
C
t0

D−β
t f (t)

)
= C

t0
Dα−β

t f (t) (3)

where α > β > 0

Property 2. If 1 > α > 0, we have the ability to write 4 the Caputo derivative [32]

C
t0

D1−q
t

(
C
t0

Dα
t f (t)

)
= C

t0
Dα

t

(
C
t0

D1−q
t f (t)

)
= ḟ (t) (4)

To represent the Caputo operator, CDq will be used in place of CDα throughout this paper.

Lemma 1 ([28]). Suppose the following condition can be satisfied:

V̇ ≤ −µVv − ςVτ , V(0) = V0

where V denotes a positive-definite function; 0 < τ < 1, v > 1, µ, and ς are positive constants.
The system ẋ = f (x, t) will exhibit fixed-time stability, and the upper limit on the convergence time
can be attained through
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T ≤ Tmax =
1

µ(v− 1)
+

1
ζ(1− τ)

(5)

Lemma 2 ([22]). If V can meet the following predefined-time stabilizing function:

V̇ ≤ − 1
µTs

e(V
µ)V1−µ, 0 < µ < 1 (6)

then ẋ = f (x, t) will achieve predefined-time stability within a predefined time Ts > 0. That is,
ẋ = f (x, t) will converge to zero for t > Ts.

Remark 2. As demonstrated in (5), the upper limited convergence time cannot be achieved explicitly
because the adjustable parameters affect how the upper limited convergence time of the fixed-time
stability is evaluated. The upper bound convergence time of the predefined-time stability is equal
to the tuning parameter, as demonstrated in Lemma 2, eliminating the drawbacks of the fixed-
time stability.

3. Problem Formulation

The quadrotor employed in this investigation is illustrated in Figure 1. This appa-
ratus features a sturdy body with four rotors. Yaw movement is generated by creating a
speed differential between two rotors moving in opposite directions, specifically between
rotors (2,4) and (1,3). Vertical displacement of the quadrotor is accomplished by adjusting
the total rotor speeds. Forward motion is achieved by modifying the speeds of the (1 and 3)
propellers. The lateral motion is created by varying the speed of the propellers (2 and 4). As
a result, the body is intrinsically unstable, with a mechanical system that is tightly linked
and under-actuated. Furthermore, the quadrotor dynamic model is developed on the
following assumptions; the influence of the ground is disregarded, the quadrotor structure
is symmetrical, the quadrotor frame and its blades possess rigidity, and the torques and
thrust produced by the rotor speeds exhibit a proportionality to the square of the rotor
rotation speeds.

�1 �2

�4 �3

�T

Ob

Oe

l

Xb

Yb

Zb

Xe

Xe

Xe

Figure 1. The four-rotor drone arrangement.

The quadrotor provides six outputs [φ, θ, ψ, x, y, z]T in its translational and rotational
motions. Four actual voltage inputs [(Π1, Π2, Π3, Π4]

T drive these outputs. The earth-
fixed frame and the body frames are represented by E = [xe, ye, ze]T and B = [xb, yb, zb]

T ,
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respectively. The quadrotor dynamics can be expressed using the Newton–Euler formalism
as follows [7,33]. 

φ̈ = δ1θ̇ψ̇ + δ2ωr θ̇2 + δ3φ̇ + J−1
x Π2 + dφ

θ̈ = δ4φ̇ψ̇ + δ5ωrφ̇2 + δ6θ̇ + J−1
y Π3 + dθ

ψ̈ = δ7φ̇θ̇ + δ8ψ̇ + J−1
z Π4 + dψ

ẍ = δ9 ẋ + Πx + dx

ÿ = δ10ẏ + Πy + dy

z̈ = δ11ż + Πz + dz

(7)

with
δ1 = (Jy − Jz)/Jx, δ2 = −Jr/Jx, δ3 = −Kax/Jx

δ4 = (Jz − Jx)/Jy, δ5 = Jr/Jy, δ6 = −Kay/Jy

δ7 = (Jx − Jy)/Jz, δ8 = −Kaz/Jz, δ9 = −kx/m.

δ10 = −ky/m, δ11 = −kz/m

where m is the total body mass and g denotes gravitational acceleration. Inertia moments
of the quadrotor around the x, y, and z axes are denoted by Jx, Jy, and Jz. The torques
and thrusts are represented by Π1−4, and dx−ψ represent the disturbances. The following
equation represents the relation between the control signals and the rotor speeds:

Π1
Π2
Π3
Π4

 =


h̄ −h̄ h̄ −h̄
−`[ 0 [` 0

0 −`[ 0 [`
[ [ [ [




ω2
1

ω2
2

ω2
3

ω2
4

 (8)

where h̄ represents the drag coefficient, ω1−4 denotes the angular rotor speeds, [ and `
are positive constants. The vehicle must be stabilized and follow the reference trajectory
[φd, θd, ψd, Xd, Yd, Zd]

T within a finite time. The aim of this study is to formulate a reliable
controller capable of supplying thrust magnitude and torque. To streamline the approach to
control system design, the following definition relates to the virtual control signals utilized
to determine the overall thrust and desired angles.

Πx = (cos(φ) sin(θ) cos(ψ) + sin(φ) sin(ψ)) Π1
m

Πy = (cos(φ) sin(θ) sin(ψ)− sin(φ) cos(θ))Π1
m

Πz = cos(φ) cos(θ)Π1
m − g

(9)

Based on the position controls, we can calculate the thrust Π1 and the two attitude
angles, φd and θd: 

φd = atan[c(θd)(Πxs(ψd)−Πyc(ψd))/(Πz + g)]
θd = atan[(Πx cos(ψd) + Πy sin(ψd))/(Πz + g)]

Π1 = m
√

Π2
x + Π2

y + (Πz + g)2

(10)

4. Predefined-Time Fractional-Order Controller Design

This section focuses on the design of the flight controller for the quadrotor system.
Under the control of the flight controller, the closed-loop stability in the predetermined
time is guaranteed, and the trajectories follow their references. The outer and inner loops
now use a new predefined-time fractional-order sliding mode control, as seen in Figure 2.
In comparison to the backstepping sliding mode and developing PID sliding mode controls,
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the proposed control enhances the tracking capabilities of the path reference and increases
the resilience control of the quadrotor against external disturbances.

External Disturbances

DESIRED

TRAJECTORY  

QUADROTOR

 UAV  

[X, Y, Z]T

 
[𝜙, 𝜃, 𝜓]T

[𝜙d , 𝜃d]T

 𝜓d

DYNAMICS

DECOUPLING

PTFOSMC

ATTITUDE

CONTROLLER
PTFOSMC

POSITION

CONTROLLER

[Xd, Yd, Zd]T

Π1
 

[Π2, Π3, Π4]
T

[Πx, Πy, Πz]T

Figure 2. The proposed improved PTFOSMC method is illustrated in a block diagram.

4.1. Outer-Loop Control Design

To guarantee the predefined-time stability of the position subsystem and the generation
of tilting angles, the main challenge tackled in this section involves the formulation of
virtual control laws.

For the elevation subsystem, where the PTFOSMC is employed, the definition of the
tracking error for the z(t) subsystem and its time derivative can be established as follows: ex = z− zd

ėx = ż− żd
(11)

Remark 3. The predefined-time controller ensures the convergence of the tracking error and its
time derivative using the parameter Tf [34], such that

lim
t→T f

ez(t) = 0, lim
t→T f

ėz(t) = 0,

and ez(t) = ėz(t) = 0 t > T f

The following predefined-time fractional-order sliding manifold is suggested to stabi-
lize the altitude subsystem.

σz = Iαz{ 1
Tszµz

e(|ez |µz )beze1−µz}+ γzD1−αz ez(t) (12)

where ez is the error tracking, Tsz denotes the predefined setting upper bound convergence
time, and bez(t)eµz2 = |ez|. sign(ez(t)) with 0 < µz2 < 1.

When the consensus error ez reaches the fractional-order sliding surface and finds the
equivalent control law, the following equations can be achieved:

Dασz = 0 (13)

Assuming that, using (12) and (13), (15) can be written as
1

Tszµz
e(|ez |µz )beze1−µz + γzD1ez(t) = 0 (14)

As a result, it is possible to generate the dynamics of the fractional-order sliding
surface in (12), as

ėz(t) = −
1

γzTszµz
e(|ez |µz )beze1−µz (15)
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The fractional-order sliding surface σz will converge to zero if the dynamic system
in (15) is stable.

Theorem 1. Consider the PTFO sliding manifold designed in (12); the convergence to zero in a
predefined time Tsz of the dynamics system defined in (7) is ensured.

Proof. The function is chosen to confirm the system’s stability. Function (16) is chosen to
ensure the stability of the z-subsystem:

V1z = |ez| (16)

The time differentiation of V1z is achieved as follows:

V̇1z = sign(ez)ėz = sign(ez)DαD1−αez

= sign(ez)Dα

(
−D−αz

1
γzTszµz

e(|ez |µz )beze1−µz

)
= sign(ez)

(
− 1

γzTszµz
e(|ez |µz )beze1−µz

) (17)

Due to sign(ez)× sign(ez) = 1, (18) can be achieved as follows:

V̇z1 = sign(ei)

(
− 1

γzTszµz
e(|ez |µz ) sign(ei)|ez|1−µz

)
= − 1

γzTszµz
e(|ez |µz )|ez|1−µz

= − 1
γzTszµz

e(|V1z |µz )|V1z|1−µz ≤ 0

(18)

Based on Lemma 2, it is shown that the dynamic system described by (18) can achieve
convergence to zero within a predefined time Tsz. In order to prove this convergence, the
following equation can be rewritten:

V̇z1 =
dVz1

dt
= − 1

γzTszµz
e(|V1z |µz )|V1z|1−µz (19)

Using some calculations, we obtain

dt = − γzTszµz

e(|V1z |µz )|V1z|1−µz
dV1z

dt = −γzTszµze−(|V1z |µz )|V1z|µz−1dV1z

(20)

By substituting Equation (16), it can be written as V1z = |ez| > 0∫
dt = −γzTszµz

∫
Vµz−1

1z e−Vµz
1z dVz1 (21)

Substitute u = Vµz
1z → du = µzVµz−1

1z dV1z∫
dt = −γzTszµz

1
µz

∫
e−udu (22)

By integrating Equation (22) from t0 to trz, one can obtain

trz = t0 + γzTsze−u (23)

Undo substitution u = Vµz
1z .

trz = t0 + γzTsze−Vµz
1z (24)
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The proof from above is now complete.
The following equation can be obtained from properties (3) and (15),

ëz(t) = D1+αz D1−αz ez(t)

= −D1+αz D−αz{ 1
γzTszµz

e(|ez |µz )beze1−µz}

= −D1{ 1
γzTszµz

e(|ez |µz )beze1−µz}

(25)

Therefore, the equivalent controller Πz can be obtained as follows:

z̈− z̈d = −D1{ 1
γzTszµz

e(|ez |µz )beze1−µz} (26)

Πzeq = −D1{ 1
γzTszµz

e(|ez |µz )beze1−µz} − δ11ż− dz + z̈d (27)

After that, system (7) is designed to reach the PTFO sliding manifolds by the switching
controller us.

Πzs = −Dαz{ 1
Tczµz2

e(|σz |µz2 )bσze1−µz2 + Kz sign(σz)} (28)

where Tcz > 0 and µz2, Kz are positive parameters. Combining (27) and (28), the following
law determines the altitude dynamics of the quadrotor:

Πz = Πzeq + Πzs = −D1{ 1
γzTszµz

e(|ez |µz )beze1−µz}

− Dαz{ 1
Tczµz2

e(|σz |µz2 )bσze1−µz2 + Kz sign(σz)} − δ11ż− dz + z̈d

(29)

Remark 4. The proposed controller is divided into two components. The initial segment incorpo-
rates two layers of sliding mode variables and one fractional-order operator. The second component
of the proposed controller relies on a fractional-order switching controller. Due to the integration
of fractional-order operators in its design, the suggested controller exhibits increased robustness to
variations in disturbance frequencies.

4.2. Altitude Stability Analysis for a Quadrotor

Theorem 2. During a predefined time Tsz, the proposed control (29) can regulate the consensus
error e1z to reach the FOSS.

Proof. Generate the Lyapunov function and the first-order time derivative as follows: V2z = |σz|
V̇2z = sign(σz)σ̇z = sign(σz)D−αD1+ασz

(30)

V̇2z = sign(σz)D−α

(
ëz(t) + D1{ 1

Tszµz
e(|ez |µz )beze1−µz})

)
(31)

Based on (7) and the PTFOSMC (29), (32) can be yielded as follows:

V̇2z = sign(σz)σ̇z = sign(σz)D−αD1+ασi

= sign(σz)D−α[δ11ż + Πz + dz − z̈d + D1{ 1
Tszµz

e(|ez |µz )beze1−µz})]
(32)
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V̇2z = sign(σz)D−α[δ11ż− D1{ 1
Tszµz

e(|ez |µz )beze1−µz}

− Dαz{ 1
Tczµz2

e(|σz |µz2 )bσze1−µz2 + Kz sign(σz)} − δ11ż

− dz + z̈d + dz − z̈d + D1{ 1
Tszµz

e(|ez |µz )beze1−µz})]

(33)

V̇2z = sign(σz)D−α[−Dαz{ 1
Tczµz2

e(|σz |µz2 )bσze1−µz2 + Kz sign(σz)}]

= − sign(σz)[{
1

Tczµz2
e(|σz |µz2 )bσze1−µz2 + Kz sign(σz)}]

(34)

Because of sign(œ) ∗ sign(œ) = 1, (35) can be achieved as follows:

V̇2z = − sign(σz)[{
1

Tczµz2
e(|σz |µz2 )|σz|1−µz2 sign(σz) + Kz sign(σz)}]

= − 1
Tczµz2

e(|σz |µz2 )|σz|1−µz2 |σz| − Kz|σz|
(35)

V̇2z = −
1

Tczµz2
e(|V2z |µz2 )|V2z|1−µz2 |σz| − Kz|V2z| ≤ 0 (36)

It can be demonstrated using Theorems 1 and 2 that the consensus error ez will reach
a stable zone in less time than the upper bound time t ≤ T = Tsz + Tcz.

As a result, the suggested PTFOSMC can stabilize the quadrotor system to the stable
area in the upper bound of the given predefined time Tc.

Remark 5. The position subsystem has three outputs, (z(t), x(t), y(t)), but is controlled by only
one single control. Hence, the proposed control scheme does not apply to every subsystem. Therefore,
to regulate the horizontal position, backstepping with SMC is used.

4.3. Horizontal and Vertical Control Design

In this subsection, the virtual control signals, Πx and Πy, will be created by backstep-
ping in conjunction with SMC to provide the desired angles and thrust. The suggested
control strategy for the altitude subsystem can ensure that it quickly converges to the
required altitude within the predefined time. The sliding mode surfaces for the x and y
subsystems can be defined as: {

σx(t) = ėx(t) + λxex(t)
σy(t) = ėy(t) + λyey(t)

(37)

Therefore, the time-derivative of these surfaces is as follows:{
σ̇x(t) = ẍ− ẍd + λx ėx(t)
σ̇y(t) = ÿ− ÿd + λy ėy(t)

(38)

Using the controllers created in [33,35], the following laws can be applied to control
the horizontal position:

Πx =− δ9 ẋ + dx + ẍd(t)− ėx(t)

− λxex(t)− Kx sign(σx(t))
Πy =− δ10ẏ + dy + ÿd(t)− ėy(t)

− λyey(t)− Ky sign
(
σy(t)

) (39)
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where λx; λy; Kx; Ky > 0. The predefined-time FOSMC for the attitude subsystem can be de-
signed using the same procedures as those described for altitude in the following subsection.

4.4. Inner-Loop Control Design

The primary issue investigated in this paragraph is how to provide the rolling, pitch-
ing, and yawing control inputs in such a way that the rotating subsystem is predefined-
time stable.

The following formulas provide the tracking errors for the φ(t), θ(t), and ψ(t) subsys-
tems and the time-derivative can be expressed as follows:

eφ(t) = φ(t) + φd(t)
eθ(t) = θ(t) + θd(t)
eψ(t) = ψ(t) + ψd(t)

,


ėφ(t) = φ̇(t) + φ̇d(t)
ėθ(t) = θ̇(t) + θ̇d(t)
ėψ(t) = ψ̇(t) + ψ̇d(t)

(40)

For subsystems φ(t), θ(t), and ψ(t), the predefined-time fractional-order sliding mode
manifold is given as

σφ = Iαφ{ 1
Tsφµφ

e(|eφ |
µφ )beφe1−µφ}+ γφD1−αφ eφ(t)

σθ = Iαθ{ 1
Tsθ µθ

e(|eθ |µθ )beθe1−µθ}+ γθ D1−αθ eθ(t)

σz = Iαψ{ 1
Tsψµψ

e(|eψ |
µψ )beψe1−µψ}+ γψD1−αψ eψ(t)

(41)

where eΘ is the error tracking with Θ = [φ, θ, ψ]; TsΘ denotes the predefined setting upper
bound convergence time, and beΘ(t)eµΘ2 = |eΘ|. sign(eΘ(t)) with 0 < µΘ2 < 1. The
following equations can be reached when the consensus error eΘ reaches the fractional-
order sliding surface σΘ = 0. Considering the use of (41), (42) can be written as follows:

D1−αφ eφ(t) = −D−αφ{ 1
Tsφµφ

e(|eφ |
µφ )beφe1−µφ}

D1−αθ eθ(t) = −D−αθ{ 1
Tsθ µθ

e(|eθ |µθ )beθe1−µθ}

D1−αψ eψ(t) = −D−αψ{ 1
Tsψµψ

e(|eψ |
µψ )beψe1−µψ}

(42)

The following equation can be obtained. The following equation can be obtained from
properties (3) and (41):

ëΘ(t) = D1+αΘ D1−αΘ eΘ(t)

= −D1+αΘ D−αΘ{ 1
TsΘµΘ

e(|eΘ |µΘ )beΘe1−µΘ}

= −D1{ 1
TsΘµΘ

e(|eΘ |µΘ )beΘe1−µΘ}

(43)

Therefore, the equivalent controller Πj with j = 2, 3, 4 can be obtained as follows:

Θ̈− Θ̈d = −D1{ 1
TsΘµΘ

e(|eΘ |µΘ )beΘe1−µΘ} (44)

Πjeq = −D1{ 1
TsΘµΘ

e(|eΘ |µΘ )beΘe1−µΘ} − f (Θ) (45)

By substituting Equation (45) into Equation (7), the equivalent controller of attitude
can be written as
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Π2eq = −JxD1{ 1
Tsφµφ

e(|eφ |
µφ )beφe1−µφ} − δ1θ̇ψ̇− δ2ωr θ̇2 − δ3φ̇− dφ

Π3eq = −JyD1{ 1
Tsφµφ

e(|eφ |
µφ )beφe1−µφ} − δ4φ̇ψ̇− δ5ωrφ̇2 − δ6θ̇ − dθ

Π4eq = −JzD1{ 1
Tsψµψ

e(|eφ |
µψ )beφe1−µφ} − δ7φ̇θ̇ − δ8ψ̇− dψ

(46)

System (7) is then constructed to use the switching controller, us, to reach the PTFO
sliding manifolds.

ΠΘs = −DαΘ{ 1
TcΘµΘ2

e(|σΘ |µΘ2 )bσΘe1−µΘ2 (47)

+ KΘ sign(σΘ)} (48)

where TcΘ > 0 and µΘ2, KΘ are positive parameters with Θ = [φ, θ, ψ]. Combining (46) and
(48), the following law determines the altitude dynamics of the quadrotor:

ΠΘ = ΠΘeq + ΠΘs

= −D1{ 1
TsΘµΘ

e(|eΘ |µΘ )beΘe1−µΘ} − f (Θ)

− DαΘ{ 1
TcΘµΘ2

e(|σΘ |µΘ2 )bσΘe1−µΘ2 + KΘ sign(σΘ)}

(49)

The corresponding PTFOSM controller for the quadrotor attitude is given as

Π2 = −JxD1{ 1
Tsφµφ

e(|eφ |
µφ )beφe1−µφ} − δ1θ̇ψ̇− δ2ωr θ̇2 − δ3φ̇

+ Kφ sign(σφ)} − dφ + φ̈d − Dαφ{ 1
Tcφµφ2

e(|σφ |
µφ2 )bσφe1−µφ2

(50)

Π3 = −JyD1{ 1
Tsφµφ

e(|eφ |
µφ )beφe1−µφ} − δ4φ̇ψ̇− δ5ωrφ̇2 − δ6θ̇ − dθ

+ Kθ sign(σθ)} − dθ + φ̈d − Dαθ{ 1
Tcθµθ2

e(|σθ |µθ2 )bσθe1−µθ2

(51)

Π4 = −JzD1{ 1
Tsψµψ

e(|eφ |
µψ )beφe1−µφ} − δ7φ̇θ̇ − δ8ψ̇

+ Kψ sign(σψ)} − dψ + φ̈d − Dαψ{ 1
Tcψµψ2

e(|σψ |
µψ2 )bσψe1−µψ2

(52)

Remark 6. The reaching law proposed in this paper has two main advantages: (1) it guarantees the
predefined time convergence of the sliding manifold and (2) it copes with complex disturbances.

4.5. Attitude Stability Analysis for a Quadrotor

Theorem 3. The errors will achieve convergence to the origin within a predefined time for the
fractional-order sliding surface, and stability for the yaw subsystem is attained as the state errors
are fulfilled.

Proof. The selection of the Lyapunov function for the quadrotor system is as follows:

V1ψ =
∣∣eψ

∣∣ (53)

The time differentiation of V1i is achieved as follows:
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V̇1ψ = sign
(
eψ

)
ėψ = sign

(
eψ

)
DαD1−αeψ

= sign
(
eψ

)
Dα

(
−D−αψ

1
Tsψµψ

e(|eψ |
µψ )beψe1−µψ

)
= sign

(
eψ

)(
− 1

Tsψµψ
e(|eψ |

µψ )beψe1−µψ

) (54)

Due to sign
(
eψ

)
× sign

(
eψ

)
= 1, (18) can be achieved as follows:

V̇ψ1 = sign
(
eψ

)(
− 1

Tsψµψ
e(|eψ |

µψ ) sign(ei)|eψ|1−µψ

)
= − 1

Tsψµψ
e(|eψ |

µψ )|eψ|1−µψ

= − 1
Tsψµψ

e(|V1ψ |
µψ )|V1ψ|1−µψ ≤ 0

(55)

Based on Lemma 2, it is demonstrated that the dynamic system (system (55)) can
converge to zero in a predefined time Tsψ.

The fractional-order sliding surface σψ will converge to zero if the dynamic system
in (42) is stable.

Theorem 4. Consider the PTFO sliding manifold designed in (42); the convergence to zero in a
predefined time of the dynamics system defined in (7) is ensured.

Proof. To prove Theorem 4, the Lyapunov function candidate of the yaw- subsystem is
considered as follows: V3 =

∣∣σψ

∣∣
V̇3 = sign

(
σψ

)
σ̇ψ = sign

(
σψ

)
D−αD1+ασψ

(56)

V̇2ψ = sign
(
σψ
)

D−α

(
ëψ(t) + D1{ 1

Tsψµψ
e(|eψ |µψ )beψe1−µψ}

)
(57)

Based on (7) and the PTFOSMC (49), (32) can be yielded as follows:

V̇2ψ = sign
(
σψ

)
σ̇ψ = sign

(
σψ

)
D−αD1+ασi

= sign
(
σψ

)
D−α[δ7φ̇θ̇ + δ8ψ̇ + dψ + J−1

z Π4

− ψ̈d + D1{ 1
Tsψµψ

e(|eψ |
µψ )beψe1−µψ})]

(58)

V̇2ψ = sign
(
σψ

)
D−α[δ7φ̇θ̇ + δ8ψ̇ + dψ − ψ̈d − δ7φ̇θ̇ − δ8ψ̇− dψ + ψ̈d

+ J−1
z [−JzD1{ 1

Tsψµψ
e(|eφ |

µψ )beφe1−µφ} − Kψ sign(σψ)}

− Dαψ{ 1
Tcψµψ2

e(|σψ |
µψ2 )bσψe1−µψ2 ] + D1{ 1

Tsψµψ
e(|eψ |

µψ )beψe1−µψ})]

= − sign
(
σψ

)
D−αψ [Kψ sign(σψ) + Dαψ{ 1

Tcψµψ2
e(|σψ |

µψ2 )bσψe1−µψ2 ]

= −Kψ|σψ| − Dαψ{ 1
Tcψµψ2

e(|σψ |
µψ2 )|σψ|1−µψ2 |σψ|}

(59)

V̇2ψ = −Kψ|V3| − Dαψ{ 1
Tcψµψ2

e(|V3|
µψ2 )|V3|1−µψ2 |V3|} ≤ 0. (60)
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It can be demonstrated using Theorems 3 and 4 that the consensus error eψ will reach
a stable zone in less time than the upper bound time t ≤ T2 = Tsψ + Tcψ.

It is clear from the analysis above that the reaching condition of attitude loop stability
is ensured.

Example 1. The suggested controller is used to stabilize the yaw subsystem using the settings
listed in Tables 1 and 2. The examples in Figures 3 and 4 represent the simulation results for
this example. The sliding manifold and the state variable of the yaw subsystem both converge to
their origins within the predefined time Tf , as can be seen from these results. As illustrated in
Figure 3, the smaller the parameters, Tc and Ts, the less serious the control, indicating that choosing
the appropriate Tc and Ts is important in practical implementations of the recommended control
approach, as in Figure 3.

Tf=Tc+Ts=0.25

Tc=0.05

Ts=0.2

Figure 3. Result eψ, σψ, and Π4 with Tc = 0.05 and Ts = 0.2.

Tf=Tc+Ts=0.9

Ts=0.5

Tc=0.4

Figure 4. Results eψ, σψ, and Π4 with Tc = 0.4 and Ts = 0.5.
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Table 1. Quadrotor physical characteristics.

Symbol Value Symbol Value

m (kg) 0.74 kx (m−1·s ·N) 5.5670× 10−4

g (s−2·m) 9.81 ky (m−1·s ·N) 5.5670× 10−4

l (m) 0.5 kz (m−1·s ·N) 5.5670× 10−4

Jr (kg ·m2) 2.03 × 10−5 Kax (rad−1·s ·N) 5.5670× 10−4

Jx (kg ·m2) 0.004 Kay (rad−1·s ·N) 5.5670× 10−4

Jy (kg ·m2) 0.004 Kaz (rad−1·s ·N) 5.5670× 10−4

Jz (kg ·m2) 0.0084 [ (s2·N) 2.984× 10−3

Table 2. Control parameters.

Parameter Value Parameter Value

Tc1,c3,c5 0.8 Tcz 2
Tsφ,sθ,sψ 0.5 Tsz 1

kφ,θ,ψ 10.51 kz 5
γφ,θ,ψ 20 γz 4
µφ,θ,ψ 0.2 µz 0.9

µφ2,θ2,ψ2 0.4 µz2 0.9

4.6. Stability Global Analysis

Theorem 5. Fundamental control law Equations (36) and (59) applied to the investigated system (7)
guarantee the overall quadrotor system stability.

Proof. The Lyapunov function for the quadrotor system and its time-derivative are given
as follows:  Vg = V2z + V2φ + V2θ + V2ψ

V̇g = V̇2z + V̇2φ + V̇2θ + V̇2ψ
(61)

From Equations (36) and (60), we have

Vg = − 1
Tczµz2

e(|σz |µz2 )|σz|1−µz2 |σz| − Kz|σz|

− Dαφ{ 1
Tcφµφ2

e(|σφ |
µφ2 )|σφ|1−µφ2 |σφ|}

− Dαθ{ 1
Tcθµθ2

e(|σθ |µθ2 )|σθ |1−µθ2 |σθ |}

− Dαψ{ 1
Tcψµψ2

e(|σψ |
µψ2 )|σψ|1−µψ2 |σψ|}

− Kφ|σφ| − Kθ |σθ | − Kψ|σψ| ≤ 0.

(62)

According to Theorems 1–4, Theorem 5 demonstrates the global stability achieved for
both rotational and translational tracking errors through the Lyapunov approach.

Remark 7. The quadrotor system control has two loops, where the inner loop (attitude loop) is
faster compared to the outer loop (position loop). The proposed PTFOSMC has been successfully
applied to the inner loop to achieve predefined time performances and the z-subsystem has benefited
from the proposed controller.

Remark 8. The proposed scheme offers several advantages, including the predefined-time conver-
gence of system states, predefined-time convergence in the sliding mode phase, mitigation of the
chattering problem, resilience to bounded external disturbances, and heightened robustness.
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5. Simulations Results for Quadrotor

In this section, numerical simulations are used to assess the effectiveness of the sug-
gested control approach, which is based on the PTFOSMC method for the path-following
problem. The physical characteristics of a quadrotor are listed in Table 1. In Table 2, the
PTFOSMC parameters are displayed.

Remark 9. The resolution to the chattering problem involves transforming the discontinuous
element function into a continuous function, such as the hyperbolic tangent function.

5.1. Scenario 1

In this case, the quadrotor tracks the desired reference without external disturbances.
Equation (63) provides more particular information about the desired trajectory.xd = 0.5 cos

(
π
20
)
m, yd = 0.5 sin

(
π
20
)
m zd = 2− 2 cos

(
π
2
)
m

ψd = 0.4 rad t ∈ [0 50] and ψd = 0.2 rad t ∈ [50 80]
(63)

The tracking abilities of the PTFOSMC without disturbances are displayed in Figures 5–7.
A good tracking trajectory is produced by the position subsystem’s suggested control strategy,
as shown in Figure 5. Moreover, the tracking performance of the yaw, pitch, and roll angles
as they converge to their origin values in a predefined time is presented in Figure 6. As
seen in this Figure, the yaw, for example, converges to the origin before the predefined time
Tsψ = Tsψ1 + Tsψ2 = 0.3 s. In addition, one can see that controller u remains continuous and
the sliding mode σψ = 0 is required for every t ≥ Tsψ2. Figure 7 shows an excellent tracking
trajectory of the desired control without external disturbances.

Figure 5. Quadrotor position without disturbances.
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Figure 6. Quadrotor attitude without disturbances.

Figure 7. The 2D and 3D trajectories of a quadrotor without disturbances.

5.2. Scenario 2

This section is used to assess the stability of a quadrotor when it encounters time-
varying disturbances. Quadrotor model equations are expanded to include disturbances.
One assumes that the disturbances should be bounded. When the quadrotor flies outside,
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wind gusts cause these disruptions, which are accelerations. As a result, disturbances are
shown in the following ways:

dx = 0.5 sin(0.4t) m/s2 10 < t < 30
dy = 0.2 sin(0.4t) + 0.3 cos(0.7t) m/s2 10 < t < 50
dz = 0.4 cos(0.7t) m/s2 t > 20
dφ = 0.3 cos(0.4t) rad/s2 t < 10
dθ = 0.3 cos(0.5t) rad/s2 10 < t < 20
dψ = 0.3 cos(0.7t) rad/s2 t > 20

(64)

Equations (65) and (66) provide the desired trajectory.

xd = 0.5 cos(t/2)m t ∈ [0, 4π]

xd = 0.5m t ∈ [4π, 20]

xd = 0.25t− 4.5m t ∈ [20, 30]

xd = 3m t ∈ [30, 80]

,



yd = 0.5 sin(t/2)m t ∈ [0, 4π]

yd = 0.25t− 3.14m t ∈ [4π, 20]
yd = 5− πm t ∈ [20, 30]
yd = −0.2358t + 8.94m t ∈ [4π, 20]
yd = −0.5m t ∈ [30, 80]

(65)


zd = 0.125t + 1 m t ∈ [0, 4π]

zd = 0.5π + 1 m t ∈ [4π, 40]
zd = exp(−0.2t + 8.944) m t ∈ [40, 80]

,

ψd = 0.4rad t ∈ [0, 50]

ψd = 0.2rad t ∈ [50, 80]
(66)

The tracking results obtained in scenario 2 (Figures 8–13) demonstrate the effectiveness
of the control strategy suggested in this work. The proposed nonlinear control law was
found to perform better than the ABSMC and PIDSMC control laws developed in [9,10]
for the control of present external disturbances during the flight and following the desired
trajectory. The performance attitude and position in terms of tracking performance are
shown in Figures 8 and 9. In this regard, the proposed control system provides a shorter
settling time than various other controls and we can see that the position and attitude
controllers are accurate in tracking the correct values even when the references change
quickly. We present the effectiveness of the control inputs of the quadrotor (Π1, Π2, Π3, Π4).
As can be seen, the smooth convergence of the control signals to their original values
(7.2598, 0, 0, 0) illustrates the efficiency of the PTFOSMC technique. The tracking sliding
manifolds made by the system are shown in Figures 11 and 12. These data demonstrate
that the tracking surfaces maintain their status of zero. The 3D flight trajectory is depicted
in Figure 13. The results presented above show that, in comparison to previous techniques,
the PTFOSMC has successfully tracked the desired trajectory.

5.3. Scenario 3

To further evaluate the effectiveness of the PTFOSMC method, the disturbances men-
tioned in scenario 2 are added to all state variables. In the current case, the initial conditions
are changed; for the yaw subsystem, ψ0 = 0.2 rad, ψ0 = 0.4 rad, and ψ0 = 0.8 rad, for the
z-subsystem, z0 = 0 m, z0 = 0.2 m , z0 = 0.5 m, and z0 = 0.8 m.

The response of the quadrotor system provides evidence that the suggested controller
induces a fast response. It should also be noted that there is an upper constraint on the
convergence time, which can be predefined as an adjustable control parameter and is
independent of the initial conditions, as shown in Figure 14.
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Figure 8. Position of a quadrotor.

Figure 9. Attitude of a quadrotor.
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Figure 10. Inputs a quadrotor.

Figure 11. Sliding surface for the position subsystem.
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Figure 12. Sliding surface for the attitude subsystem.
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Figure 13. The 3D trajectories of a quadrotor.



Mathematics 2023, 11, 4886 22 of 25

Figure 14. Initial values of a quadrotor.

5.4. Quantitative Analysis of the Controllers

The preceding curves are used to demonstrate the differences between the controllers
because all the strategies produce acceptable results in the ideal scenario. As a result, the
performance indices, ISE and ISV, are provided as objective functions to be utilized in the
next part.

• Integral square error (ISE): It is given by ISE =
∫ et

t0

(
e2(t)

)
dt

• Integral of the square value of control signal (ISV): ISV =
∫ tt

t0
Π2(t)dt

Table 3 shows the ISE performance of the three controllers. The proposed method is
superior to previous techniques since it can be established through the PTFOSM control
that the ISE indices are lower than BSMC and PIDSMC. Moreover, we also notice that the
proposed control uses less energy than PIDSMC and the other way around.

Table 3. Performance index of ISE.

ISE of the Scenario 1

Variable Proposed Method Method [5] Method [6]

φ(t) 0.001698 0.003314 0.03161
θ(t) 0.004448 0.0105 0.03038
ψ(t) 0.009245 0.2262 0.01622
z(t) 0.2036 0.3646 0.4262

ISE of the Scenario 2

Variable Proposed Method Method [5] Method [6]

φ(t) 0.000202 0.000948 0.001744
θ(t) 0.006334 0.003576 0.007545
ψ(t) 0.009247 0.022640 0.016220
z(t) 4.26 × 10−6 3.76 × 10−6 0.000410

The three controllers demonstrate satisfactory performance with moderate energy
consumption, regardless of external influences. However, the presence of an additional
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payload, such as a gust of wind, necessitates extra thrust to ensure optimal performance. As
evident from Table 3 and in the second scenario, the PIDSMC technique exhibits the least
accuracy (ISEψ = 0.01622), followed by the classical MFC technique, (ISEψ = 0.02264),
whereas PTFOSMC proves to be the most accurate (ISEψ = 0.009247). Additionally, it
is observed that PIDSMC consumes more energy, while the proposed control consumes
less energy.

Table 4 presents the ISV comparative results for the inputs of a quadrotor. It is clear
that the performance index values for the proposed control methodology are significantly
lower than those for the alternative strategy. The tracking performance of the suggested
control approach is then found to be better than that of the method of [9,10] by comparing
the simulation results.

Table 4. Performance index of ISV.

ISV of the Scenario 1

Variable Proposed Method Method [5] Method [6]

Total thrust 7.259 7.26 7.3
Total torques 0.003153 0.003772 −0.003348

ISV of the Scenario 2

Variable Proposed Method Method [5] Method [6]

Total thrust 7.259 7.265 7.32
Total torques 0.0002127 0.002856 −0.0002931

Remark 10. The proposed control approach was compared to the BSMC and PIDSMC techniques
in addressing the quadrotor system tracking issue. While tracking errors in other approaches may
only converge to a bounded neighborhood of the origin within a predefined time due to the use
of an error as a sliding variable, the suggested control scheme, incorporating a fractional-order
manifold, ensures the predefined-time zero-error stability of quadrotor systems, leading to enhanced
steady-state performance.

Remark 11. In this paper, two nonlinear surfaces are introduced to achieve the finite-time conver-
gence of the quadrotor states.

Remark 12. The benefits of the suggested fractional-order predefined-time sliding mode controllers
include predefined-time convergence of system states, predefined-time convergence in the reaching
phase, alleviation of the chattering phenomenon, and the incorporation of an additional fractional-
order differential element that remains insensitive to bounded external disturbances.

The implementation challenges of the proposed control method for the quadrotor’s
position and attitude will be examined through four simulations. The complexity of the
problem arises from addressing tracking performance, which includes convergence time
and steady-state performance for both inner and outer loops, especially in the presence
of external disturbances. Moreover, the innovation of the proposed control lies in the
formulation of a predefined-time controller based on fractional-order sliding mode control,
enhancing the robustness and precision of the quadrotor system.

6. Conclusions

This work suggests a novel control method for tracking quadrotor trajectory. Novel
predefined time in fractional-order sliding mode manifolds are developed to stabilize
tracking errors to the origin within a predefined time. A systematic evaluation is conducted
on the quadrotor system to verify specific conditions on the control parameters, ensuring
the stability of zero tracking error. The Newton–Euler method is applied in this research
to determine the dynamics of the quadrotor. The SMC can ensure that the quadrotor
system will obtain better dynamic performances due to its benefits of quick transient
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response, high resilience, and simple implementation. The proposed strategy is employed
to govern a quadrotor system across various scenarios influenced by escalating disturbance
amplitudes and frequencies. Additionally, the PTFOSMC is designed using fractional
calculus to reduce the inherent chattering problem of the standard SMC and improve
parameter freedom. The simulation findings demonstrate that the quadrotor system using
the proposed PTFOSMC might exceed existing control strategies with faster convergence
time and higher robustness.
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