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Abstract: Infrared and visible image fusion aims to fuse the thermal information of infrared images
and the texture information of visible images into images that are more in compliance with people’s
visual perception characteristics. However, in the existing related work, the fused images have
incomplete contextual information and poor fusion results. This paper presents a new image fusion
algorithm—OMOFuse. At first, both the channel and spatial attention mechanisms are optimized
by a DCA (dual-channel attention) mechanism and an ESA (enhanced spatial attention) mechanism.
Then, an ODAM (optimized dual-attention mechanism) module is constructed to further improve
the integration effect. Moreover, a MO module is used to improve the network’s feature extraction
capability for contextual information. Finally, there is the loss function L from the three parts of SSL
(structural similarity loss), PL (perceptual loss), and GL (gap loss). Extensive experiments on three
major datasets are performed to demonstrate that OMOFuse outperforms the existing image fusion
methods in terms of quantitative determination, qualitative detection, and superior generalization
capabilities. Further evidence of the effectiveness of our algorithm in this study are provided.

Keywords: image fusion; attention mechanism; loss function; quantitative and qualitative; infrared
and visible images

MSC: 68T07

1. Introduction

It is known that infrared sensors exhibit a superior capability to capture heat radia-
tion targets, demonstrating robust anti-interference properties when detecting hidden or
camouflaged objects. However, they display a less powerful capacity for capturing texture
information and structural features [1]. Conversely, visible light sensors excel in capturing
background information, texture details, and structural features of the target. However,
they are incapable of highlighting the target and are readily susceptible to environmental
(weather-related) changes [2]. Taking the strengths and weaknesses of infrared and visible
light sensors into account, it is common to use image fusion algorithms to combine their
advantages. This approach leverages their individual strengths, leading to better overall
results. Images melded together often align more closely with human visual perception,
thereby finding applications in related sectors such as image segmentation [3], biometric
recognition [4], object detection [5], and object tracking [6]. Concurrently, the fusion of
images can also provide increased data support for domains like video surveillance [7],
military [8], and medical [9].

Many traditional image fusion methods, such as hybrid methods [10], sparse repre-
sentation [11], and multi-scale transformations [12], are mainly conducted by designing
corresponding fusion strategies and reconstructing the ultimate fusion results through
inverse operations. For instance, a multi-scale method with Gaussian and bilateral filters
effectively preserved the perception information of the visible light images [13]. Similarly,
the guided filtering and weighted averaging techniques were used to incorporate spatial
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consistency into the base and detailed layers for enhancing the fusion effects [14]. The liter-
ature [15] employed guided image filtering and a weight map to integrate complementary
information per pixel, which improved the rapid fusion effect with a multi-scale guide.
Infrared image sensors show superior target detection performance under various weather
conditions, whereas visible light image sensors excel at extracting strong texture features.
However, traditional methods often overlook the modulation differentiation of images
and the inherent characteristics of infrared and visible light. This particularity often leads
them to use either similar representation models or uniform transformation for feature
extraction from source images, which can result in a weaker fusion performance (noise,
artifact). At the same time, the fusion models employed by traditional methods largely fall
into the manual design [16], usually accompanied by very high complexity, diminishing
their practical applications and research value.

The superior non-linearity fitting and feature extraction capabilities of deep learning
have won the favor of many research scholars. In the task of image fusion, the existing
deep learning methods mainly solve the issues of image feature extraction, feature fusion,
and image reconstruction. In the literature [1], a novel non-linear image fusion variational
model was proposed, which employed a minimal number of parameters to encode a
priori information about the structure of the fused image, tackling the multi-modal fusion
issues. The literature [17] addressed the problem of non-Gaussian noise image restoration
degradation and proposed a novel CNFR image restoration algorithm. The experimental
simulation results indicated that this method remarkably reduced the loss of contrast. In
the literature [18], a higher-level image decomposition scheme and an advanced fusion rule
were proposed. This method, utilizing a three-layer image decomposition and enhancement
rule, performed best on grayscale computed tomography (CT) and magnetic resonance
imaging (MRI) images. Although the above-mentioned work achieved appreciable results
on image fusion through deep learning methods, there are still some issues to be resolved.
Notably, the quality of the fused image depends not only on the texture features of local
information but also on texture features of the global information of the entire image. These
methods are conditioned by the convolution principle on the one hand, which prevents
image information from being fully extracted by convolution features in all dimensions,
like spatial dimensions and channel dimensions. On the other hand, the aforementioned
methods are essentially based on local feature extraction. By extracting thermal infrared and
texture features in a limited receptive field, they fail to extract long-distance information in
the context.

To address these issues, we propose a method for image fusion, called OMOFuse
(optimized dual-attention module; multi-head self-attention, optimized artificial neural net-
work; optimized multi-layer perceptron). This approach introduces an innovative ODAM
(optimized dual-attention mechanism) module, to accurately extract both infrared thermal
radiation information and the texture information of visible light on spatial and channel
dimensions. To further extract and establish long-distance dependencies, preserving global
complementary contextual information, the MO (multi-head self-attention, optimized ar-
tificial neural network) module is introduced. Finally, a set of loss functions L from the
perspectives of SSL (structural similarity loss) [19], PL (perceptual loss) [20], and GL (gradi-
ent loss) [21] is designed to further enhance the network fusion performance. As a result,
the problem of high model complexity caused by manual design approaches is successfully
avoided, significantly elevating the applicability and scientific value of this model.

To demonstrate the visual effects of our OMOFuse method, Figure 1 provides examples
in comparison with the advanced image fusion algorithm SeAFusion [22] across three image
fusion datasets. Upon manual visual inspection, it is observed that infrared light delivers
a superior performance in detecting the thermal imagery of human bodies compared to
visible light, especially during nighttime conditions. In identifying the “fire” scenario,
the scope of recognition by SeAFusion is smaller compared to OMOFuse; in the detection
of the “human body” image, SeAFusion performs on par with OMOFuse, although the
degree of blurriness and transparency in the “human body, umbrella” portion is higher
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in the SeAFusion algorithm than in OMOFuse. In the third scenario, SeAFusion turns
out more blurred with less sharpness than OMOFuse, resulting in less intensely captured
image boundaries. Therefore, overall, OMOFuse surpasses SeAFusion with higher clarity,
lower fuzziness, and a greater capacity to capture edge information, marking an overall
enhanced performance.
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Our contributions are listed as follows:
I. An end-to-end image fusion framework termed OMOFuse;
II. Two new mechanisms of attention are designed, that is, DCA (dual-channel atten-

tion) mechanism and ESA (enhanced spatial attention) mechanism. The DCA and ESA
modules are combined to develop an ODAM module. This module efficiently gathers
thermal radiation information from infrared channels and texture information from visible
light, encompassing both the channel and spatial dimensions;

III. A MO module is constructed, which establishes long-distance dependency rela-
tionships and preserves comprehensive and global context information;

IV. SSL, PL, and GL perspectives are integrated to devise a new loss function, L;
The rest of the paper is organized as follows. Section 2 summarizes some relevant

research to the proposed method. Section 3 provides a detailed discussion of our OMOFuse.
In Section 4, we present some qualitative and quantitative results on the image fusion
tasks. In Section 5, we present the conducted extended experiments and reintroduce two
public datasets to demonstrate the generalization ability of the algorithm in this paper. In
Section 6, we present the performed ablation experiments on the OMOFuse algorithm to
verify the effectiveness of each of our modules. Section 7 presents our concluding remarks.

2. Related Work

In recent years, rapid advancements in image processing technologies have intensified
the need for improved fusion of images in infrared and visible light. Fusion methods can
be classified according to the fused image level, which includes pixel-level, feature-level,
and decision-level fusion; or the fusion strategy, encompassing traditional image fusion
methods, basic deep learning-based approaches, methods based on the transformer [23]
model, and others. Among these, deep learning-based methods have recently attracted
significant attention. Deep learning-based image fusion frameworks can be further cat-
egorized into fusion methods based on AEs (auto-encoders) [24], fusion methods using
CNN (convolutional neural networks), fusion methods relying on RNNs (recurrent neural
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networks) [25], and fusion methods utilizing GANs (generative adversarial networks) [26].
According to the application of deep learning methods, we will delve into the discussion of
these particular image fusion methods.

2.1. Fusion Methods Based on AEs

The AE method of image fusion serves as a pioneer in contrast to other image fusion
approaches by adopting AEs to extract features and reconstruct images from source im-
ages. Its primary focus is the manual design of fusion rules. The literature [27] provided
a quintessential approach of employing AE methods for image fusion. This method in-
corporates a convolutional layer, fusion layer, and dense block, while also considering
the limitations of AEs’ feature extraction capability. In the same vein, the literature [28]
introduced a novel retaining and feature enhancement loss function to guide the network
for acquiring higher-dimensional detailed features. Moreover, the literature [29] proposed
a NestFuse network model, further integrating nested connections in the network to allow
the extraction of multi-scale feature information from the source images, thereby augment-
ing the fusion effectiveness. Despite these AE methods somewhat alleviating redundant
information and resolution issues during the fusion process, there is still room for refine-
ment. The literature [30] established a DRF fusion framework that decomposes source
images into scene and attribute components, conducting their fusion separately to enhance
the fusion effect. However, this method overlooks the principle of interpretability of fusion
rules. Therefore, the literature [31] further proposed a novel learnable fusion rule, which
amplifies the network’s interpretability by assessing the significance of each pixel pair in
feature images, thus improving the fusion effect.

2.2. Fusion Methods Based on CNN

In recent years, the rise of deep learning has become the mainstream in the task of
image fusion, adroitly mitigating the shortcomings and complexity of manual rule-making.
The literature [32] proposed the IFCNN framework, which makes use of two convolutional
modules to extract salient features from source images in an end-to-end manner, manu-
ally adjusting fusion strategies to integrate more profound features. The literature [33]
introduced a unified parameter and elastic weight framework, U2Fusion, which can be
employed across various imaging tasks. The literature [34] incorporated a salient mask
into the loss function to guide the network in identifying prominent targets in infrared
images, simultaneously blending rich texture details into the visible light background, thus
significantly addressing the issue of realism in fused images. The literature [32] put forth a
symmetric feature-encoding network, SEDRFuse, harnessing feature compensation and
attention mechanism fusion to amplify network performance. In summary, deep learning
methods primarily rely on convolutional neural networks to extract local features of images
and reconstruct information, mainly achieved by designing robust network module lay-
ers, such as residual blocks, multi-scale features, dense structures, attention mechanisms,
etc. Compared to existing methods, we introduce a more powerful attention mechanism
module to further enhance the algorithm’s capability in global feature extraction and
information reconstruction.

2.3. Fusion Methods Based on RNNs

RNNs hold a significant position within deep learning networks, demonstrating
impressive performance in analyzing time series and sequences, especially with the emer-
gence of ChatGPT, which has popularized image fusion as a commonly used combination
tool [35]. RNNs have the ability to acquire information from previous inputs and integrate
this information with input and output data, thus addressing issues related to sequence
and time series. However, RNNs have their shortcomings; the standard RNN utilizes
an invariant weight matrix that cannot be directly applied to images exhibiting spatial
structural changes. Therefore, it has been proposed to use a weight map conditioned on
the structure of the input image; the employed weight map and graphical representation
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are interrelated, and these visuals can effectively reveal essential internal structures of
images [36]. The literature [37] proposed combining three CNNs and one RNN, aptly ad-
dressing the variability of spatial structure and a fuzzy process in RNNs. This framework,
even with a relatively small network size, proposes a network that still possesses a large
receptive field. The literature [38] suggested a trainable hybrid network to enhance similar
degradation problems, assessed the global content of low-light inputs using an encoder–
decoder network, and output a new spatially variational RNN as edge flow, exhibiting
favorable image fusion performance. Among these methods, some researchers put forward
a fusion framework based on content and detail branches. It uses content analysis for global
information encoding while preserving most of the scene information. At the same time, it
introduces a variational RNN to facilitate more accurate modeling of the internal structure
of the source image. These two fusion strategies complement each other at the feature level.

2.4. Fusion Methods Based on GANs

Unsupervised methods excel in the evaluation of probability distribution tasks [39],
prompting some scholars to apply GANs (generative adversarial networks) to image fusion.
The FusionGAN framework, proposed for the first time in the literature [40], aptly mines
texture information from images. However, its major drawback is a potential imbalance
in the fusion process. To mitigate this issue, researchers in [36] utilized DDcGAN (dual
discriminator conditioned GAN), eliminating the simple discernment of a visible light
image and instead, incorporating two images for comparison simultaneously. Nonetheless,
only the work of [41] has integrated multi-scale attention mechanics atop the DDcGAN
framework. While preserving the foreground features of infrared images and background
attributes of visible light images, this approach has introduced complexities in the training
process. Consequently, [42] proposed a GANMcC (GAN framework with multi-class
constraints). This strategy primarily addresses training difficulties, yet it also results in
challenges of porting fusion results into subsequent visual tasks such as surveillance.

In summary, existing deep learning approaches in image fusion underscore the com-
plementarity and feature balance of infrared and visible light information. Simultaneously,
they neglect to a certain extent the extraction and transformation of information in various
dimensions. Concerning long-distance dependency relationships and contextual informa-
tion, including loss function features, these schemes have not achieved the desired results.
Consequently, relevant higher-level visual tasks could be adversely affected. Thus, there is
an urgent need for a method that can thoroughly extract features in various dimensions
and network contexts.

3. Proposed Method
3.1. ODAM Module

Our ODAM algorithm module, as Figure 2 illustrates, predominantly comprises of
a parallel connection between the DCA (dual-channel attention) module and the ESA
(enhanced spatial attention) module. The input image, designated as ODAMin

f , is initially

divided into four branches
{

O1, O2, O3, O4}. Among these, O2 undergoes processing
through two CA (channel attention) mechanisms [43], linked in a series to form the afore-
mentioned DCA. The main aim of the DCA process is to extract information efficiently
from the channel dimensions of the O2 feature maps, with the output being labeled as
Cmca after completing the DCA processing. Meanwhile, another branch, O4, proceeds
sequentially through the SA (spatial attention) module [44], followed by an RC (residual
connection) [45], and ultimately the MSF (multi-scale fusion) [46], culminating in an output
of Mesa. The ESA module, composed of three sub-modules, namely, SA, RC, and MSF,
further enhances the extraction of infrared and visible light information on the spatial
dimension. All extracted infrared and visible light information are summed in terms of
dimension to ultimately obtain O′, which is then nonlinearized by the ReLU6 [47] activation
function to yield the output value, denoted as ODAMout

f . The crucial role of the ODAM
module is to further enhance the network’s infrared and visible light feature extraction
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capability on both the channel and spatial dimensions for the incoming image ODAMin
f .

Equation (1) shows the final output, represented as O1, where ⊕ signifies the addition
of channels. Equation (2) illustrates the final output of the ODAM module, denoted as
ODAMout

f .

O′ = O1 ⊕
{

Cmca ⊕O3
}
⊕
{

Mesa ⊕O3
}

(1)

ODAMout
f = ReLU6_O′ (2)
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3.1.1. DCA Mechanism

For the DCA module, the principle of its composition stems from the superior per-
formance of CA in the channel dimension. To further enhance the effects in the channel
dimension, we employ the DCA module, which comprises two serially connected CA
modules. Simultaneously, to mitigate potential gradient explosion in some data, we chose
the ReLU6 activation function. Equation (3) illustrates the formulation of the CA module.

CAout = Sig_BN_ConV4,16
1,1 _ReLU6_BN_ConV16,4

1,1 (O2) (3)

In the above equation, O2 represents the input infrared and visible light images

{Ivi, Iir}. In ConVα1,α2

α3,α4 , α1, α2, α3, and, α4 stand for the number of input channels, the num-
ber of output channels, convolution kernel size, and stride in the convolution, respectively.
Sig refers to the Sigmoid [48] activation function. The main role of the DCA module is to
further enhance the effects of the network in the channel dimension on infrared and visible
light images. We represent the DCA module in pseudo code, as Algorithm 1 shows below:
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Algorithm 1: Dual-Channel Attention Mechanism Algorithm Principle

Input: O2(Ivi, Iir), feature map of a given layer in a deep learning model.
Output: Cmca(I′vi, I′ir

)
feature map after applying DCA.

Parameter setting: Input channels: C. Reduces the channel dimension: R (default: 4).
The number of attention modules: N (default: 2).

Procedure:
1: - Initialize DCA object which contains N sequential attention modules.
2: - For each attention module:
3: - Implement a sequential operation consisting of:

4:
- A 1 ∗ 1 convolution operation which reduces the channel number by a factor R,
denoted as ConV1.

5: - A BN operation applied to the output of ConV1, denored as BN1.
6: - A ReLU6 activation function applied to the output of BN1.

7:
- A 1 ∗ 1 convolution operation which increases the channel number back to C,
denoted as ConV2.

8: - A BN operation applied to the output of ConV2, denoted as BN2.

9:
- A Sigmoid activation function applied to the output of BN2 to obtain the attention
map A.

10:
- Perform element-wise multiplication of the input feature map O2(Ivi, Iir) and the
attention map A to obtain the output feature map Cmca(I′vi, I′ir

)
of this module.

11: - Repeat the above process for each attention module in the multi-channel attention object.
12: - Output the final feature map Cmca(I′vi, I′ir

)
after passing through all attention modules.

The DCA mechanism module describes the multi-channel attention mechanism, where
each channel in the input feature map is processed separately and then combined using
attention maps. The attention modules are stacked together to form a deeper network,
where each module generates a new feature map that is multiplied by its attention map.
The final output is the feature map after passing through all the attention modules.

3.1.2. ESA Mechanism

In the context of ESA, the primary task is feature extraction from the input information,
denoted as O4, in the spatial dimension. Designed as an enhancement on the basic SA, ESA
introduces the RC module, whose primary function is to process the input information
through a convolutional layer and a BN layer. The processed input is then element-
wise multiplied with the output from the SA module. This mechanism helps to enhance
the extraction of important features from a spatial perspective, offering an increased
provision of contextual information throughout the network and bolstering the focus on
target areas. The addition of the MSF module serves to concatenate the output from the
attention mechanism with the original infrared visible light input features, followed by
the combination of these features through a convolutional layer and a BN layer. This
step leverages multi-scale information holistically, further enhancing fusion effectiveness.
Finally, the output from the MSF module is element-wise multiplied with the original input
to yield the final output, denoted as Mesa. This ensures the comprehensive extraction of
contextual information from the network. Equations (4)–(6) present the outputs of the SA,
RC, and MSF modules, respectively.

SAout = Sig_BN_ConV4,1
3,1,1_ReLU_BN_ConV16,4

3,1,1

(
O4
)

(4)

RCout = BN_ConV16,16
1,1 (5)

MSFout = ConV17,1
1,1 (6)
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In the above formula, O4 represents the input of infrared and visible light images

{Ivi, Iir}. In ConVα1,α2

α3,α4,α5 , α1, α2, α3, α4, and, α5 represent the number of input channels of the
convolution, the number of output channels, the size of the convolution kernel, the stride,
and padding, respectively. Formula (7) expresses the output of the ESA module, Mesa.

Mesa = MSFout_RCout_SAout (7)

The ESA mechanism module describes the enhanced spatial attention mechanism. It
enhances the standard spatial attention by adding a residual connection and a multi-scale
fusion model, which can capture both local and global context information. The main
role of the ESA mechanism module is to capture infrared and visible light information
on different scales to better combine contextual information with spatial dimensions for
extraction, thus enhancing the effectiveness of the spatial attention mechanism. Finally,
for a clearer representation of the ESA module, we describe it in pseudo code as follows
(Algorithm 2).

Algorithm 2: Enhanced Spatial Attention Mechanism Algorithm Principle

Input: O4(Ivi, Iir), feature map of a given layer in a deep learning model.
Output: Mesa(I′vi, I′ir

)
, feature map after applying ESA.

Parameter setting: Input channels: C. Reduces the channel dimension: R (default: 4).

Procedure:

1:
- Initialize the ESA object which consists of three essential parts: the main body, the RC,
and the MSF.

2: - For the main body:
3: - Implement a sequential operation consisting of:

4:
- A 3 ∗ 3 convolution operation that reduces the channel number by a factor of R,
denoted as ConV1. This is padded to keep the same spatial dimension.

5: - A BN operation applied to the output of ConV1, denored as BN1.
6: - A ReLU activation function applied to the output of BN1.

7:
- A 3 ∗ 3 convolution operation that reduces the channel number to 1, denoted as
ConV2.

8: - A BN operation applied to the output of ConV2, denoted as BN2.

9:
- A Sigmoid activation function applied to the output of BN2 to obtain the attention
map A1.

10: - For the RC:
11: - Implement a sequential operation consisting of:

12:
- A 1 ∗ 1 convolution operation that keeps the channel number unchanged, denoted
as ConV3.

13: - A BN operation applied to the output of ConV3 to obtain the residual map A2.
14: - The attention output is the element-wise multiplication of A1 and A2.

15:
- Concatenate A1 and the attention output in the channel dimension to form a
multi-scale input.

16: - For the MSF:
17: - Implement a sequential operation consisting of:

18:
- A 1 ∗ 1 convolution operation that reduces the channel number to 1, denoted
as ConV4.

19: - A BN operation applied to the output of ConV4.
20: - A Sigmoid activation function applied to the output to obtain the MSF map A3.

21:
- The final output Mesa(I′vi, I′ir

)
is the element-wise multiplication of A3 and the input

feature map O4(Ivi, Iir).

3.2. MO Module

Figure 3 shows the structure of the MO (multi-head self-attention, optimized MLP)
module; through the figure, we can know that the MO module mainly consists of OMLP
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(optimized multi-layer perceptron) and MSA (multi-head self-attention) [49]. Equation (8)
expresses its formula:

MOout
f = OMLP_LN_MSA_LN

(
MOin

f

)
(8)

where, MOin
f represents infrared and visible image {Ivi, Iir} information; MSA is one of the

modules we use.
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The MSA module divides the input information MOin
f into non-overlapping N × N

windows, thus generating HW/N2 × N2 × C features. The number of windows is HW/N2,
and each window automatically calculates its attention mechanism features. Initially, when the
input of infrared and visible light information is I = {Ivi(i1, i2, i3, . . . , in), Iir(i1, i2, i3, . . . , in)},
three vectors q, k, v can be obtained through linear transformation. The following equations
represent the formula:

q = wq I (9)

k = wk I (10)

v = wv I (11)

where, wq ∈ Rd×dq , wk ∈ Rd×dk , and wv ∈ Rd×dv represent the spatial transformation
matrices; d× dq represents the dimension of the output matrix. The calculation formula for
the MSA module that we used is as follows:

MSA(q, k, v) = Sm
(

qkt
√

dk

)
v (12)

where,
√

dk represents a scaling factor, and Sm(�) represents the Softmax operation. Fol-
lowing this, the output from the MSA module, MSA(q, k, v), is channel-wise added with
the original input value MOin

f , and then fed into the overhauled OMLP module through
the LN (layer normalization) layer. The original MLP (multi-layer perceptron) only has two
FC (fully connected) layers. In order to better extract infrared and visible light information,
we fine-tune the MLP and set it to have three FC layers, replacing the original Sigmoid acti-
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vation function with GELU. The OMLP module can be represented as Equation (13) shows.

OMLP(Iir, Ivi) = DropOut_FC_GELU_FC_GELU_FC(�) (13)

Lastly, the output value of the MO module is represented as MOout
f , which can be

denoted with the formula as Equation (14) illustrates.

MOout
f = OMLP(Iir, Ivi)⊕

{
MSA(q, k, v)⊕MOin

f

}
(14)

The MO module represents the OMLP class in a simplified pseudocode format. The
three-layer structure is common in MLP (multi-layer perceptron), but the specifics (such
as the number of hidden features and the type of activation function) can be customized.
Dropout is used to prevent overfitting by randomly setting a fraction of input units to 0 at
each update during training time. We describe it in pseudo code as follows (Algorithm 3).

Algorithm 3: Optimized Multi-Layer Perceptron Algorithm Principle

Input: MOin
f (Ivi, Iir) hidden features: HF, output features: OF, active layer: ReLU, drop: 0.2.

Output: MOout
f
(

I′vi, I′ir
)
.

Parameter setting:
- Define a class OMLP that inherits from module.
- In the initialize, MOin

f (Ivi, Iir), HF (default: MOin
f (Ivi, Iir)), OF (default: MOin

f (Ivi, Iir)), active
layer (default: ReLU), and drop (default: 0.2).

Procedure:

1:
- Initialize three fully connected layers: fc1, fc2 and fc3. fc1 and fc2 have the same number
of HF, and fc3 has OF.

2: - Initialize act1 and act2 as instances of the activation function specified by active layer.
3: - Initialize a dropout layer with the specified dropout rate.
The forward function:
4: - For P steps do:

5:
- Pass MOin

f (Ivi, Iir) through f c1, apply the activation function act1, and apply dropout
to get intermediate output Out1.

6:
- Pass Out1 through f c2, apply the activation function act2, and apply dropout to get
intermediate output Out2.

7: - Pass Out2 through f c3 to get the final output MOout
f
(

I′vi, I′ir
)
.

8: - Return MOout
f
(

I′vi, I′ir
)
.

3.3. Loss Function

Owing to the intrinsic disparities in their imaging principles, infrared light sensors
and visible light sensors exhibit different levels of sensitivity toward various environmental
targets. Employing a loss function, specific parameters of the model can be optimized,
thereby enhancing the performance of the fused image I f . Adjusting to the current environ-
ment, we design the loss function from three aspects: SSL, PL, and GL, constituting the loss
function of our OMOFuse network. Its definition is as follows:

L = αLs + βLp + γLg (15)

where, Ls represents SSL; Lp represents PL; Lg represents GL; α, β, and γ represent weight
factors for each loss. In the context of OMOFuse, the weight factors α, β, and γ are assigned
as 0.8, 5, and 100, respectively. Hence, the given L can also be elucidated as:

L = 0.8Ls + 5Lp + 100Lg (16)
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The magnitudes of the weighting factors α, β, and γ are adjustable based on experimen-
tal environments and data, thereby potentially enhancing fusion efficiency incrementally.
Among these, the calculation formula for Ls can be represented as:

Ls = ϕ1

(
1− I f , Iir

)
+ ϕ2

(
1− I f , Ivi

)
(17)

In the above equation, ϕ1 and ϕ2 represent two data-driven weights, their magnitude
determined by the image itself, rather than artificially set. The computational formula for
Lp can be expressed as:

Lp(x, y) = ∑
i

1
HiWiCi

‖φi(x)− φi(y)‖2
2 (18)

In the above equation, φi(x) represents the feature map extracted by the convolutional
layer before the i-th max-pooling, where the size of the i-th feature map is Hi ∗Wi ∗Ci. ‖�‖2

2
denotes the Frobenius norm of a matrix. The PL of the i-th feature map can be expressed as:

Lpi = ϕiirLpi

(
I f , Ii

ir

)
+ ϕiviLpi

(
I f , Ii

vi

)
(19)

In the above equation, Ii
ir and Ii

vi represent the feature map information of the i-th
infrared and visible light, respectively. To enhance the network’s performance in terms of
content and spatial structure, we introduced the Lg loss. The calculation formula for Lg
can be expressed as:

Lg(x, y) =
1

HW
‖∇x−∇y‖2

f (20)

In the above formula, ∇(�) composes the gradient change between image x and y.
Equation (21) presents the gradient loss of image j.

Lgj = ϕjirLpj

(
I f , I j

ir

)
+ ϕjviLpj

(
I f , I j

vi

)
(21)

3.4. Network Structure of this Paper

Figure 4 illustrates the structure of the OMOFuse network. The inputs are infrared
(Iir ∈ RH×W×3) and visible light (Ivi ∈ RH×W×1) images. These inputs sequentially pass
through a convolutional layer with a 5 ∗ 5 kernel, a BN layer, a ReLU6 layer, a convolutional
layer with a 1 ∗ 1 kernel, a Sigmoid layer, a convolutional layer with a 3 ∗ 3 kernel, another
BN layer, and another ReLU layer. Subsequently, the data passes through an ODAM
module and two concatenated MO modules, finishing with a ReLU6 layer. The output is
represented as I f ∈ RH×W×1. Through the simple configuration of the OMOFuse network,
we achieved an efficient fusion of infrared and visible light of high-class significance.
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4. Experimental Results and Analysis

In this section, we initiate with an elucidation of the experimental setting and perfor-
mance metrics. Subsequently, we perform both a qualitative and quantitative comparison
between the DHV datasets [50] and our selected evaluation indices.

4.1. Experimental Settings

To ensure the objectivity and fairness of the experimental data, all our tests are carried
out on an NVIDIA GeForce RTX 3080TI GPU using the PyTorch framework. Concurrently,
the code for the experiment utilizes the author’s publicly disclosed parameter code, main-
taining the original hyperparameters. Within the OMOFuse network, we have set the
number of iterations to 100, the batch size to 24, and the initial learning rate to 1× 10−2. For
the data augmentation phase, the size is randomly center-cropped to 224 × 224, and mosaic
data augmentation [51] has been applied. As the optimizer, we selected AdamW [52].

4.2. Evaluation Metrics

While numerous evaluation metrics exist for image fusion, they can generally be
categorized into four broad types [53]: distortion measurement metrics, similarity metrics,
visual quality metrics, and blur measurement metrics. Each category provides a distinct
emphasis in their assessment of the fused image I f and takes into account respective
information classes during design. Nevertheless, it has been observed that many researchers
use a rather narrow selection of evaluation metrics in their holistic critique of the fused
image I f , resulting in a less comprehensive evaluation of algorithmic performance. Hence,
this study has singled out ten evaluation metrics from the four categories to use in our
paper. They include EN (entropy), SF (spatial frequency), SD (standard deviation), PSNR
(peak signal-to-noise ratio), MSE (mean-square error), MI (mutual information), SCD (sum
of correlation differences), Nabf (noise adaptive fuzzy equalization), and MS_SSIM (multi-
scale structural similarity index measure). The computational methods for each evaluation
metric are presented in the following:

The EN is predominantly used to assess the information entropy of fused images,
evaluating the complexity of an image. A smaller value is considered more desirable, and
Equation (22) shows the computation method.

EN = −
L−1

∑
l=0

Pl log2Pl (22)

In the formula above, L stands for the grayscale level of the image, while Pl represents
the normalized histogram of the grayscale level corresponding to the fused image. SF serves
to assess the spatial frequency response after image fusion, which gauges the detailed infor-
mation of the image—the larger, the better. Equation (23) exhibits the calculation method.

SF =
√

RF2 + CF2 (23)

In the formula above, RF =
√

∑M
i=1 ∑N

j=1(F(i, j)− F(i, j− 1))2 represents row fre-

quency and RF =
√

∑M
i=1 ∑N

j=1(F(i, j)− F(i− 1, j))2 represents column frequency. SD is
utilized for evaluating the pixel value distribution of the fused images, serving as a measure
of image contrast. A higher value suggests better contrast. Equation (24) illustrates the
computation method.

SD =

√√√√ M

∑
i=1

N

∑
j=1

(F(i, j)− µ)2 (24)

In the formula above, µ represents the mean of the fused images. The PSNR is used to
evaluate the extent of distortion between the fused images and the original ones, with a
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higher value indicating better performance. Equation (25) illustrates the calculation method.

PSNR = 10lg
r2

MSE
(25)

In the formula above, r represents the peak of the fused image, and MSE is employed to
evaluate the level of distortion between the fused and original images. A lower MSE value
is desirable, indicating minimal distortion. Equation (26) demonstrates the computation
method of the MSE.

MSE =
MSEA,F + MSEB,F

2
(26)

In the formula above, MSEA,F and MSEB,F = 1
MN ∑M−1

i=0 ∑N−1
j=0 (A/B(i, j)− F(i, j))2.

MI is employed to appraise the information content of fused images, serving as a gauge
for image similarity. Higher values connote better similarity. Equation (27) depicts the
calculation method.

MI = MIA,F + MIB,F (27)

In the formula above, MIA,F represents the information transferred from the original
image A to the fused image F, and MIB,F represents the information transferred from the
original image B to the fused image F. The calculation formulas for MIA,F and MIB,F are as
follows: MIA,F = ∑a, f PA,F(a, f )log PA,F(a, f )

PA(a)PF( f ) , MIB,F = ∑b, f PB,F(b, f )log PB,F(b, f )
PB(b)PF( f ) . Here,

PA(a), PB(b), and PF( f ) represent the marginal histograms of the original images A and B,
and the fused image F, respectively. PA,F(a, f ) and PB,F(b, f ) denote the joint histograms of
original images A and B with the fused image F. SCD is utilized to evaluate the similarity
between the fused image and the original images. A higher SCD value indicates a better
match. Equation (28) shows the calculation method.

SCD = r(A, DA,F) + r(B, DB,F) (28)

In the formula above, DA,F and DB,F represents the difference images between the
original images A and B, and the fused image F, respectively. The quality of the fused image is
measured by Nabf, with a lower value indicating better fusion quality, as Equation (29) details.

Nab f =
∑M

i−1 ∑N
j=1 AM(i, j)

[(
1−QA,F(i, j)

)
wA(i, j) +

(
1−QB,F(i, j)

)
wB(i, j)

]
∑M

i=1 ∑N
j=1(wA(i, j) + wB(i, j))

(29)

MSSSIM(x, f ) = [lm(x, f )]αM′ ×
M′

∏
j=1

[cj(x, f )]β j ×
[
sj(x, f )

]γj (30)

In the formula above, lM′(x, f ) represents the luminance similarity value in the M′th
dimension, while cj(x, f ) and sj(x, f ) represent the image contrast and structural similarity
in the jth dimension, respectively. The hyperparameters α, β, and γ primarily function to
balance various image components.

In this section, the OMOFuse algorithm is compared to the latest or classic fusion
algorithms, including CNN [54], Hybrid_MSD [3], IFEVIP [55], MDLatLRR [56], PPT
Fusion [57], SDNet [58], SeAFusion [23], SuperFusion [59], SwinFuse [60], and TIF [61]. In
our study, we utilized an array of comparative algorithms, which virtually encompassed
the most recent advances in visible and infrared light fusion methodologies. The majority
of these state-of-the-art (SOTA) algorithms have surfaced within the past three years,
providing a representation of the developmental trajectory in the domain of infrared and
visible light fusion to some extent.
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4.3. DHV Datasets

We have selected the fire sequence of the DHV datasets, which includes a combination
of 212 images—106 pairs of visible light and 106 pairs of infrared light fire imagery. Further-
more, all data are characterized by an identical shooting angle confirmed through image
rectification. To illustrate the fusion algorithm, we choose to use a qualitative comparison
and a quantitative comparison, respectively.

4.3.1. Qualitative Comparison

In our study, we conducted a qualitative comparison between the OMOFuse algorithm
and ten classic algorithms, as well as SOTA algorithms. We randomly selected five images
from the fire sequence of the DHV datasets for visualization. In these images, the first row
represents infrared images, while the second row shows visible light images. As Figure 5
evidences, the OMOFuse algorithm exhibits a superior performance in terms of realism,
especially in areas featuring “grasslands” and “trees”. Its clarity and realistic rendering
outperform other algorithms. Notably, we did not observe the loss of image detail that was
common in the SDNet and SwinFuse algorithms, where their output tended to exhibit a
darkened effect.

In the “fire point” combustion segment, infrared light sensors present several black
spots, which do not perform as well as the visible light images. However, the merged
“fire point” combustion section demonstrates superior image quality. The OMOFuse
algorithm, particularly on the right-hand side of the “fire point” combustion segment,
visually offers more enriched edge information and a higher degree of sharpness compared
to other algorithms. In contrast, the Hybrid_MSD, MDLatLRR, PPT Fusion, and TIF
algorithms introduce blurriness, with a reduction in clarity, while OMOFuse appears to
behave normally. Concerning the fourth column of the “fire point” section, the image
clarity is significantly improved after OMOFuse fusion. We also note that the fused results
produced by the PPT Fusion algorithm are relatively blurred, indicating unsatisfactory
fusion performance.
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4.3.2. Quantitative Comparison

We subsequently carried out a quantitative comparison of the experimental results, as
Table 1 illustrates. To ensure the validity of the data, the data in Table 1 were all averaged
using 106 pairs of infrared and visible light fusion results. From Table 1, we discern
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that out of nine evaluation criteria, the OMOFuse algorithm clinches first place in four
instances, second place in two, and third place in one. Despite not being ranked amongst
the top three for the evaluation metrics MSE and Nabf, its performance is still notably
above average amongst the ten compared algorithms. Hence, we can conclude that the
OMOFuse algorithm holds undeniable superiority across all comparison metrics (distortion
measurement metrics, similarity metrics, visual quality metrics, blur measurement metrics)
in the algorithmic evaluation.

Table 1. Objective evaluation of classic and latest fusion algorithms. These are the results of the
DHV images datasets. ↑/↓ for a metric represents that a larger/smaller value is better. The best
three values in each metric are denoted in red, green, and blue, respectively. The first ranked effect is
marked in red, the second ranked in green, and the third ranked in blue.

Method EN ↓ SF ↑ SD ↑ PSNR ↑ MSE ↓ MI ↑ SCD ↑ Nabf ↓ MS_SSIM ↑

CNN 6.7051 0.0105 11.0482 60.7441 0.0598 5.4084 1.2782 0.1164 0.9569
Hybrid_MSD 6.6069 0.0108 10.5830 61.3735 0.0535 4.4112 1.3995 0.1540 0.9681

IFEVIP 6.8600 0.0118 10.3508 60.2827 0.0644 5.2314 1.5940 0.1885 0.9457
TIF 6.2582 0.0101 9.8712 63.1943 0.0311 3.1823 1.6139 0.2001 0.9551

MDLatLRR 6.2940 0.0153 9.8651 63.0112 0.0315 2.8957 1.6325 0.4287 0.9475
SwinFuse 6.5653 0.0125 10.2428 61.4893 0.0468 4.2972 1.5877 0.2616 0.9533

SuperFusion 6.7837 0.0102 10.3393 60.9628 0.0574 4.5202 0.5757 0.1612 0.9156
SeAFusion 7.2099 0.0138 10.6302 60.7421 0.0646 4.8932 1.3032 0.4054 0.9640
PPT Fusion 5.5468 0.0056 8.4609 63.3165 0.0330 3.7637 1.5796 0.0128 0.9114

SDNet 5.8295 0.0245 10.9580 58.6278 0.0933 4.6873 0.5985 0.2754 0.8512
OMOFuse 5.8332 0.0253 10.9961 63.4045 0.0413 5.3462 1.6638 0.1716 0.9713

Due to the possibility of substantial randomness in the data, we have prepared line
graphs for the evaluation indicators of each of the 106 pairs of infrared and visible light
images, as Figure 6 shows. This approach enables us to obtain results that are as accurate
as possible. In the graphs, the horizontal axis (image pairs) spans the range of [0, 106], and
the range of the vertical axis corresponds to the values of the metric. The table above shows
that the OMOFuse algorithm performs best in terms of the mean values of SF, PSNR, SCD,
and MS_SSIM. With regard to the SF evaluation indicator, Figure 6 shows that the overall
performance of the OMOFuse algorithm considerably outperforms other algorithms. At
the same time, we found that the performance of the SDNet algorithm fluctuates, but its
overall performance is inferior to that of the OMOFuse algorithm. Therefore, our method
surpasses the SDNet algorithm in terms of mean values. In reference to the evaluation
index PSNR, Figure 6 reveals that the performance of the OMOFuse algorithm superseded
other algorithms for most images, corroborating the data presented in the table above.
Considering the SCD evaluation index, although the preliminary performance of the
OMOFuse algorithm was not optimal, its latter half of impact culminated in an improved
average, thereby the OMOFuse algorithm exhibits better average performance on the
SCD index. As for the MS_SSIM evaluation index, Figure 6 indicates that the OMOFuse
algorithm displays overall superior performance compared to other algorithms. Hence,
we can validate that the OMOFuse algorithm exhibits the best average performance on
SF, PSNR, SCD, and MS_SSIM. Additionally, in the evaluation indices SD and MI, the
performance of the OMOFuse algorithm remains consistent with the data demonstrated in
the table above, thus confirming the accuracy of the given data.
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5. Extended Study

In the following, we conduct both qualitative and quantitative comparisons using
the M3FD TNO datasets [62] and Roadscene datasets [34]. More specifically, the M3FD
TNO datasets consist of 37 pairs, in total 74, of infrared and visible light images that have
been corrected and registered. The pictorial contents within these images comprise various
scenarios including “tanks”, “personnel”, and “buildings”. The Roadscene datasets, which
are constructed based on FLIR, constitute a fusion dataset between infrared and visible light
images. The dataset contains image pairs that depict highly repetitive scenarios, primarily
involving “roads”, “pedestrians”, and “vehicles”. We utilized 42 pairs or 84 images in total
from this dataset.

5.1. M3FD TNO Datasets
5.1.1. Qualitative Comparison

Figure 7 visualizes the partial fusion effects of infrared and visible light from the
M3FD TNO datasets. As Figure 7 displays, overexposure appears in the second and third
columns for MDLatLRR, specifically in the “wheel” and “road” areas, resulting in excessive
brightness and subpar performance. PPT Fusion, SDNet, and SwinFuse show a background
darkening effect in the second and fourth columns, leading to a decrease in the clarity
of some targets. SeAFusion and SuperFusion demonstrate higher levels of blurriness in
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the third column, suggesting inadequate image clarity. In a comprehensive perspective,
the algorithms that perform relatively well on the M3FD TNO datasets include CNN,
Hybrid_MSD, IFEVIP, TIF, and OMOFuse. A detailed observation reveals a relative blur in
the “ground” section of the fourth column image by CNN, and TIF shows higher levels
of blurriness in the “door” section of the fourth column image. Finally, through careful
comparison, we determined that OMOFuse excels in terms of texture detail and realism
compared to Hybrid_MSD and IFEVIP, thus demonstrating superior performance and
making OMOFuse the optimal choice.
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5.1.2. Quantitative Comparison

Table 2 presents the experimental results of the M3FD TNO datasets. Each piece of
data represents the average of 37 pairs of fused images. As Table 2 shows, OMOFuse
secured three first-place positions, four second-place positions, and one third-place position
in the M3FD TNO datasets, outperforming other classic algorithms and SOTA algorithms.
This further establishes that our algorithm, OMOFuse, possesses superior generalization
and fusion capabilities. The mean values in the above table to some extent reflect the
performance of OMOFuse and other algorithms. For further inspection of each algorithm’s
performance, we have illustrated the fusion effects of 37 pairs of infrared and visible-light
images as a line graph, as Figure 8 shows. Through Figure 8, we can more clearly observe
the changing trajectory and magnitude of the nine evaluation indices for each image. The
red bold line represents the OMOFuse algorithm. Our findings reveal that the overall
performance of the OMOFuse algorithm is largely consistent with the data in Table 2,
confirming the validity of Table 2’s data.

Table 2. Objective evaluation of classic and latest fusion algorithms. These are the results of the
M3FD TNO images datasets. ↑/↓ for a metric represents that a larger/smaller value is better. The
best three values in each metric are denoted in red, green, and blue, respectively. The first ranked
effect is marked in red, the second ranked in green, and the third ranked in blue.

Method EN ↓ SF ↑ SD ↑ PSNR ↑ MSE ↓ MI ↑ SCD ↑ Nabf ↓ MS_SSIM ↑

CNN 7.1797 0.0509 9.6380 62.6111 0.0445 2.3819 1.6533 0.1348 0.9424
Hybrid_MSD 7.0103 0.0537 9.2939 63.3682 0.0367 2.2593 1.5827 0.1666 0.9340

IFEVIP 6.8565 0.0447 9.2252 61.4735 0.0548 3.5519 1.5320 0.1158 0.8630
MDLatLRR 6.9375 0.0706 9.2717 63.7603 0.0325 1.5358 1.6063 0.3734 0.9204
PPT Fusion 6.5203 0.0313 8.8465 64.4007 0.0295 2.2453 1.5328 0.0203 0.8628
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Table 2. Cont.

Method EN ↓ SF ↑ SD ↑ PSNR ↑ MSE ↓ MI ↑ SCD ↑ Nabf ↓ MS_SSIM ↑

SDNet 6.7433 0.0474 9.7989 60.2740 0.0694 6.9044 0.5985 0.1995 0.6846
SeAFusion 7.1796 0.0516 9.7298 61.9096 0.0511 2.7547 1.6917 0.2709 0.8877

SuperFusion 6.7751 0.0370 9.0967 61.9471 0.0512 2.8732 1.3693 0.1157 0.7310
SwinFuse 7.1295 0.0569 9.5963 61.7316 0.0492 2.5453 1.8313 0.2124 0.9110

TIF 6.7425 0.0453 9.1220 64.3530 0.0292 1.7497 1.5964 0.1257 0.9401
OMOFuse 6.5414 0.0594 10.2509 64.5596 0.0288 3.4156 1.7671 0.0528 0.7920
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5.2. Roadscene Fusion Datasets
5.2.1. Qualitative Comparison

In this study, we randomly selected five images from the Roadscene datasets for a
visualization demonstration. As Figure 9 shows, the image clarity of the first column is
relatively lower for the Hybrid_MSD and SuperFusion algorithms, with higher degrees
of blur. Regarding the IFEVIP algorithm, its performance in fusing the “license plate” in
the first and second columns was subpar. Additionally, the fusion performances of the
IFEVIP, MDLatLRR, SeAFusion, and SwinFuse algorithms concerning second, third, and
fifth column images were negatively impacted by excessive exposure in brighter areas
of the photographs, compromising recognition effects. Furthermore, the realism of the
fused “trees” in the fourth column for CNN, Hybrid_MSD, PPT Fusion, SuperFusion, and
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SwinFuse was poor, as the deformed fusion effects of the trees were quite perceptible.
TIF’s performance regarding image clarity on the “license plate” in the second column was
also unsatisfactory. Upon a comprehensive review, the OMOFuse algorithm exemplary
demonstrated superior performance without the issues manifested in the other algorithms.
Therefore, we ascertain from a visualization perspective that the OMOFuse algorithm
possesses commendable fusion capabilities.
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5.2.2. Quantitative Comparison

Assuming you are now crafting a scientific paper and have presented all experimental
data in Table 3 which, upon careful evaluation, shows the following results: OMOFuse
ranks first in two categories, second in three instances, and third in another three. It is also
worth noting that PPT Fusion exhibits reasonably good performance on Roadscene datasets,
achieving first place in three instances and second in one. Furthermore, TIF stands at second
place in one case and third in three. However, in light of overall performance, we opine
that PPT Fusion lacks stability. For example, the SF of PPT Fusion is merely 0.0333, which
is the worst performance in the entire table, whereas OMOFuse delivers a relatively stable
performance. Figure 10 presents the location-wise fusion results of 42 pairs of infrared
and visible light images of Roadscene datasets. The bold red line represents the OMOFuse
algorithm. However, it is important to highlight that high scores of image fusion indexes
may not universally indicate superior fusion performance, as an algorithm performing
well on one image may not guarantee similar outcomes on others. This illustrates the fact
that the performance of image fusion techniques varies with the nature of the images used.
Hence, Figure 10 offers a more intuitive way to exhibit the performance of each pair of
images based on evaluation indexes and, when contrasted with Table 3, aids in further
validating the data within the table.

Table 3. Objective evaluation of classic and latest fusion algorithms. These are the results of the
Roadscene Fusion images datasets. ↑/↓ for a metric represents that a larger/smaller value is better.
The best three values in each metric are denoted in red, green, and blue, respectively. The first ranked
effect is marked in red, the second ranked in green, and the third ranked in blue.

Method EN ↓ SF ↑ SD ↑ PSNR ↑ MSE ↓ MI ↑ SCD ↑ Nabf ↓ MS_SSIM ↑

CNN 7.3992 0.0521 10.2391 63.8009 0.0337 3.4795 1.4021 0.1338 0.9483
Hybrid_MSD 7.1189 0.0562 9.4978 64.9477 0.0255 2.5874 1.2136 0.1590 0.9366

IFEVIP 7.0018 0.0494 9.9892 62.1615 0.0461 3.9051 1.2489 0.1950 0.8624
MDLatLRR 7.2945 0.0768 9.8720 64.4147 0.0277 2.3123 1.3084 0.3924 0.9055
PPT Fusion 6.9991 0.0333 9.6836 65.6863 0.0221 3.1211 1.2299 0.0147 0.8895

SDNet 7.3484 0.0586 10.4042 61.7559 0.0500 7.4707 0.7660 0.2606 0.7678
SeAFusion 7.5498 0.0644 10.6673 62.9487 0.0390 3.2919 1.6734 0.3270 0.8987

SuperFusion 7.0396 0.0390 10.0081 63.2152 0.0390 3.1650 1.1354 0.1493 0.7413
SwinFuse 7.6055 0.0556 10.7691 62.4752 0.0403 3.3302 0.8475 0.1994 0.9186

TIF 7.1699 0.0498 9.7740 65.3894 0.0229 2.6484 1.2979 0.1330 0.9454
OMOFuse 6.6558 0.0726 10.5918 65.4070 0.0233 4.1534 1.2386 0.0194 0.9570
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6. Ablation Experiments

The following text is organized into three main sections: Section 6.1 carries out an abla-
tion study of the ODAM module; Section 6.2 initiates an ablation study of the MO module;
and Section 6.3 explores an ablation study of the loss function. Each section undergoes
experimental verification, applying both qualitative and quantitative comparisons for a
comprehensive analysis.

6.1. Ablation Experiment of ODAM
6.1.1. Qualitative Comparison

Figure 11 showcases the qualitative comparison from ablation studies conducted on
each part of the ODAM module. It can be gleaned from Figure 11 that the OMOFuse
algorithm demonstrates higher realism on “grassland” than NO_ODAM, NO_DCA, and
NO_ESA. NO_ODAM, compared to NO_DCA and NO_ESA, shows a higher degree of
blur, thus underscoring the crucial role of the attention mechanism in visually enhancing
the sharpness of the fused image. In all images, within the “fire” section on the right, we
can readily observe higher clarity with OMOFuse, and the “flame” section is noticeably
brighter. This suggests that the OMOFuse algorithm outperforms the other algorithms.
Furthermore, the NO_ODAM image is evidently darker than both NO_DCA and NO_ESA,
with a lower level of edge information retrieval. Overall, the attention mechanism module
plays a significant role in enhancing the algorithm’s clarity, reducing blurriness, and
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aiding in edge information retrieval. Moreover, the OMOFuse algorithm exhibits superior
overall performance.
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Figure 11. Comparison of visualization effects of the ODAM module ablation experiment.
NO_ODAM represents the removal of the ODAM module; NO_DCA represents the removal of
the DCA module; NO_ESA represents the removal of the ESA module.

6.1.2. Quantitative Comparison

As Table 4 indicates, it can be observed that the OMOFuse algorithm has a distinct
advantage compared to NO_ODAM, NO_DCA, and NO_ESA, precisely aligning with
the qualitative comparison shown in the previous figures. NO_ODAM only ranks first
in terms of MSE, with the OMOFuse algorithm taking the lead in all the other rankings.
Additionally, it can be noted that NO_DCA and NO_ESA enhance the effects of NO_ODAM
in different dimensions, further emphasizing that the attention mechanism can improve
the fusion performance.

Table 4. ODAM module data comparison.

Method EN ↓ SF ↑ SD ↑ PSNR ↑ MSE ↓ MI ↑ SCD ↑ Nabf ↓ MS_SSIM ↑

NO_ODAM 6.1944 0.0151 9.7224 62.9970 0.0354 3.9826 1.5242 0.5302 0.9252
NO_DCA 6.0814 0.0160 10.6346 62.7961 0.0629 4.7839 1.4794 0.4224 0.9533
NO_ESA 6.3968 0.0094 9.9619 62.3531 0.0639 5.2015 1.5564 0.2036 0.9514

OMOFuse 5.8332 0.0253 10.9961 63.4045 0.0413 5.3462 1.6638 0.1716 0.9713
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6.2. Ablation Experiment of MO
6.2.1. Qualitative Comparison

Figure 12 represents the qualitative comparison of the ablation study performed
on each section of the ODAM module. As we can discern from Figure 12, despite that
NO_MO performs better in terms of clarity of “trees”, it still lags behind the OMOFuse
algorithm. Furthermore, the clarity of all “fire points” is consistently better with the
OMOFuse algorithm than with NO_MO, with sharper “flames” visible on the right side.
This further demonstrates that the MO module can enhance the visual performance of the
algorithm to a certain extent.
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6.2.2. Quantitative Comparison

Table 5 presents the evaluation metrics for both NO_MO and OMOFuse algorithms.
Except for the MI and Nabf metrics where OMOFuse did not outperform, it leads in the
remaining seven evaluation metrics. The overall performance of the OMOFuse algorithm
is commendable, mirroring the previous figure, which substantiates that MO can enhance
the visual appeal of the network.

Table 5. MO module data comparison.

Method EN ↓ SF ↑ SD ↑ PSNR ↑ MSE ↓ MI ↑ SCD ↑ Nabf ↓ MS_SSIM ↑

NO_MO 6.3368 0.0085 9.5200 61.7127 0.0470 5.4111 1.5337 0.1228 0.9473
OMOFuse 5.8332 0.0253 10.9961 63.4045 0.0413 5.3462 1.6638 0.1716 0.9713

6.3. Ablation Experiment of Loss Function
6.3.1. Qualitative Comparison

Figure 13 presents a qualitative comparison of ablation studies conducted on each part
of the ODAM module. It can be seen from Figure 13 that the NO_Loss manifests as black
on the organized “fire points”, indicating an inferior detection effect. In addition, the result
on “tree” texture information-related aspects is also sub-optimal. Thus, the loss function L,
introduced by us, could improve the visual effects of the fused images to a certain extent.
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6.3.2. Quantitative Comparison

Table 6 compiles the evaluation metrics for NO_Loss and OMOFuse. It can be gleaned
from Table 6 that, apart from EN and Nabf where OMOFuse did not perform optimally, it
otherwise does robustly surpass NO_Loss in the remaining rankings. The overall perfor-
mance is quite satisfactory, further evidencing the effectiveness of the loss function L, as
corroborated by the above-mentioned figures.

Table 6. Loss function data comparison.

Method EN ↓ SF ↑ SD ↑ PSNR ↑ MSE ↓ MI ↑ SCD ↑ Nabf ↓ MS_SSIM ↑

NO_Loss 5.6625 0.0053 8.1691 61.8850 0.0507 4.1810 1.1303 0.0595 0.7864
OMOFuse 5.8332 0.0253 10.9961 63.4045 0.0413 5.3462 1.6638 0.1716 0.9713

7. Conclusions

Image fusion can ameliorate image quality to a certain extent, enhance visual effects,
and facilitate subsequent processing. Originating from the pixel level, a novel image
fusion algorithm called OMOFuse is proposed to avoid the complexity and suboptimal
performance issues associated with manually designed algorithms. In detail, a DCA and
ESA mechanism are first proposed, which were combined to form the ODAM module for
enhancing the feature extraction capability of the network. Subsequently, a MO module
was introduced to further improve the network’s acquisition of contextual information.
Finally, we have constructed a novel loss function L within three dimensions (SSL, PL, and
GL). In a qualitative and quantitative comparison across three commonly employed public
datasets, five classical algorithms alongside five SOTA ones were contrasted. Experimental
outcomes indicate that OMOFuse surpasses both classical and SOTA algorithms in terms
of clarity, texture, and visual features.
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