OMOFuse: An Optimized Dual-Attention Mechanism Model for Infrared and Visible Image Fusion
Abstract
:1. Introduction
2. Related Work
2.1. Fusion Methods Based on AEs
2.2. Fusion Methods Based on CNN
2.3. Fusion Methods Based on RNNs
2.4. Fusion Methods Based on GANs
3. Proposed Method
3.1. ODAM Module
3.1.1. DCA Mechanism
Algorithm 1: Dual-Channel Attention Mechanism Algorithm Principle | |
Input:, feature map of a given layer in a deep learning model. Output: feature map after applying DCA. Parameter setting: Input channels: C. Reduces the channel dimension: R (default: 4). The number of attention modules: N (default: 2). | |
Procedure: | |
1: |
|
2: |
|
3: |
|
4: |
|
5: |
|
6: |
|
7: |
|
8: |
|
9: |
|
10: |
|
11: |
|
12: |
|
3.1.2. ESA Mechanism
Algorithm 2: Enhanced Spatial Attention Mechanism Algorithm Principle | |
Input:, feature map of a given layer in a deep learning model. Output:, feature map after applying ESA. Parameter setting: Input channels: C. Reduces the channel dimension: R (default: 4). | |
Procedure: | |
1: |
|
2: |
|
3: |
|
4: |
|
5: |
|
6: |
|
7: |
|
8: |
|
9: |
|
10: |
|
11: |
|
12: |
|
13: |
|
14: |
|
15: |
|
16: |
|
17: |
|
18: |
|
19: |
|
20: |
|
21: |
|
3.2. MO Module
Algorithm 3: Optimized Multi-Layer Perceptron Algorithm Principle | |
Input: hidden features: HF, output features: OF, active layer: ReLU, drop: 0.2. Output:. Parameter setting:
| |
Procedure: | |
1: |
|
2: |
|
3: |
|
The forward function: | |
4: |
|
5: |
|
6: |
|
7: |
|
8: |
|
3.3. Loss Function
3.4. Network Structure of this Paper
4. Experimental Results and Analysis
4.1. Experimental Settings
4.2. Evaluation Metrics
4.3. DHV Datasets
4.3.1. Qualitative Comparison
4.3.2. Quantitative Comparison
5. Extended Study
5.1. M3FD TNO Datasets
5.1.1. Qualitative Comparison
5.1.2. Quantitative Comparison
5.2. Roadscene Fusion Datasets
5.2.1. Qualitative Comparison
5.2.2. Quantitative Comparison
6. Ablation Experiments
6.1. Ablation Experiment of ODAM
6.1.1. Qualitative Comparison
6.1.2. Quantitative Comparison
6.2. Ablation Experiment of MO
6.2.1. Qualitative Comparison
6.2.2. Quantitative Comparison
6.3. Ablation Experiment of Loss Function
6.3.1. Qualitative Comparison
6.3.2. Quantitative Comparison
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Parisotto, S.; Calatroni, L.; Bugeau, A.; Papadakis, N.; Schönlieb, C.-B. Variational Osmosis for Non-Linear Image Fusion. IEEE Trans. Image Process. 2020, 29, 5507–5516. [Google Scholar] [CrossRef]
- Sato, T.; Shimada, S.; Murakami, H.; Watanabe, H.; Hashizume, H.; Sugimoto, M. ALiSA: A Visible-Light Positioning System Using the Ambient Light Sensor Assembly in a Smartphone. IEEE Sens. J. 2022, 22, 4989–5000. [Google Scholar] [CrossRef]
- Hoang, C.M.; Kang, B. Pixel-level clustering network for unsupervised image segmentation. Eng. Appl. Artif. Intell. 2024, 127, 107327. [Google Scholar] [CrossRef]
- Jin, Y.; Dong, Y.; Zhang, Y.; Hu, X. SSMD: Dimensionality Reduction and Classification of Hyperspectral Images Based on Spatial–Spectral Manifold Distance Metric Learning. IEEE Trans. Geosci. Remote Sens. 2022, 60, 5538916. [Google Scholar] [CrossRef]
- Su, N.; Chen, X.; Guan, J.; Huang, Y. Maritime Target Detection Based on Radar Graph Data and Graph Convolutional Network. IEEE Geosci. Remote Sens. Lett. 2022, 19, 4019705. [Google Scholar] [CrossRef]
- Chen, T.; Yang, P.; Peng, H.; Qian, Z. Multi-target tracking algorithm based on PHD filter against multi-range-false-target jamming. J. Syst. Eng. Electron. 2020, 31, 859–870. [Google Scholar] [CrossRef]
- Meghdadi, A.H.; Irani, P. Interactive Exploration of Surveillance Video through Action Shot Summarization and Trajectory Visualization. IEEE Trans. Vis. Comput. Graph. 2013, 19, 2119–2128. [Google Scholar] [CrossRef] [PubMed]
- Ouyang, Y.; Wang, X.; Hu, R.; Xu, H.; Shao, F. Military Vehicle Object Detection Based on Hierarchical Feature Representation and Refined Localization. IEEE Access 2022, 10, 99897–99908. [Google Scholar] [CrossRef]
- Shen, L.; Rangayyan, R.M. A segmentation-based lossless image coding method for high-resolution medical image compression. IEEE Trans. Med. Imaging 1997, 16, 301–307. [Google Scholar] [CrossRef]
- Sotiras, A.; Davatzikos, C.; Paragios, N. Deformable Medical Image Registration: A Survey. IEEE Trans. Med. Imaging 2013, 32, 1153–1190. [Google Scholar] [CrossRef]
- Bai, Y.; Tang, M. Object Tracking via Robust Multitask Sparse Representation. IEEE Signal Process. Lett. 2014, 21, 909–913. [Google Scholar]
- Shi, Y.; Li, J.; Zheng, Y.; Xi, B.; Li, Y. Hyperspectral Target Detection with RoI Feature Transformation and Multiscale Spectral Attention. IEEE Trans. Geosci. Remote Sens. 2021, 59, 5071–5084. [Google Scholar] [CrossRef]
- Zhou, Z.; Wang, B.; Li, S.; Dong, M. Perceptual fusion of infrared and visible images through a hybrid multi-scale decomposition with Gaussian and bilateral filters. Inf. Fusion 2016, 30, 15–26. [Google Scholar] [CrossRef]
- Li, S.; Kang, X.; Hu, J. Image Fusion with Guided Filtering. IEEE Trans. Image Process. 2013, 22, 2864–2875. [Google Scholar] [PubMed]
- Bavirisetti, D.P.; Xiao, G.; Zhao, J.; Dhuli, R.; Liu, G. Multi-scale Guided Image and Video Fusion: A Fast and Efficient Approach. Circuits Syst. Signal. Process 2019, 38, 5576–5605. [Google Scholar] [CrossRef]
- Butakoff, C.; Frangi, A.F. A Framework for Weighted Fusion of Multiple Statistical Models of Shape and Appearance. IEEE Trans. Pattern Anal. Mach. Intell. 2006, 28, 1847–1857. [Google Scholar] [CrossRef] [PubMed]
- Xia, Y.; Kamel, M.S. Novel Cooperative Neural Fusion Algorithms for Image Restoration and Image Fusion. IEEE Trans. Image Process. 2007, 16, 367–381. [Google Scholar] [CrossRef] [PubMed]
- Du, J.; Li, W.; Tan, H. Three-layer image representation by an enhanced illumination-based image fusion method. IEEE J. Biomed. Health Inform. 2019, 24, 1169–1179. [Google Scholar] [CrossRef]
- Huang, Y.; Song, R.; Xu, K.; Ye, X.; Li, C.; Chen, X. Deep Learning-Based Inverse Scattering with Structural Similarity Loss Functions. IEEE Sens. J. 2021, 21, 4900–4907. [Google Scholar] [CrossRef]
- Li, M.; Hsu, W.; Xie, X.; Cong, J.; Gao, W. SACNN: Self-Attention Convolutional Neural Network for Low-Dose CT Denoising With Self-Supervised Perceptual Loss Network. IEEE Trans. Med. Imaging 2020, 39, 2289–2301. [Google Scholar] [CrossRef]
- Balamurali, A.; Feng, G.; Lai, C.; Tjong, J.; Kar, N.C. Maximum Efficiency Control of PMSM Drives Considering System Losses Using Gradient Descent Algorithm Based on DC Power Measurement. IEEE Trans. Energy Convers. 2018, 33, 2240–2249. [Google Scholar] [CrossRef]
- Tang, L.; Yuan, J.; Ma, J. Image fusion in the loop of high-level vision tasks: A semantic-aware real-time infrared and visible image fusion network. Inf. Fusion 2022, 82, 28–42. [Google Scholar] [CrossRef]
- Vs, V.; Valanarasu, J.M.J.; Oza, P.; Patel, V.M. Image Fusion Transformer. In Proceedings of the 2022 IEEE International Conference on Image Processing (ICIP), Bordeaux, France, 16–19 October 2022; pp. 3566–3570. [Google Scholar]
- Li, X.; Wen, J.-M.; Chen, A.-L.; Chen, B. A Method for Face Fusion Based on Variational Auto-Encoder. In Proceedings of the 2018 15th International Computer Conference on Wavelet Active Media Technology and Information Processing (ICCWAMTIP), Chengdu, China, 14–16 December 2018; pp. 77–80. [Google Scholar]
- Namhoon, L.; Wongun, C.; Paul, V.; Christopher Bongsoo, C.; Philip, H.S.T.; Manmohan Krishna, C. Desire: Distant Future Prediction in Dynamic Scenes with Interacting Agents. In Proceedings of the Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 2165–2174. [Google Scholar]
- Jin, X.; Hu, Y.; Zhang, C.-Y. Image restoration method based on GAN and multi-scale feature fusion. In Proceedings of the 2020 Chinese Control and Decision Conference (CCDC), Hefei, China, 22–24 August 2020; pp. 2305–2310. [Google Scholar]
- Li, H.; Wu, X.-J. DenseFuse: A fusion approach to infrared and visible images. IEEE Trans. Image Process. 2019, 28, 2614–2623. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Wu, X.-J.; Kittler, J. RFN-nest: An end-to-end residual fusion network for infrared and visible images. Inf. Fusion 2021, 73, 72–86. [Google Scholar] [CrossRef]
- Li, H.; Wu, X.-J.; Durrani, T. NestFuse: An infrared and visible image fusion architecture based on nest connection and spatial/channel attention models. IEEE Trans. Instrum. Meas. 2020, 69, 9645–9656. [Google Scholar] [CrossRef]
- Xu, H.; Wang, X.; Ma, J. DRF: Disentangled representation for visible and infrared image fusion. IEEE Trans. Instrum. Meas. 2021, 70, 5006713. [Google Scholar] [CrossRef]
- Jian, L.; Yang, X.; Liu, Z.; Jeon, G.; Gao, M.; Chisholm, D. Sedrfuse: A symmetric encoder–decoder with residual block network for infrared and visible image fusion. IEEE Trans. Instrum. Meas. 2021, 70, 5002215. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, Y.; Sun, P.; Yan, H.; Zhao, X.; Zhang, L. IFCNN: A general image fusion framework based on convolutional neural network. Inf. Fusion 2020, 54, 99–118. [Google Scholar] [CrossRef]
- Xu, H.; Ma, J.; Jiang, J.; Guo, X.; Ling, H. U2Fusion: A unified unsupervised image fusion network. IEEE Trans. Pattern Anal. Mach. Intell. 2022, 44, 502–518. [Google Scholar] [CrossRef]
- Ma, J.; Tang, L.; Xu, M.; Zhang, H.; Xiao, G. STDFusionNet: An Infrared and Visible Image Fusion Network Based on Salient Target Detection. IEEE Trans. Instrum. Meas. 2021, 70, 5009513. [Google Scholar] [CrossRef]
- Liu, S.; Pan, J.; Yang, M.-H. Learning recursive filters for low-level vision via a hybrid neural network. In Proceedings of the European Conference on Computer Vision, Amsterdam, The Netherlands, 11–14 October 2016; pp. 560–576. [Google Scholar]
- Zhang, J.; Pan, J.; Ren, J.; Song, Y.; Lau, R.W. Dynamic scene deblurring using spatially variant recurrent neural networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 2521–2529. [Google Scholar]
- Ren, W.; Liu, S.; Ma, L.; Xu, Q.; Xu, X.; Cao, X.; Du, J.; Yang, M.-H. Low-light image enhancement via a deep hybrid network. IEEE Trans. Image Process. 2019, 28, 4364–4375. [Google Scholar] [CrossRef]
- Xu, M.; Tang, L.; Zhang, H.; Ma, J. Infrared and visible image fusion via parallel scene and texture learning. Pattern Recognit. 2022, 132, 108929. [Google Scholar] [CrossRef]
- Ma, J.; Yu, W.; Liang, P.; Li, C.; Jiang, J. Fusiongan: A generative adversarial network for infrared and visible image fusion. Inf. Fusion 2019, 48, 11–26. [Google Scholar] [CrossRef]
- Ma, J.; Xu, H.; Jiang, J.; Mei, X.; Zhang, X.-P. Ddcgan: A dual-discriminator conditional generative adversarial network for multi-resolution image fusion. IEEE Trans. Image Process. 2020, 29, 4980–4995. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Huo, H.; Li, C.; Wang, R.; Feng, Q. Attentionfgan: Infrared and visible image fusion using attention-based generative adversarial networks. IEEE Trans. Multimedia 2021, 23, 1383–1396. [Google Scholar] [CrossRef]
- Ma, J.; Zhang, H.; Shao, Z.; Liang, P.; Xu, H. Ganmcc: A generative adversarial network with multiclassification constraints for infrared and visible image fusion. IEEE Trans. Instrum. Meas. 2021, 70, 5005014. [Google Scholar] [CrossRef]
- Qin, Z.; Zhang, P.; Wu, F.; Li, X. Fcanet: Frequency channel attention networks. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Montreal, BC, Canada, 11–17 October 2021; pp. 783–792. [Google Scholar]
- Chu, X.; Tian, Z.; Wang, Y.; Zhang, B.; Ren, H.; Wei, X.; Xia, H.; Shen, C. Twins: Revisiting the design of spatial attention in vision transformers. Adv. Neural Inf. Process. Syst. 2021, 34, 9355–9366. [Google Scholar]
- Liu, X.; Suganuma, M.; Sun, Z.; Okatani, T. Dual residual networks leveraging the potential of paired operations for image restoration. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20 June 2019; pp. 7007–7016. [Google Scholar]
- Hausler, S.; Garg, S.; Xu, M.; Milford, M.; Fischer, T. Patch-netvlad: Multi-scale fusion of locally-global descriptors for place recognition. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20 June 2019; pp. 14141–14152. [Google Scholar]
- Kim, H.; Park, J.; Lee, C.; Kim, J.J. Improving accuracy of binary neural networks using unbalanced activation distribution. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, TN, USA, 20–25 June 2021; pp. 7862–7871. [Google Scholar]
- Hanna, M.H.; Kaiser, A.M. Update on the management of sigmoid diverticulitis. World J. Gastroenterol. 2021, 27, 760. [Google Scholar] [CrossRef]
- Wang, E.; Yu, Q.; Chen, Y.; Slamu, W.; Luo, X. Multi-modal knowledge graphs representation learning via multi-headed self-attention. Inf. Fusion 2022, 88, 78–85. [Google Scholar] [CrossRef]
- Toet, A. The TNO Multiband Image Data Collection. Data Brief 2017, 15, 249–251. [Google Scholar] [CrossRef]
- Hou, L.; Chen, C.; Wang, S.; Wu, Y.; Chen, X. Multi-Object Detection Method in Construction Machinery Swarm Operations Based on the Improved YOLOv4 Model. Sensors 2022, 22, 7294. [Google Scholar] [CrossRef] [PubMed]
- Ascencio-Cabral, A.; Reyes-Aldasoro, C.C. Comparison of Convolutional Neural Networks and Transformers for the Classification of Images of COVID-19. Pneumonia and Healthy Individuals as Observed with Computed Tomography. J. Imaging 2022, 8, 237. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Ye, P.; Xiao, G. VIFB: A visible and infrared image fusion benchmark. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, Seattle, WA, USA, 14–19 June 2020; pp. 104–105. [Google Scholar]
- Liu, Y.; Chen, X.; Cheng, J.; Peng, H.; Wang, Z. Infrared and visible image fusion with convolutional neural networks. Int. J. Wavelets Multiresolution Inf. Process. 2018, 16, 1850018. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, L.; Bai, X.; Zhang, L. Infrared and visual image fusion through infrared feature extraction and visual information preservation. Infrared Phys. Technol. 2017, 83, 227–237. [Google Scholar] [CrossRef]
- Li, H.; Wu, X.-J.; Kittler, J. MDLatLRR: A Novel Decomposition Method for Infrared and Visible Image Fusion. IEEE Trans. Image Process. 2020, 29, 4733–4746. [Google Scholar] [CrossRef] [PubMed]
- Fu, Y.; Xu, T.; Wu, X.; Kittler, J. PPT Fusion: Pyramid Patch Transformerfor a Case Study in Image Fusion. arXiv 2022, arXiv:2107.13967. [Google Scholar]
- Zhang, H.; Ma, J. SDNet: A versatile squeeze-and-decomposition network for real-time image fusion. Int. J. Comput. Vis. 2021, 129, 2761–2785. [Google Scholar] [CrossRef]
- Tang, L.; Deng, Y.; Ma, Y.; Huang, J.; Ma, J. SuperFusion: A Versatile Image Registration and Fusion Network with Semantic Awareness. IEEE/CAA J. Autom. Sin. 2022, 9, 2121–2137. [Google Scholar] [CrossRef]
- Wang, Z.; Chen, Y.; Shao, W.; Li, H.; Zhang, L. SwinFuse: A Residual Swin Transformer Fusion Network for Infrared and Visible Images. IEEE Trans. Instrum. Meas. 2022, 71, 5016412. [Google Scholar] [CrossRef]
- Bavirisetti, D.P.; Dhuli, R. Two-scale image fusion of visible and infrared images using saliency detection. Infrared Phys. Technol. 2016, 76, 52–64. [Google Scholar] [CrossRef]
- Alexander, T. TNO Image Fusion Dataset. Data Brief 2017, 15, 249–251. [Google Scholar] [CrossRef]
Method | EN ↓ | SF ↑ | SD ↑ | PSNR ↑ | MSE ↓ | MI ↑ | SCD ↑ | Nabf ↓ | MS_SSIM ↑ |
---|---|---|---|---|---|---|---|---|---|
CNN | 6.7051 | 0.0105 | 11.0482 | 60.7441 | 0.0598 | 5.4084 | 1.2782 | 0.1164 | 0.9569 |
Hybrid_MSD | 6.6069 | 0.0108 | 10.5830 | 61.3735 | 0.0535 | 4.4112 | 1.3995 | 0.1540 | 0.9681 |
IFEVIP | 6.8600 | 0.0118 | 10.3508 | 60.2827 | 0.0644 | 5.2314 | 1.5940 | 0.1885 | 0.9457 |
TIF | 6.2582 | 0.0101 | 9.8712 | 63.1943 | 0.0311 | 3.1823 | 1.6139 | 0.2001 | 0.9551 |
MDLatLRR | 6.2940 | 0.0153 | 9.8651 | 63.0112 | 0.0315 | 2.8957 | 1.6325 | 0.4287 | 0.9475 |
SwinFuse | 6.5653 | 0.0125 | 10.2428 | 61.4893 | 0.0468 | 4.2972 | 1.5877 | 0.2616 | 0.9533 |
SuperFusion | 6.7837 | 0.0102 | 10.3393 | 60.9628 | 0.0574 | 4.5202 | 0.5757 | 0.1612 | 0.9156 |
SeAFusion | 7.2099 | 0.0138 | 10.6302 | 60.7421 | 0.0646 | 4.8932 | 1.3032 | 0.4054 | 0.9640 |
PPT Fusion | 5.5468 | 0.0056 | 8.4609 | 63.3165 | 0.0330 | 3.7637 | 1.5796 | 0.0128 | 0.9114 |
SDNet | 5.8295 | 0.0245 | 10.9580 | 58.6278 | 0.0933 | 4.6873 | 0.5985 | 0.2754 | 0.8512 |
OMOFuse | 5.8332 | 0.0253 | 10.9961 | 63.4045 | 0.0413 | 5.3462 | 1.6638 | 0.1716 | 0.9713 |
Method | EN ↓ | SF ↑ | SD ↑ | PSNR ↑ | MSE ↓ | MI ↑ | SCD ↑ | Nabf ↓ | MS_SSIM ↑ |
---|---|---|---|---|---|---|---|---|---|
CNN | 7.1797 | 0.0509 | 9.6380 | 62.6111 | 0.0445 | 2.3819 | 1.6533 | 0.1348 | 0.9424 |
Hybrid_MSD | 7.0103 | 0.0537 | 9.2939 | 63.3682 | 0.0367 | 2.2593 | 1.5827 | 0.1666 | 0.9340 |
IFEVIP | 6.8565 | 0.0447 | 9.2252 | 61.4735 | 0.0548 | 3.5519 | 1.5320 | 0.1158 | 0.8630 |
MDLatLRR | 6.9375 | 0.0706 | 9.2717 | 63.7603 | 0.0325 | 1.5358 | 1.6063 | 0.3734 | 0.9204 |
PPT Fusion | 6.5203 | 0.0313 | 8.8465 | 64.4007 | 0.0295 | 2.2453 | 1.5328 | 0.0203 | 0.8628 |
SDNet | 6.7433 | 0.0474 | 9.7989 | 60.2740 | 0.0694 | 6.9044 | 0.5985 | 0.1995 | 0.6846 |
SeAFusion | 7.1796 | 0.0516 | 9.7298 | 61.9096 | 0.0511 | 2.7547 | 1.6917 | 0.2709 | 0.8877 |
SuperFusion | 6.7751 | 0.0370 | 9.0967 | 61.9471 | 0.0512 | 2.8732 | 1.3693 | 0.1157 | 0.7310 |
SwinFuse | 7.1295 | 0.0569 | 9.5963 | 61.7316 | 0.0492 | 2.5453 | 1.8313 | 0.2124 | 0.9110 |
TIF | 6.7425 | 0.0453 | 9.1220 | 64.3530 | 0.0292 | 1.7497 | 1.5964 | 0.1257 | 0.9401 |
OMOFuse | 6.5414 | 0.0594 | 10.2509 | 64.5596 | 0.0288 | 3.4156 | 1.7671 | 0.0528 | 0.7920 |
Method | EN ↓ | SF ↑ | SD ↑ | PSNR ↑ | MSE ↓ | MI ↑ | SCD ↑ | Nabf ↓ | MS_SSIM ↑ |
---|---|---|---|---|---|---|---|---|---|
CNN | 7.3992 | 0.0521 | 10.2391 | 63.8009 | 0.0337 | 3.4795 | 1.4021 | 0.1338 | 0.9483 |
Hybrid_MSD | 7.1189 | 0.0562 | 9.4978 | 64.9477 | 0.0255 | 2.5874 | 1.2136 | 0.1590 | 0.9366 |
IFEVIP | 7.0018 | 0.0494 | 9.9892 | 62.1615 | 0.0461 | 3.9051 | 1.2489 | 0.1950 | 0.8624 |
MDLatLRR | 7.2945 | 0.0768 | 9.8720 | 64.4147 | 0.0277 | 2.3123 | 1.3084 | 0.3924 | 0.9055 |
PPT Fusion | 6.9991 | 0.0333 | 9.6836 | 65.6863 | 0.0221 | 3.1211 | 1.2299 | 0.0147 | 0.8895 |
SDNet | 7.3484 | 0.0586 | 10.4042 | 61.7559 | 0.0500 | 7.4707 | 0.7660 | 0.2606 | 0.7678 |
SeAFusion | 7.5498 | 0.0644 | 10.6673 | 62.9487 | 0.0390 | 3.2919 | 1.6734 | 0.3270 | 0.8987 |
SuperFusion | 7.0396 | 0.0390 | 10.0081 | 63.2152 | 0.0390 | 3.1650 | 1.1354 | 0.1493 | 0.7413 |
SwinFuse | 7.6055 | 0.0556 | 10.7691 | 62.4752 | 0.0403 | 3.3302 | 0.8475 | 0.1994 | 0.9186 |
TIF | 7.1699 | 0.0498 | 9.7740 | 65.3894 | 0.0229 | 2.6484 | 1.2979 | 0.1330 | 0.9454 |
OMOFuse | 6.6558 | 0.0726 | 10.5918 | 65.4070 | 0.0233 | 4.1534 | 1.2386 | 0.0194 | 0.9570 |
Method | EN ↓ | SF ↑ | SD ↑ | PSNR ↑ | MSE ↓ | MI ↑ | SCD ↑ | Nabf ↓ | MS_SSIM ↑ |
---|---|---|---|---|---|---|---|---|---|
NO_ODAM | 6.1944 | 0.0151 | 9.7224 | 62.9970 | 0.0354 | 3.9826 | 1.5242 | 0.5302 | 0.9252 |
NO_DCA | 6.0814 | 0.0160 | 10.6346 | 62.7961 | 0.0629 | 4.7839 | 1.4794 | 0.4224 | 0.9533 |
NO_ESA | 6.3968 | 0.0094 | 9.9619 | 62.3531 | 0.0639 | 5.2015 | 1.5564 | 0.2036 | 0.9514 |
OMOFuse | 5.8332 | 0.0253 | 10.9961 | 63.4045 | 0.0413 | 5.3462 | 1.6638 | 0.1716 | 0.9713 |
Method | EN ↓ | SF ↑ | SD ↑ | PSNR ↑ | MSE ↓ | MI ↑ | SCD ↑ | Nabf ↓ | MS_SSIM ↑ |
---|---|---|---|---|---|---|---|---|---|
NO_MO | 6.3368 | 0.0085 | 9.5200 | 61.7127 | 0.0470 | 5.4111 | 1.5337 | 0.1228 | 0.9473 |
OMOFuse | 5.8332 | 0.0253 | 10.9961 | 63.4045 | 0.0413 | 5.3462 | 1.6638 | 0.1716 | 0.9713 |
Method | EN ↓ | SF ↑ | SD ↑ | PSNR ↑ | MSE ↓ | MI ↑ | SCD ↑ | Nabf ↓ | MS_SSIM ↑ |
---|---|---|---|---|---|---|---|---|---|
NO_Loss | 5.6625 | 0.0053 | 8.1691 | 61.8850 | 0.0507 | 4.1810 | 1.1303 | 0.0595 | 0.7864 |
OMOFuse | 5.8332 | 0.0253 | 10.9961 | 63.4045 | 0.0413 | 5.3462 | 1.6638 | 0.1716 | 0.9713 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yuan, J.; Li, S. OMOFuse: An Optimized Dual-Attention Mechanism Model for Infrared and Visible Image Fusion. Mathematics 2023, 11, 4902. https://doi.org/10.3390/math11244902
Yuan J, Li S. OMOFuse: An Optimized Dual-Attention Mechanism Model for Infrared and Visible Image Fusion. Mathematics. 2023; 11(24):4902. https://doi.org/10.3390/math11244902
Chicago/Turabian StyleYuan, Jianye, and Song Li. 2023. "OMOFuse: An Optimized Dual-Attention Mechanism Model for Infrared and Visible Image Fusion" Mathematics 11, no. 24: 4902. https://doi.org/10.3390/math11244902
APA StyleYuan, J., & Li, S. (2023). OMOFuse: An Optimized Dual-Attention Mechanism Model for Infrared and Visible Image Fusion. Mathematics, 11(24), 4902. https://doi.org/10.3390/math11244902