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Abstract: Regression models for continuous outcomes frequently require a transformation of the
outcome, which is often specified a priori or estimated from a parametric family. Cumulative prob-
ability models (CPMs) nonparametrically estimate the transformation by treating the continuous
outcome as if it is ordered categorically. They thus represent a flexible analysis approach for con-
tinuous outcomes. However, it is difficult to establish asymptotic properties for CPMs due to the
potentially unbounded range of the transformation. Here we show asymptotic properties for CPMs
when applied to slightly modified data where bounds, one lower and one upper, are chosen and the
outcomes outside the bounds are set as two ordinal categories. We prove the uniform consistency
of the estimated regression coefficients and of the estimated transformation function between the
bounds. We also describe their joint asymptotic distribution, and show that the estimated regression
coefficients attain the semiparametric efficiency bound. We show with simulations that results from
this approach and those from using the CPM on the original data are very similar when a small
fraction of the data are modified. We reanalyze a dataset of HIV-positive patients with CPMs to
illustrate and compare the approaches.

Keywords: cumulative probability model; semiparametric transformation model; uniform
consistency; asymptotic distribution

MSC: 62G99

1. Introduction

Regression analyses of continuous outcomes often require a transformation of the
outcome to meet modeling assumptions. In practice, convenient but ad hoc transformations
such as a logarithm or square root are often used on right-skewed outcomes; an alternative
is to use the Box–Cox family [1] of transformations, which is effectively a family of power
functions plus the logarithm transformation. Because the correct transformation for the
continuous outcome is often unknown and it may not fall in a prespecified family, it is
desirable to estimate the transformation in a flexible way. Semiparametric transformation
models have been introduced to address this issue [2,3]. These models involve a latent
intermediate variable and two model components: one connecting the latent variable to
the outcome variable through an unknown transformation and the other connecting the
latent variable to the input variables as in traditional regression models with unknown
beta coefficients.

Early parameter estimation for semiparametric transformation models was based
on the marginal likelihood of the vector of outcome ranks [2–4]. Although this marginal
likelihood can be simplified to the partial likelihood in Cox proportional hazards models [5],
it cannot be simplified for other transformation models, and various approximations had
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to be used. As the marginal likelihood only involves the beta coefficients, additional ad hoc
procedures were developed to estimate the transformation [2,3].

Later developments for fitting semiparametric linear transformation models primarily
focused on right-censored data, initially relying on estimating equations [6,7]. Zeng and
Lin [8] developed nonparametric maximum likelihood estimators (NPMLEs) based on
likelihoods for time-to-event data and showed the consistency and asymptotic distribution
of their estimators. NPMLEs are desirable because they are fully efficient. For continuous
outcomes, more recent developments have used B-splines and Bernstein polynomials to
flexibly model the transformation [9,10], but these estimators of the transformation are not
fully nonparametric.

With continuous outcomes, one way to nonparametrically estimate the transformation
is to treat the outcome as if it is ordinal—without any categorization—and fit to cumu-
lative probability models (CPMs; also called cumulative link models) [11]. Liu et al. [11]
showed that the CPM’s multinomial likelihood for continuous outcomes is equivalent
to the nonparametric likelihood for semiparametric transformation models. This result
led to new NPMLEs for semiparametric transformation models for continuous outcomes
using computationally simple ordinal regression methods. They showed with simulations
that CPMs perform well in a wide range of scenarios. The method has since been used in
applications to analyze various outcomes [12–19].

However, there is no established asymptotic theory for this new NPMLE approach
for continuous outcomes. One main hurdle is that the unknown transformation of the
continuous outcome variable can have an unbounded range of values, which makes it
hard to establish asymptotic properties across the whole range. The approaches that were
used to prove asymptotic properties for the NPMLE of the baseline cumulative hazard
function for time-to-event outcomes cannot be applied directly to study transformation
models for a continuous outcome [8] because the latter has no bounds on its range and no
clear definition of a baseline hazard function.

To address this issue, we establish several asymptotic properties in this paper for
CPMs when they are applied to continuous outcomes with slight modification. Briefly,
a lower bound L and an upper bound U for the outcome are chosen prior to analysis,
the outcomes below L are set as the lowest category and those above U as the highest
category, and then a CPM is fitted to the modified data. We prove that, in this approach,
the nonparametric estimate of the transformation function is consistent (i.e., converges
in probability to its true value) uniformly in the interval [L, U]. We then show that the
estimator of the beta coefficients and that of the transformation jointly converge to a tight
Gaussian process, and that the estimator of the beta coefficients attains the semiparametric
efficiency bound. The latter implies that this estimator is (asymptotically) as efficient as
possible under the assumptions of the model. We show with simulations and real data that
the results from this approach and those from the CPM on the original data are very similar
when only a small fraction of data are outside the bounds.

2. Method
2.1. Cumulative Probability Models

Let Y be the outcome of interest and Z be a vector of p covariates. The semiparametric
linear transformation model is

Y = H(βTZ + ϵ), (1)

where H is a transformation function assumed to be non-decreasing but unknown other-
wise, β is a vector of coefficients, and ϵ is independent of Z and is assumed to follow a
continuous distribution with cumulative distribution function G(·). An alternative expres-
sion of model (1) is

A(Y) = βTZ + ϵ, (2)

where A = H−1 is the inverse of H. For mathematical clarity, we assume H is left continu-
ous and define A(y) = sup{z : H(z) ≤ y}; then, A is non-decreasing and right-continuous.
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Model (1) is equivalent to the cumulative probability model (CPM) presented in
Liu et al. [11]:

G−1{P(Y ≤ y | Z)} = A(y)− βTZ, for any y, (3)

where G−1(·) serves as a link function. One example of the distribution for ϵ is the
standard normal distribution. In this case, the CPM becomes a normal linear model after
a transformation, which includes log-linear models and linear models with a Box–Cox
transformation as special cases. The CPM becomes a Cox proportional hazards model
when ϵ follows the extreme value distribution, i.e. G(x) = 1 − exp(−ex), or a proportional
odds model when ϵ follows the logistic distribution, i.e. G(x) = ex/(1 + ex).

Suppose the data are i.i.d. and denoted as (Yi, Zi), i = 1, . . . , n. Liu et al. [11] proposed
to model the transformation A nonparametrically. The corresponding nonparametric (NP)
likelihood is

n

∏
i=1

[
G
{

A(Yi)− βTZi

}
− G

{
A(Y−

i )− βTZi

}]
,

where A(y−) = limt↑y A(t). Since A can be any non-decreasing function, this likelihood
will be maximized when the increments of A(·) are concentrated at the observed Yi; if
some increments of A(·) are not at the observed Yi, its corresponding probability mass
at non-observed values can always be reallocated to some observed values to increase
the likelihood. Thus, we can maximize this likelihood by only considering step functions
A(·) that have a jump at every observed Yi. This leads to an expression of the likelihood
that is the same as the likelihood of the CPM when the outcome variable is treated as if
it were ordered categorically with the observed distinct values as the ordered categories.
As a result, nonparametric maximum likelihood estimates (NPMLEs) can be obtained by
fitting an ordinal regression model to the continuous outcome. Liu et al. [11] showed in
simulations that CPMs perform well under a wide range of scenarios. However, it is difficult
to prove the asymptotic properties for this approach. Since some Yi can be extremely large
or small and the observations at the tails are often sparse, there is high variability in the
estimate of A at the tails. Moreover, the unboundedness of the transformation at the tails
makes it difficult to control the compactness of the estimator of A, thus making most of
asymptotic theory no longer applicable. In this paper, we prove asymptotic properties for
CPMs when they are applied to continuous outcomes with slight modification. We describe
the modification in Section 2.2 and show the asymptotic results in Section 2.3.

2.2. Cumulative Probability Models on Modified Data

In view of the challenges above, we hereby describe an approach in which the out-
comes are modified at the two ends before a CPM is fit. We will then describe the asymptotic
properties of this approach in Section 2.3 and show with simulations that the results from
this approach and those of the CPM on the original data are similar when a small fraction
of data are modified.

More specifically, we predetermine a lower bound L and an upper bound U, and
consider all observations with Yi ≤ L as a single ordered category, which we conveniently
denote as L, and those with Yi ≥ U as a single ordered category, denoted as U. The bounds
L and U should satisfy P(L < Y < U) > 0, P(Y ≤ L) > 0, and P(Y ≥ U) > 0. The
new outcome variable, denoted as Y′

i , follows a mixture distribution. When Y′
i ∈ (L, U),

the distribution is continuous with the same cumulative distribution function as that for
Yi; that is, P(Y′

i ≤ y | Zi) = P(Yi ≤ y | Zi) = G{A(y) − βTZi} for y ∈ (L, U). When
Y′

i = L or Y′
i = U, the distribution is discrete, with P(Y′

i = L | Zi) = G{A(L)− βTZi}
and P(Y′

i = U | Zi) = 1 − G{A(U−)− βTZi}. Then, the nonparametric likelihood for the
modified data is
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n

∏
i=1

([
G{A(Yi)− βTZi} − G{A(Y−

i )− βTZi}
]I(Yi∈(L,U))

×

G{A(L)− βTZi}I(Yi≤L) ×
[
1 − G{A(U−)− βTZi}

]I(Yi≥U)
)

, (4)

where I(S) is the indicator function for event S with value 1 if S occurs and 0 otherwise.
Since A(·) can be any non-decreasing function over the interval [L, U), the likelihood

(4) will be maximized when the increments of A(·) are concentrated at the observed Y′
i .

Hence, it suffices to consider only step functions with a jump at each distinct value of
Y′

i ∈ [L, U].

2.3. Asymptotic Results

From now on, we assume the outcome is continuous. Without loss of generality, we
assume that in our models (1)–(3), the support of Y contains 0, the vector Z contains an
intercept and has p dimensions, and A(0) = 0. Furthermore, the two bounds satisfy L < 0,
U > 0, P(L < Y < U) > 0, P(Y ≤ L) > 0, and P(Y ≥ U) > 0. To establish the asymptotic
properties described below, we further assume that

1. G(x) is thrice-continuously differentiable, G′(x) > 0 for any x,
G′′(x)sign(x) < 0 for |x| ≥ M, where M > 0 is a constant, and

lim inf
x→∞

G′(x)/{1 − G(x)} > 0, lim inf
x→−∞

G′(x)/G(x) > 0.

2. The covariance matrix of Z is non-singular. In addition, Z and β are bounded so that
βTZ ∈ [−m, m] almost certainly for some large constant m.

3. A(y) is continuously differentiable in (−∞, ∞).

Condition 1 imposes restrictions on G(x) at both tails; it holds for many residual
distributions, including the standard normal distribution, the extreme value distribution
and the logistic distribution. Conditions 2 and 3 are minimal assumptions for establishing
asymptotic properties for linear transformation models.

Let (β̂, Â) denote the nonparametric maximum likelihood estimate of (β, A) that
maximizes the likelihood (4) on the modified data. Then, Â is a step function with a jump at
each of the distinct Y′

i in the modified data. To establish the asymptotic properties of (β̂, Â),
we consider Â as a function over the closed interval [L, U] by defining Â(U) = Â(U−). We
have the following consistency theorem.

Theorem 1. Under conditions 1–3, with probability one,

sup
y∈[L,U]

|Â(y)− A(y)|+ ∥β̂ − β∥ → 0.

The proof of Theorem 1 is in Appendix A. Core steps of the proof include showing that
Â is bounded in [L, U] with probability one. Then, since Â(·) is bounded and increasing
in [L, U], via the Helly selection theorem [20], for any subsequence, there exists a further
subsequence that converges to a non-decreasing, right-continuous function at its continuity
points. Thus, without confusion, we assume that Â → A∗ weakly in [L, U] and β̂ → β∗. We
then show that with probability one, A∗(y) = A(y) for y ∈ [L, U] and β∗ = β. With this
result, the consistency is established. Furthermore, since A is continuously differentiable,
we conclude that Â(y) converges to A(y) uniformly in [L, U] with probability one.

We next describe the asymptotic distribution of (β̂, Â). The asymptotic distribution
of Â will be expressed as that of a random functional in a metric space. We first define
some notation. Let BV[L, U] be the set of all functions defined over [L, U] for which the
total variation is at most one. Let lin(BV[L, U]) be the set of all linear functionals over
BV[L, U]; that is, every element f in lin(BV[L, U]) is a linear function f : BV[L, U] → R.
For any f ∈ lin(BV[L, U]), its norm is defined as ∥ f ∥ = suph∈BV[L,U] f [h]. A metric over
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lin(BV[L, U]) can then be derived subsequently. Given any non-decreasing function A
over [L, U], a corresponding linear functional in lin(BV[L, U]), also denoted as A, can be
defined such that for any h ∈ BV[L, U],

A[h] =
∫ U

L
h(x)dA(x).

Similarly, for an nonparametric maximum likelihood estimate Â, its corresponding
linear functional in lin(BV[L, U]) is Â, such that for any h ∈ BV[L, U],

Â[h] =
∫ U

L
h(x)dÂ(x).

The functional Â is a random element in the metric space lin(BV[L, U]). For any
y ∈ (L, U), there exists an h ∈ BV[L, U], such that Â(y) = Â[h]. For example, suppose the
estimated jump sizes at the distinct outcome values of a dataset, {a1, . . . , aJ}, are {ŝ1, . . . , ŝJ}.
Then, at y0 > 0, Â(y0) = ∑0<aj≤y0

ŝj = Â[h0], where h0(y) = I(0 < y ≤ y0); and, similarly,

at y0 < 0, Â(y0) = −∑y0<aj<0 ŝj = Â[h0], where h0(y) = I(y0 < y < 0).

Theorem 2. Under conditions 1 – 3, n1/2(β̂ − β, Â − A) converges weakly to a tight Gaussian
process in Rp × lin(BV[L, U]). Furthermore, the asymptotic variance of n1/2(β̂ − β) attains the
semiparametric efficiency bound.

The proof of Theorem 2 is in Appendix B and makes use of weak convergence theory
for empirical processes and semiparametric efficiency theory. Its proof relies on verifying all
the technical conditions in the Master Z-Theorem in [21]. In particular, it entails verification
of the invertibility of the information operator for (β, A).

Because the information operator for (β, A) is invertible, the arguments given in [22]
imply that the asymptotic variance-covariance matrix of (β̂, Â[h1], . . . , Â[hm]) for any
h1, . . . , hm ∈ BV[L, U] can be consistently estimated based on the information matrix
for β̂ and the jump sizes of Â. Specifically, suppose the estimated jump sizes at the dis-
tinct outcome values of a dataset, {a1, . . . , aJ}, are {ŝ1, . . . , ŝJ}. Let În be the estimated
information matrix for both β̂ and {ŝ1, . . . , ŝJ}. Then, the variance-covariance matrix for
(β̂, Â[h1], . . . , Â[hm]) is estimated as VT Î−1

n V, where

V =

(
Ip×p 0

0 H

)
and H is a J × m matrix with elements {hk(aj)}1≤j≤J,1≤k≤m.

3. Simulation Study
3.1. Simulation Set-Up

CPMs have been extensively simulated elsewhere to justify their use and have been
largely seen to have good behavior [11]. Here we perform a more limited set of simulations
to illustrate three major points which are particularly relevant to our study. First, the
estimation of A(y) using CPMs can be biased at extreme values of y. Even though Â(y)
may have point-wise consistency for any y, Â(y) may not be uniformly consistent over
all y ∈ (−∞, ∞). Second, in the modified approach, Â(y) is uniformly consistent over
y ∈ [L, U]. Third, except for the estimation of extreme quantiles and A(y) at extreme levels,
the results are largely similar between CPMs fit to the original data and the modified data.

We roughly followed the simulation settings of Liu et al. [11]. Let X1 ∼ Bernoulli(0.5),
X2 ∼ N(0, 1), and Y = exp(β1X1 + β2X2 + ϵ), where β1 = 1, β2 = −0.5, and ϵ ∼ N(0, 1).
In this set-up, the correct transformation function is A(y) = log(y). We generated datasets
{(X1, X2, Y)} with sample sizes n = 100, 1000, and 5000. We fit CPMs that have the correctly
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specified link function (probit) and model form (linear). The performance of misspecified
models was extensively studied via simulations [11]. In CPMs, the transformation A
and the parameters (β1, β2) are semi-parametrically estimated. We evaluated how well
the transformation was estimated by comparing Â(y) with the correct transformation,
A(y) = log(y), for various values of y.

We fit CPMs to the original data and CPMs to the modified data with (L, U) set to
(e−4, e4), (e−2, e2), and (e−1/2, e1/2); these values correspond to approximately 0.2%, 13%,
and 71% of Y being modified, respectively. All simulations had 1000 replications.

3.2. Simulation Results

Figure 1 shows the average estimate of A(y) across 1000 simulation replicates com-
pared with the true transformation, log(y). The left, center, and right panels are results
based on sample sizes of 100, 1000, and 5000, respectively. With the original data, for all
sample sizes, estimates are unbiased when y is around the center of its distribution (i.e.,
where the bulk of the probability mass lies), approximately in the range [e−2, e3] when
n = 100, in [e−3, e4] when n = 1000, and in a wider range when n = 5000. However, at
extreme values of y, we see biased estimation. This illustrates that, for a fixed y, one can
find a sample size large enough that the estimation of A(y) is unbiased, but that there will
always be a more extreme value of y for which Â(y) may be biased. This motivates the
need to categorize values outside a predetermined range (L, U) to achieve the uniform
consistency of Â(y) for y ∈ [L, U].

Figure 1. Cont.
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Figure 1. Average estimate of A(y) after fitting properly specified CPMs compared with the true
transformation, log(y). Gray curve: original data; black curve: modified data. Dashed lines are
the diagonal. Top row: (L, U) = (e−4, e4); middle row: (L, U) = (e−2, e2); bottom row: (L, U) =

(e−1/2, e1/2). Left to right: n = 100, 1000, 5000. Based on 1000 replications.

Figure 2 compares estimates of β1 for the various sample sizes using the original data
and using the modified data. As the sample size becomes larger, β̂1 becomes less biased in
all approaches. At n = 5000, β̂1 is approximately unbiased even with a large proportion of
the data having been categorized. Not surprisingly, with increasing proportions of catego-
rized data, β̂1 becomes slightly more variable (Table 1) and slightly less correlated with that
estimated from the original data. The results for β2 have similar patterns (Supplementary
Material Figure S1).
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Figure 2. Estimates of β1 using data categorized outside (L, U) compared with those using the original
data and to the truth, β1 = 1. Gray lines are mean estimates and dashed gray lines are the truth. Top
row: (L, U) = (e−4, e4); middle row: (L, U) = (e−2, e2); bottom row: (L, U) = (e−1/2, e1/2). Left to
right: n = 100, 1000, 5000. Based on 1000 replications.

Table 1 shows further results for five estimands: β1, β2, A(e0.5), and the conditional
median and mean of Y given X1 = 0 and X2 = 0. For each estimand, we compute the
bias of the corresponding estimate, its standard deviation across replicates, the mean of
estimated standard errors, and the mean squared error. For the estimands β1, β2, and
A(e0.5), estimation using the original data appears to be consistent, and the behavior of
our estimators with the modified data is as predicted by the asymptotic theory. When
n = 100, there appears to be only a modest amount of bias, even with 71% categorized;
when n = 1000 (Table 1) and 5000 (shown in Supplementary Material Table S1), the bias is
quite small. Although in Figure 1 we saw that estimates of A(y) for extreme values of y
were biased, we see no evidence that this impacts the estimation of β1 and β2. The average
standard errors are very similar to the empirical results (i.e., the standard deviation of
parameter estimates across replicates), suggesting that we are correctly estimating standard
errors. These results hold regardless of the proportion categorized in our simulations. With
increasing proportions being categorized, as expected, both absolute bias and standard
deviation increase, and, as a result, the mean squared error increases. However, all these
measures become smaller as the sample size increases.

Table 1. Simulation results for estimates from CPMs on original data and on data categorized outside
(L, U); n = 100, 1000; based on 1000 replications.

n Estimand Original Data Categorized Outside (L, U)
Data (e−4, e4) (e−2, e2) (e−1/2, e1/2)

100 β1 bias 0.043 0.043 0.042 0.048
SD 0.228 0.228 0.229 0.260
mean SE 0.217 0.217 0.219 0.251
MSE 0.054 0.054 0.054 0.070

β2 bias –0.022 –0.021 –0.020 –0.022
SD 0.119 0.119 0.120 0.143
mean SE 0.110 0.110 0.111 0.133
MSE 0.015 0.015 0.015 0.021

A(e0.5) bias 0.019 0.019 0.019 0.020
SD 0.177 0.177 0.177 0.183
mean SE 0.174 0.174 0.175 0.182
MSE 0.032 0.032 0.032 0.034

median(Y | X1 = 0, X2 = 0) bias 0.022 0.022 0.023 0.021
SD 0.172 0.172 0.172 0.176
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Table 1. Cont.

n Estimand Original Data Categorized Outside (L, U)
Data (e−4, e4) (e−2, e2) (e−1/2, e1/2)

MSE 0.030 0.030 0.030 0.031
E(Y | X1 = 0, X2 = 0) bias –0.007 - - -

SD 0.266 - - -
mean SE 0.262 - - -
MSE 0.071 - - -

1000 β1 bias 0.007 0.007 0.007 0.008
SD 0.068 0.068 0.068 0.076
mean SE 0.067 0.067 0.068 0.077
MSE 0.005 0.005 0.005 0.006

β2 bias –0.001 –0.001 –0.001 –0.001
SD 0.033 0.033 0.034 0.040
mean SE 0.034 0.034 0.034 0.041
MSE 0.001 0.001 0.001 0.002

A(e0.5) bias 0.003 0.003 0.003 0.003
SD 0.055 0.055 0.055 0.056
mean SE 0.054 0.054 0.054 0.057
MSE 0.003 0.003 0.003 0.003

median(Y | X1 = 0, X2 = 0) bias 0.003 0.003 0.002 0.002
SD 0.054 0.054 0.054 0.056
MSE 0.003 0.003 0.003 0.003

E(Y | X1 = 0, X2 = 0) bias –0.003 - - -
SD 0.081 - - -
mean SE 0.083 - - -
MSE 0.007 - - -

SD, standard deviation of replicates; mean SE, average estimated standard error across replicates; MSE, mean
squared error.

We cannot compute the standard error for the conditional median. Categorization
also prohibits the sound estimation of the conditional mean; one could instead estimate
the trimmed conditional mean, e.g., E(Y | X1 = 0, X2 = 0, L ≤ Y ≤ U), which may
substantially differ from E(Y | X1 = 0, X2 = 0). The bias of Â(y) for extreme values of y
had little impact on the estimation of E(Y | X1 = 0, X2 = 0), which is computed using Â(y)
over the entire range of observed y.

4. Example Data Analysis

CD4:CD8 ratio is a biomarker for measuring the strength of the immune system. A
normal CD4:CD8 ratio is between 1 and 4, while people with HIV tend to have much
lower values, and a low CD4:CD8 ratio is highly predictive of poor outcomes including
non-communicable diseases and mortality. When people with HIV are put on antiretrovi-
ral therapy, their CD4:CD8 ratio tends to increase, albeit often slowly and quite variably.
Castilho et al. [23] studied factors associated with the CD4:CD8 ratio among 2024 people
with HIV who started antiretroviral therapy and maintained viral suppression for at least
12 months. They considered various factors including age, sex, race, the probable route of
transmission, hepatitis C co-infection, hepatitis B co-infection, and the year of antiretroviral
therapy initiation. Here we re-analyze their data using CPMs. We will focus on the associa-
tions of the CD4:CD8 ratio with age and sex, treating the other factors as covariates. The
CD4:CD8 ratio tends to be right-skewed (Figure 3a), but there is no standard transformation
for analyzing it. In various studies, it has been left untransformed [23], log-transformed [24],
dichotomized (CD4:CD8 > 1 vs. ≤ 1) [25], put into ordered categories roughly based on
quantiles [26], square-root transformed [27], and fifth-root transformed [28]. In contrast,
CPMs do not require the specification of the transformation.



Mathematics 2023, 11, 4896 10 of 21

a

CD4:CD8 ratio

F
re

qu
en

cy

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

0

100

200

300

400

20 30 40 50 60 70

0.4

0.6

0.8

1.0

Age (years)

M
ed

ia
n 

C
D

4:
C

D
8 

ra
tio

b

20 30 40 50 60 70

0.4

0.6

0.8

1.0

Age (years)

M
ea

n 
C

D
4:

C
D

8 
ra

tio

c

20 30 40 50 60 70

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Age (years)

pr
(C

D
4:

C
D

8 
ra

tio
 >

1)

d

Figure 3. (a) Histogram of CD4:CD8 ratio in our dataset. (b–d) Estimated outcome measures and 95%
confidence intervals as functions of age, holding other covariates constant at their medians/modes.
(b) Median CD4:CD8 ratio; (c) mean CD4:CD8 ratio; (d) probability that CD4:CD8 > 1.

We fit three CPMs: Model 1 using the original data, Model 2 categorizing all CD4:CD8
ratios below L = 0.1 and above U = 2.0, and Model 3 categorizing below L = 0.2 and
above U = 1.5. In a similar group of patients in a prior study [29], these values of L and U
were approximately the 1.5th and 99.5th percentiles, respectively, for Model 2, and the 7th
and 95th percentiles for Model 3. In our dataset, there were 19 (0.9%) CD4:CD8 ratios below
0.1 and 21 (1%) above 2.0, and 156 (7.7%) below 0.2 and 74 (3.7%) above 1.5. In our models,
age was modeled using restricted cubic splines [30] with four knots at the 0.05, 0.35, 0.65,
and 0.95 quantiles. All models were fit using a logit link function; quantile–quantile plots of
probability-scale residuals [11] from the models suggested a good model fit (Supplementary
Materials Figure S2).

All three models produced nearly identical results. Female sex had regression co-
efficients 0.6002, 0.6000, and 0.5994 in Models 1, 2, and 3, respectively (likelihood ratio
p < 0.0001 in all models), suggesting that the odds of having a higher CD4:CD8 ratio, after
controlling for all other variables in the model, were about e0.6 = 1.82 times higher for
females than for males (95% Wald confidence interval 1.44–2.31). The median CD4:CD8
ratio holding all other covariates fixed at their medians/modes was estimated to be 0.67
(0.60–0.74) for females compared with 0.53 (0.51–0.56) for males; all models had the same
estimates to two decimal places. The mean CD4:CD8 ratio holding all other covariates
constant was estimated to be 0.73 (0.67–0.79) for females and 0.61 (0.58–0.63) for males
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from Model 1. The mean estimates from Models 2 and 3 were slightly different (e.g., 0.72
for females); however, the mean should not be reported after categorization because the
estimates arbitrarily assigned the categorized values to be L and U.

Older age was strongly associated with a lower CD4:CD8 ratio (p < 0.0001 in all
models), and the association was non-linear (p = 0.0080, 0.0081, 0.0086, respectively).
Figure 3b–d show the estimated median and mean CD4:CD8 ratio and the probability that
CD4:CD8 > 1 as functions of age, all derived from the CPMs and holding other covariates
fixed at their medians/modes. The median CD4:CD8 ratio and P(CD4:CD8 > 1) were
not discernibly different between the three models. The mean as a function of age is only
shown as derived from Model 1.

5. Discussion

We have now established the asymptotic properties for CPMs applied to data cate-
gorized at the tails. CPMs are flexible semiparametric regression models for continuous
outcomes because the outcome transformation is nonparametrically estimated. We proved
uniform consistency of the estimated coefficients β̂ and the estimated transformation func-
tion Â over the interval [L, U], and showed that their joint asymptotic distribution is a tight
Gaussian process. We demonstrated that these estimators perform well with simulations
and illustrated their use in practice with a real data example.

Establishing uniform consistency requires a bounded range of the transformation
function A, which is achieved by categorizing the outcome variable at both ends. Even if an
outcome variable has a bounded support, the transformed values may not be bounded, and
categorization will still be needed to establish uniform consistency. The proof of uniform
consistency for β̂ also requires a bounded range of A even though β and A are separate
components of the model.

Although the asymptotic properties for a similar nonparametric maximum likelihood
approach in survival analysis have been established [8], the proofs here for CPMs with
continuous data are different because we consider the nonparametric maximum likelihood
estimate for the transformation in CPMs rather than the cumulative hazards function as in
survival analysis. In addition, the transformation is estimated in the proofs directionally
and separately for the two tails, which also differs from prior work.

For data without natural lower and upper bounds, the choice of L and U might be
challenging in practice. In our CD4:CD8 ratio analysis, we were able to select values of
L and U that corresponded with small and large CD4:CD8 percentiles in a prior study,
therefore likely ensuring that a small fraction of the data would be modified in our analysis.
In general, it is desirable to choose bounds so that only a small fraction of the data are
categorized, although it should be reiterated that these bounds should be chosen prior to
analysis. Both our simulations and our data example suggest that the results are robust to
the specific choices of L and U as long as they do not lead to a high proportion of the data
being categorized. For example, in our simulations, the results were nearly identical when
categorization varied between 0.2% and 13%; in the data example, results were also nearly
identical when categorization varied between 1.9% and 11.4%. Therefore, if one chooses
to specify L and U, we suggest to select them so that approximately 5% or fewer of the
observations would be modified at each end.

Our simulations and data example actually also suggest that without categorization,
the estimators also perform well, which may support the use of CPMs with the original
data in practice. CPMs applied to the original data do not require specifying L and U,
and they permit the calculation of conditional means. However, its asymptotic theory
has not been established; hence, there might be some risk to analyses using CPMs on the
original data.

Continuous data that are skewed or subject to detection limits are common in applied
research. Because of their ability to non-parametrically estimate a proper transformation,
their robust rank-based nature, and their desirable properties proven and illustrated in
this manuscript, CPMs are often an excellent choice for analyzing these types of data.
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Extensions of CPMs to more complicated settings, e.g., clustered and longitudinal data,
multivariate outcome data, or data with multiple detection limits, are warranted and are
areas of ongoing research.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/math11244896/s1. Additional results from simulations and data
example are in the Supplementary Materials. The code for simulations and data analysis is available
at https://biostat.app.vumc.org/ArchivedAnalyses (accessed on 1 December 2023).
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Appendix A. Proof of Theorem 1

Core steps of the proof: Let (β0, A0) be the true value of (β, A) and (β̂, Â) be the
NPMLE from the CPM applied to modified data. We will first prove that (I) Â is bounded
in [L, U] with probability one. Since Â(·) is bounded and increasing in [L, U], via the Helly
selection theorem [20], for any subsequence, there exists a weakly convergent subsequence.
Thus, without confusion, we assume that Â → A∗ weakly in [L, U] and β̂ → β∗. We will
then prove that (II) with probability one, A∗(y) = A0(y) for y ∈ [L, U] and β∗ = β0. With
this result, the consistency is established. Furthermore, since A0 is continuously differen-
tiable, we conclude that Â(y) converges to A0(y) uniformly in [L, U] with probability one.

Proof. Proof of (I): Given a dataset of i.i.d. observations {(Yi, Zi)}, the nonparametric
log-likelihood for CPM fitted to the modified data is

ln(β, A) = Pn{I(Y ≤ L) log G(A(L)− βTZ) + I(Y ≥ U) log(1 − G(A(U−)− βTZ))

+I(L < Y < U) log(G(A(Y)− βTZ)− G(A(Y−)− βTZ))
}

.

Here, Pn denotes the empirical measure, i.e., Png(Y, Z) = n−1 ∑n
i=1 g(Yi, Zi), for any

measurable function g(Y, Z). Let Â{Yi} ≡ Â(Yi)− Â(Yi−) be the jump size of Â at Yi. Let
Â(U) ≡ Â(U−).

We first show that lim sup Â(U) < ∞ a.s. If Â(Yi−) ≤ M + m for all Yi > 0, then
Â(U) ≤ M + m. Below, we assume there is a Yi > 0 such that Â(Yi−) > M + m. Clearly,
Â{Yi} should be strictly positive, since, otherwise, ln(β, A) = −∞. Because of this, we
differentiate ln(β, A) with respect to A{Yi} and then set it to zero to obtain the follow-
ing equation:

Pn

{
I(Y ≥ U) G′(Â(U)−β̂T Z)

1−G(Â(U)−β̂T Z)

}
− Pn

{
I(Yi < Y < U)G′(Â(Y)−β̂T Z)−G′(Â(Y−)−β̂T Z)

G(Â(Y)−β̂T Z)−G(Â(Y−)−β̂T Z)

}
= 1

n
G′(Â(Yi)−β̂T Zi)

G(Â(Yi)−β̂T Zi)−G(Â(Yi−)−β̂T Zi)
.

(A1)

https://www.mdpi.com/article/10.3390/math11244896/s1
https://www.mdpi.com/article/10.3390/math11244896/s1
https://biostat.app.vumc.org/ArchivedAnalyses
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For any Y > Yi, via condition 2,

Â(Y−)− β̂TZ ≥ M + m − β̂TZ ≥ M.

According to condition 1, G′(x) is decreasing when x ≥ M. The left-hand side of
(A1) is

≥ Pn

{
I(Y > U)

G′(Â(U)− β̂TZ)
1 − G(Â(U)− β̂TZ)

}
.

For the right-hand side, we use the mean-value theorem on the denominator and then
the decreasing property of G′(x) when x ≥ M to obtain that

1
n

G′(Â(Yi)− β̂TZi)

G(Â(Yi)− β̂TZi)− G(Â(Yi−)− β̂TZi)
=

1
n

G′(Â(Yi)− β̂TZi)

G′(ξi)Â{Yi}
≤ 1

nÂ{Yi}
,

where ξi is some value such that Â(Yi−)− β̂TZi ≤ ξi ≤ Â(Yi)− β̂TZi. Therefore, we have

Â{Yi} ≤ 1
n

[
Pn

{
I(Y > U)

G′(Â(U)− β̂TZ)
1 − G(Â(U)− β̂TZ)

}]−1

,

and this holds for any Yi between 0 and U and satisfying Â(Yi−) > M + m.
Let i0 be the maximal index i for which Yi > 0 and Â(Yi0−) ≤ M + m. We sum over

all Yi between 0 and U to obtain that

Â(U) = Â(Yi0−) + ∑
Yi>0,Â(Yi−)>M+m

Â{Yi}

≤ M + m +

[
n−1

n

∑
i=1

I(0 < Yi ≤ U)

][
Pn

{
I(Y > U)

G′(Â(U)− β̂TZ)
1 − G(Â(U)− β̂TZ)

}]−1

.

We now show that Â(U) cannot diverge to ∞. Otherwise, suppose that Â(U) → ∞
for some subsequence. From the second half of condition 1, when n is large enough in the
subsequence, for any Z,

G′(Â(U)− β̂TZ)
1 − G(Â(U)− β̂TZ)

>
1
2

lim inf
x→∞

G′(x)
1 − G(x)

≡ c0 > 0,

and, therefore,

Â(U) ≤ M + m +
n−1 ∑n

i=1 I(0 < Yi ≤ U)

c0Pn{I(Y > U)} ,

in which the last term converges to a constant. We thus have a contradiction. Hence,
lim sup Â(U) < ∞ with probability 1.

We can reverse the order of Yi (change Yi to −Yi so that the NPMLE is equivalent to
maximizing the likelihood function, but instead of A(y), we consider −A(y)). The same
arguments as above apply to conclude that lim sup−Â(L) < ∞ with probability 1, or
equivalently, lim inf Â(L) > −∞ with probability 1.
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Proof. Proof of (II): We first show that nÂ{Yi} is bounded for all Yi ∈ [L, U]. From the
proof above, we know Â{Yi} = O(n−1) uniformly in i for which Yi ∈ [L, U] satisfying
|Â(Yi−)| > M + m. We prove that this is true for any Yi. To do that, we define

Hn(y) = Pn

{
I(Y > U)

G′(Â(U)− β̂TZ)
1 − G(Â(U)− β̂TZ)

}

−Pn

{
I(y < Y ≤ U)

G′(Â(Y)− β̂TZ)− G′(Â(Y−)− β̂TZ)
G(Â(Y)− β̂TZ)− G(Â(Y−)− β̂TZ)

}
.

First, we note that Hn(y) has a total bounded variation in [0, U]. In fact, for any
0 < t < s < U,

|Hn(t)− Hn(s)|

=
∣∣∣Pn

{
I(t < Y ≤ s)

G′(Â(Y)− β̂TZ)− G′(Â(Y−)− β̂TZ)
G(Â(Y)− β̂TZ)− G(Â(Y−)− β̂TZ)

}∣∣∣
≤ c1Pn{I(t < Y ≤ s)},

where c1 = supx∈[−m,c0+m] |G′′(x)|/ infx∈[−m,c0+m] |G′(x)|. By choosing a subsequence, we
assume that Hn(y) converges weakly to H∗(y). From the above inequality and taking
limits, it is clear that

|H∗(t)− H∗(s)| ≤ c1P (t < Y ≤ s),

so H∗(y) is Lipschitz-continuous in y ∈ [0, U]. The latter property ensures that Hn(y)
uniformly converges to H∗(t) for t ∈ [0, U].

According to Equation (A1), we know

|Hn(Yi)| =
1
n

G′(Â(Yi)− β̂TZi)

G(Â(Yi)− β̂TZi)− G(Â(Yi−)− β̂TZi)
≥ c2

nÂ{Yi}
, (A2)

where c2 = infx∈[−m,c0+m]G′(x)/supx∈[−m,c0+m] G′(x). Thus,

Â{Yi} ≥ c2

n
1

|Hn(Yi)|+ ϵ

for any positive constant ϵ. This gives

Â(U) ≥ c2Pn

[
I(Y ∈ [0, U])

|Hn(Y)|+ ϵ

]
. (A3)

Since Hn(Y) has a bounded total variation, {|Hn(Y)|+ ϵ}−1 belongs to a Glivenko–
Cantelli class bounded by 1/ϵ and it converges in L2(P)-norm to {|H∗(Y)|+ ϵ}−1. As a
result, the right-hand side of (A3) converges to c2E[I(Y ∈ [0, U])(|H∗(Y)|+ ϵ)−1], so we
obtain that

c0 ≥ c2

∫ U

0

fY(y)
|H∗(y)|+ ϵ

dy,

where fY(y) is the marginal density of Y. Let ϵ decrease to zero; then, from the monotone
convergence theorem, we conclude that∫ U

0

fY(y)
|H∗(y)|dy ≤ c0

c2
. (A4)

We use (A4) to show that miny∈[0,τ] |H∗(y)| > 0. Otherwise, since H∗(y) is continuous,
there exists some y0 ∈ [0, τ] such that H∗(y0) = 0. However, since H∗(y) is Lipschitz-
continuous at y0, the left-hand side of (A4) is at least larger than

∫ y0+δ
y0

{c1|y − y0|}−1dy if
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y0 < U or
∫ y0

y0−δ{c1|y − y0|}−1dy if y0 > 0 for some small constant δ. The latter integrals are
infinity. We obtain the contradiction. Hence, we conclude that H∗(y) is uniformly bounded
away from zero when y ∈ [0, U]. Thus, when n is large enough, |Ĥn(Yi)| is larger than a
positive constant c3 uniformly for all Yi > 0. From (A1), we thus obtain that

c3 ≤ c4

nÂ{Yi}
,

where c4 = supx∈[−m,c0+m]G′(x)/infx∈[−m,c0+m] G′(x). In other words, nÂ{Yi} ≤ c4/c3.

Using symmetric arguments, we can show that nÂ{Yi} is bounded by a constant for all
Yi < 0.

Finally, to establish the consistency in Theorem 1, since Â{Yi} is of order n−1, from
Equation (A1), we obtain that

Â{Yi} = n−1

[
Pn

{
I(Y > U)

G′(Â(U)− β̂TZ)
1 − G(Â(U)− β̂TZ)

}
− Pn

{
I(Yi < Y ≤ U)

G′′(Â(Y)− β̂TZ)
G′(Â(Y)− β̂TZ)

}]−1

+O(n−2).

Following this expression, we define another step function, denoted by Ã(y), whose
jump size at Yi satisfies that

Ã{Yi} = n−1

[
Pn

{
I(Y > U)

G′(A0(U)− βT
0 Z)

1 − G(A0(U)− βT
0 Z)

}
− Pn

{
I(Yi < Y ≤ U)

G′′(A0(Y)− βT
0 Z)

G′(A0(Y)− βT
0 Z)

}]−1

so

Ã(y) = n−1
n

∑
i=1

I(Yi ≤ y)

[
Pn

{
I(Y > U)

G′(A0(U)− βT
0 Z)

1 − G(A0(U)− βT
0 Z)

}

−Pn

{
I(Yi < Y ≤ U)

G′′(A0(Y)− βT
0 Z)

G′(A0(Y)− βT
0 Z)

}]−1

.

Via the strong law of large numbers and monotonicity of Â, it is straightforward to
show that Â(y) converges to

E

I(Y ≤ y)

[
P̃

{
I(Ỹ > U)

G′(A0(U)− βT
0 Z̃)

1 − G(A0(U)− βT
0 Z̃)

}
− P̃

{
I(Y < Ỹ ≤ U)

G′′(A0(Ỹ)− βT
0 Z̃)

G′(A0(Ỹ)− βT
0 Z̃)

}]−1


uniformly in y ∈ [L, U]. The limit can be verified to be the same as A0(y). Furthermore, we
notice

Â{Yi}
Ã{Yi}

=

Pn

{
I(Y > U)

G′(A0(U)−βT
0 Z)

1−G(A0(U)−βT
0 Z)

}
− Pn

{
I(Yi < Y ≤ U)

G′′(A0(Y)−βT
0 Z)

G′(A0(Y)−βT
0 Z)

}
[

Pn

{
I(Y > U) G′(Â(U)−β̂T Z)

1−G(Â(U)−β̂T Z)

}
− Pn

{
I(Yi < Y ≤ U)G′′(Â(Y)−β̂T Z)

G′(Â(Y)−β̂T Z)

}]
+ O(n−1)

. (A5)

Since Â(y) is bounded and increasing and β̂TZ, Â(Y)− β̂TZ belongs to a VC-hull
of Donsker class. Via the preservation property under the monotone transformation,
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G(k)(Â(U)− β̂TZ), k = 0, 1, 2, also belongs to a Donsker class. Therefore, the right-hand
side of (A5) converges uniformly in Yi to

g(Yi) =

P
{

I(Y > U)
G′(A0(U)−βT

0 Z)
1−G(A0(U)−βT

0 Z)

}
− P

{
I(Yi < Y ≤ U)

G′′(A0(Y)−βT
0 Z)

G′(A0(Y)−βT
0 Z)

}
P
{

I(Y > U) G′(A∗(U)−β∗T Z)
1−G(A∗(U)−β∗T Z)

}
− P

{
I(Yi < Y ≤ U)G′′(A∗(Y)−β∗T Z)

G′(A∗(Y)−β∗T Z)

} .

As a result, A∗(y) =
∫ y

0 g(t)dA0(t), or, equivalently, dA∗(y)/dA0(y) = g(y).
Define

l̃n(β, A) = Pn

{
I(Y ≤ L) log G(A(L)− βTZ) + I(Y > U) log(1 − G(A(U)− βTZ))

+I(L < Y ≤ U) log(G(A(Y)− βTZ)A{Y}
}

.

Since Ã{Yi} = O(n−1) and Â{Yi} = O(n−1),

ln(β̂, Â) = l̃n(β̂, Â) + O(n−1), ln(β0, Ã) = l̃n(β0, Ã) + O(n−1).

Since ln(β̂, Â) ≥ ln(β0, Ã0), we have

l̃n(β̂, Â) ≥ l̃n(β0, Ã) + O(n−1).

That is,

Pn

{
I(Y ≤ L) log

G(Â(L)− β̂TZ)
G(Ã(L)− βT

0 Z)
+ I(Y > U) log

1 − G(Â(U)− β̂TZ)
1 − G(Ã(U)− βT

0 Z)

}

+Pn

{
I(L < Y ≤ U) log

G(Â(Y)− β̂TZ)
G(Ã(Y)− βT

0 Z)

}
+ n−1

n

∑
i=1

I(L < Yi ≤ U)
Â{Yi}
Ã{Yi}

≥ O(n−1).

We take limits on both sides. Using the Glivenko–Cantelli theorem with the first

three two terms in the left-hand side and noting
∣∣∣Â{Yi}/Ã{Yi} − g(Yi)

∣∣∣ converges to zero
uniformly, we obtain that

P

{
I(Y ≤ L) log

G(A∗(L)− β∗TZ)
G(A0(L)− βT

0 Z)
+ I(Y > U) log

1 − G(A∗(U)− β∗TZ)
1 − G(A0(U)− βT

0 Z)

}

+P

{
I(L < Y ≤ U) log

G(A∗(Y)− β∗TZ)
G(A0(Y)− βT

0 Z)

}
+ P

{
(L < Y ≤ U)

dA∗(Y)
dA0(Y)

}
≥ 0.

The left-hand side is the negative Kullback–Leibler information for the density with
parameter (β∗, A∗). Thus, the density function with parameter (β∗, A∗) should be the same
as the true density. Immediately, we obtain that

G(A∗(Y) + β∗TZ) = G(A0(Y) + βT
0 Z)

with probability one. From condition 2, we conclude that β∗ = β0 and A∗(y) = A0(y) for
y ∈ [L, U].

Appendix B. Proof of Theorem 2

Proof. Let BV[L, U] be the set of the functions over [L, U] with ∥h∥TV ≤ 1, where ∥ · ∥TV
denotes the total variation in [L, U]. For any ν ∈ Rp with ∥ν∥ ≤ 1 and any h ∈ BV[L, U],
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we define the score function Ψn(β, A)[ν, h] along the submodel for β with tangent direction
ν and for A with the tangent function

∫ ·
0 h(t)dA(t):

Ψn(β, A)[ν, h]

= lim
ϵ→0

(
ln(β + ϵν, A + ϵ

∫ ·
0 h(t)dA(t))− ln(β, A)

ϵ

)
= Pn

{
−F1(Y, Z; β, A)ZTν + F2(Y, Z; β, A)ZTν − F3(Y, Z; β, A)ZTν

}
+Pn

{
F1(Y, Z; β, A)

∫ L

0
h(t)dA(t)− F2(Y, Z; β, A)

∫ U

0
h(t)dA(t)

+F3(Y, Z; β, A)
∫ Y

0
hdA + F4(Y, Z; β, A)h(Y)

}
,

where

F1(Y, Z; β, A) =
I(Y ≤ L)G′(A(L)− βTZ)

G(A(L)− βTZ)
,

F2(Y, Z; β, A) =
I(Y ≥ U)G′(A(U)− βTZ)

1 − G(A(U)− βTZ)
,

F3(Y, Z; β, A) =
I(L < Y < U)

(
G′(A(Y)− βTZ)− G′(A(Y−)− βTZ)

)
G(A(Y)− βTZ)− G(A(Y−)− βTZ)

,

F4(Y, Z; β, A) =
G′(A(Y−)− βTZ)

G(A(Y)− βTZ)− G(A(Y−)− βTZ)
(A(Y)− A(Y−)).

Since (β̂, Â) maximizes ln(β, A), we have, for any v and h,

Ψn(β̂, Â)[ν, h] = 0.

The rest of the proof contains the following main steps: we first show that (β̂, Â) satis-
fies Equation (A6) (details below), then (A8), and finally (A10), from which the asymptotic
distribution of (β̂, Â) will be derived.

We know maxL≤Yi≤U(Â(Yi) − Â(Yi−)) = Op(n−1) from the proof in Appendix A.
Thus, if we let

F̃3(Y, Z; β, A) =
I(L < Y < U)G′′(A(Y)− βTZ)

G′(A(Y)− βTZ)
,

then
F3(Y, Z; β̂, Â) = F̃3(Y, Z; β̂, Â) + Op(n−1)

and F4(Y, Z; β̂, Â) = 1 + Op(n−1) uniformly in (Y, Z). Consequently, we obtain that

Pn

(
−F1(Y, Z; β̂, Â)ZTν + F2(Y, Z; β̂, Â)ZTν − F̃3(Y, Z; β̂, Â)ZTν

)
+Pn

(
F1(Y, Z; β̂, Â)

∫ L

0
h(t)dÂ(t)− F2(Y, Z; β̂, Â)

∫ U

0
h(t)dÂ(t)

+F̃3(Y, Z; β̂, Â)
∫ Y

0
hdÂ + h(Y)

)
= Op(n−1),

and it holds uniformly in ν and h with ∥ν∥ ≤ 1 and ∥h∥TV ≤ 1. Equivalently, we have that

√
n(Pn − P)

−F1(Y, Z; β̂, Â)ZTν + F2(Y, Z; β̂, Â)ZTν − F̃3(Y, Z; β̂, Â)ZTν

+F1(Y, Z; β̂, Â)
∫ L

0 h(t)dÂ(t)− F2(Y, Z; β̂, Â)
∫ U

0 h(t)dÂ(t)
+F̃3(Y, Z; β̂, Â)

∫ Y
0 hdÂ + h(Y)


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=
√

nP

−F1(Y, Z; β̂, Â)ZTν + F2(Y, Z; β̂, Â)ZTν − F̃3(Y, Z; β̂, Â)ZTν

+F1(Y, Z; β̂, Â)
∫ L

0 h(t)dÂ(t)− F2(Y, Z; β̂, Â)
∫ U

0 h(t)dÂ(t)
+F̃3(Y, Z; β̂, Â)

∫ Y
0 hdÂ + h(Y)

+ Op(n−1/2). (A6)

For the left-hand side of (A6), it is easy to see that for (β, A) in a neighborhood of
(β0, A0) in the metric space Rd × BV[L, U], the classes of F1(Y, Z; β, A), F2(Y, Z; β, A) and
F̃3(Y, Z; β, A) are Lipschtiz classes of the P-Donsker classes

{
βTZ

}
and {A(Y) ∈ BV[L, U]},

so they are P-Donsker by preservation of the Donsker property. Additionally, the classes of{∫ Y
0 hdA

}
,
{

ZTν
}

, and {h(Y)} are P-Donsker. As the result, since, via the consistency,−F1(Y, Z; β̂, Â)ZTν + F2(Y, Z; β̂, Â)ZTν − F̃3(Y, Z; β̂, Â)ZTν

+F1(Y, Z; β̂, Â)
∫ L

0 h(t)dÂ(t)− F2(Y, Z; β̂, Â)
∫ U

0 h(t)dÂ(t)
+F̃3(Y, Z; β̂, Â)

∫ Y
0 hdÂ + h(Y)


converges in L2(P) to

S(Y, Z)[ν, h] ≡

−F1(Y, Z; β0, A0)ZTν + F2(Y, Z; β0, A0)ZTν − F̃3(Y, Z; β0, A0)ZTν

+F1(Y, Z; β0, A0)
∫ L

0 h(t)dA0(t)− F2(Y, Z; β0, A0)
∫ U

0 h(t)dA0(t)
+F̃3(Y, Z; β0, A0)

∫ Y
0 hdA0 + h(Y)

,

Equation (A6) gives that
√

n(Pn − P)S(Y, Z)[ν, h]

=
√

nP

−F1(Y, Z; β̂, Â)ZTν + F2(Y, Z; β̂, Â)ZTν − F̃3(Y, Z; β̂, Â)ZTν

F1(Y, Z; β̂, Â)
∫ L

0 h(t)dÂ(t)− F2(Y, Z; β̂, Â)
∫ U

0 h(t)dÂ(t)
+F̃3(Y, Z; β̂, Â)

∫ Y
0 hdÂ + h(Y)

+ op(1). (A7)

On the other hand, we note that the first term in the right-hand side of (A7) is zero if
replacing (β̂, Â) by (β0, A0). Thus, the right-hand side of (A7) is equal to

√
nP

−F1(Y, Z; β̂, Â)ZTν + F2(Y, Z; β̂, Â)ZTν − F̃3(Y, Z; β̂, Â)ZTν

+F1(Y, Z; β̂, Â)
∫ L

0 h(t)dÂ(t)− F2(Y, Z; β̂, Â)
∫ U

0 h(t)dÂ(t)
+F̃3(Y, Z; β̂, Â)

∫ Y
0 hdÂ



−
√

nP

−F1(Y, Z; β0, A0)ZTν + F2(Y, Z; β0, A0)ZTν − F̃3(Y, Z; β0, A0)ZTν

+F1(Y, Z; β0, A0)
∫ L

0 h(t)dA0(t)− F2(Y, Z; β0, A0)
∫ U

0 h(t)dA0(t)
+F̃3(Y, Z; β0, A0)

∫ Y
0 hdA0

+ op(1).

We perform the linearization to the first two terms in the above expression. After some
algebra, we obtain that this expression is equivalent to

√
n(ST

11ν + S12[h])T(β̂ − β0) +
√

n
∫
(ST

21ν + S22[h])d(Â − A0)(y)

+op(
√

n∥β̂ − β0∥+
√

n∥Â − A0∥TV) + op(1),

where the operators S11 : Rd → Rd, S12 : BV[L, U] → Rd, ST
21 : Rd → BV[L, U], and

S22 : BV[L, U] → BV[L, U] are defined as
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S11v = E
[

d
dt

G′(t)
G(t)

∣∣∣
t=A0(L)−βT

0 Z
I(Y ≤ L)ZZTv

]
−E
[

d
dt

G′(t)
1 − G(t)

∣∣∣
t=A0(U)−βT

0 Z
I(Y ≥ U)ZZTv

]
+E
[

d
dt

G′′(t)
G′(t)

∣∣∣
t=A0(Y)−βT

0 Z
I(L < Y < U)ZZTv

]
,

S12[h] = −E
[

d
dt

G′(t)
G(t)

∣∣∣
t=A0(L)−βT

0 Z
I(Y ≤ L)Z

∫ L

0
hdA0

]
+E
[

d
dt

G′(t)
1 − G(t)

∣∣∣
t=A0(U)−βT

0 Z
I(Y ≥ U)Z

∫ U

0
hdA0

]
−E
[

d
dt

G′′(t)
G′(t)

∣∣∣
t=A0(Y)−βT

0 Z
I(L < Y < U)Z

∫ Y

0
hdA0

]
,

(ST
21v)(y) = −E

[
d
dt

G′(t)
G(t)

∣∣∣
t=A0(L)−βT

0 Z
I(Y ≤ L)ZTvI(Y > y)

]
+E
[

d
dt

G′(t)
1 − G(t)

∣∣∣
t=A0(U)−βT

0 Z
I(Y ≥ U)ZTvI(Y > y)

]
−E
[

d
dt

G′′(t)
G′(t)

∣∣∣
t=A0(Y)−βT

0 Z
I(L < Y < U)ZTvI(Y > y)

]
,

S22[h](y) = E
[

d
dt

G′(t)
G(t)

∣∣∣
t=A0(L)−βT

0 Z
I(Y ≤ L)I(Y > y)

∫ L

0
hdA0

]
−E
[

d
dt

G′(t)
1 − G(t)

∣∣∣
t=A0(U)−βT

0 Z
I(Y ≥ U)I(Y > y)

∫ U

0
hdA0

]
+E
[

d
dt

G′′(t)
G′(t)

∣∣∣
t=A0(Y)−βT

0 Z
I(L < Y < U)I(Y > y)

∫ Y

0
hdA0

]
+E{F1(Y, Z; β0, A0)I(L ≥ y)− F2(Y, Z; β0, A0)I(U > y)

+F̃3(Y, Z; β0, A0)I(Y ≤ y)
}

h(y).

Combining the above results, we obtain from (A7) that

√
n(ST

11ν + S12[h])T(β̂ − β0) +
√

n
∫
(ST

21ν + S22[h])d(Â − A0)(y)

=
√

n(Pn − P)S(Y, Z)[ν, h] + op(
√

n∥β̂ − β0∥+
√

n∥Â − A0∥TV) + op(1). (A8)

Next, we show that the operator, (ST
11ν+S12[h], ST

21ν+S22[h]) that maps (ν, h) ∈ Rd ×
BV[L, U] to Rd × BV[L, U], is invertible. This can be proven as follows: first, ST

11ν + S12[h]
is finite-dimensional. Second, since the last term of S22[h] is invertible and the other terms
in ST

21ν + S22[h] map (ν, h) to a continuously differentiable function in [L, U] which is a
compact operator, ST

21ν + S22[h] is a Fredholm operator of the first kind. Therefore, to
prove the invertibility, it suffices to show that (ST

11ν + S12[h], ST
21ν + S22[h]) is one-to-one.

Suppose that (ST
11ν + S12[h], ST

21ν + S22[h]) = 0. Thus, we have

(ST
11ν + S12[h])Tν +

∫
(ST

21ν + S22[h])dh(y) = 0.

From the previous derivation, we note that the left-hand side is in fact the negative
Fisher information along the submodel (β0 + ϵν, A0 +

∫ ·
0 h(t)dA0(t)). Thus, the score

function along this submodel must almost certainly be zero. That is,

−F1(Y, Z; β0, A0)ZTν + F2(Y, Z; β0, A0)ZTν − F3(Y, Z; β0, A0)ZTν
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+F1(Y, Z; β0, A0)
∫ L

0
h(t)dA(t)− F2(Y, Z; β0, A0)

∫ U

0
h(t)dA(t)

+F̃3(Y, Z; β0, A0)
∫ Y

0
hdA + h(Y) = 0

almost certainly. Consider any Y = 0; then, we have ZTν − h(0) = 0, so ν = 0 from
condition 2. This further shows that h(0) = 0 and h(y) satisfies

h(Y) + F̃3(Y, Z; β0, A0)
∫ Y

0
hdA = 0

for any Y ∈ [L, U]. This is a homogeneous integral equation and it is clear h(y) = 0 for any
y ∈ [L, U]. We thus have established the invertibility of the operator (ST

11ν + S12[h], ST
21ν +

S22[h]).
Therefore, from (A8), for any ν∗ and h∗, by choosing (ν−, h−) as the inverse of the

above operator applied to (ν∗, h∗), we obtain that

√
nν∗T(β̂ − β0) +

√
n
∫

h∗(y)d(Â − A0)(y)

=
√

n(Pn − P)S(Y, Z)[ν−, h−] + op(
√

n∥β̂ − β0∥+
√

n∥Â − A0∥TV) + op(1), (A9)

and this holds uniformly for ∥ν∗∥ ≤ 1 and ∥h∗∥TV ≤ 1. Using (A9), we obtain that
√

n∥β̂ − β0∥+
√

n∥Â − A0∥TV = Op(1).

Thus, √
nν∗T(β̂ − β0) +

√
n
∫

h∗(y)d(Â − A0)(y)

=
√

n(Pn − P)S(Y, Z)[ν−, h−] + op(1). (A10)

This implies that √
n(β̂ − β0, Â − A0),

as a random map on (ν∗, h∗), converges weakly to a mean-zero and tight Gaussian process.
Furthermore, by letting ν∗ = 1 and h∗ = 0, we conclude that

√
n(β̂ − β0) has an influence

function given by S(Y, Z)[ν−, h−]. Since the latter lies on the score space, it must be the
efficient influence function. Hence, the asymptotic variance of

√
n(β̂ − β0) achieves the

semiparametric efficiency bound.
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